JP2698029B2 - A method for obtaining stress distribution from temperature change patterns on the surface of an elastic body - Google Patents

A method for obtaining stress distribution from temperature change patterns on the surface of an elastic body

Info

Publication number
JP2698029B2
JP2698029B2 JP5239392A JP23939293A JP2698029B2 JP 2698029 B2 JP2698029 B2 JP 2698029B2 JP 5239392 A JP5239392 A JP 5239392A JP 23939293 A JP23939293 A JP 23939293A JP 2698029 B2 JP2698029 B2 JP 2698029B2
Authority
JP
Japan
Prior art keywords
stress
distribution
elastic body
temperature change
sum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5239392A
Other languages
Japanese (ja)
Other versions
JPH0792039A (en
Inventor
村上敬宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP5239392A priority Critical patent/JP2698029B2/en
Publication of JPH0792039A publication Critical patent/JPH0792039A/en
Application granted granted Critical
Publication of JP2698029B2 publication Critical patent/JP2698029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Complex Calculations (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、弾性体表面の温度変化
パターンから応力分布を求める方法に関し、特に、熱弾
性効果による弾性体表面の温度変化パターンデータと数
値応力解析による解析データとから弾性体の応力分布を
求める方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for obtaining a stress distribution from a temperature change pattern on the surface of an elastic body. The present invention relates to a method for determining a stress distribution of a body.

【0002】[0002]

【従来の技術】弾性体の任意の1点における応力は、
(x,y,z)直交座標で表して、一般に6つの成分σ
x ,σy ,σz ,τxy,τyz,τzxで表される。この
中、σx ,σy ,σz はそれぞれx,y,z軸に垂直な
平面に作用する垂直応力成分、τxyはx=一定の面でy
方向に作用、及び、y=一定の面でx方向に作用する剪
断応力であり、τyz,τzxも添字に関して同じ定義に従
う剪断応力である。また、その点に関して適当な座標系
を選ぶと、剪断応力成分は全て消え、垂直応力成分のみ
が存在することになり、その垂直応力成分は主応力成分
σ1 ,σ2 ,σ3 と呼ばれる。
2. Description of the Related Art The stress at any one point of an elastic body is as follows.
Expressed in (x, y, z) rectangular coordinates, generally six components σ
x , σ y , σ z , τ xy , τ yz , τ zx . Among them, σ x , σ y , and σ z are vertical stress components acting on planes perpendicular to the x, y, and z axes, respectively, and τ xy is y in a x = constant plane.
Acting in the direction and y = shear stress acting in the x direction on a constant plane, and τ yz and τ zx are also shear stresses according to the same definition with respect to the subscripts. If an appropriate coordinate system is selected for that point, all the shear stress components disappear and only the normal stress component exists, and the normal stress components are called main stress components σ 1 , σ 2 , and σ 3 .

【0003】ところで、弾性体に断熱的に応力変化を与
えるとそれに比例して温度変化が生じることが、熱弾性
効果(thermoelastic effect)と
して19世紀からWeber,Kelvin等によって
知られていた。この熱弾性効果により生じる応力印加前
後の温度差をΔTとすると、 ΔT=−KT(σ1 +σ2 +σ3 ) の関係がある。ここで、Kは材料に固有の定数で熱弾性
定数、Tは絶対温度である。なお、ここで、主応力和
(σ1 +σ2 +σ3 )は第1次応力不変量であり、座標
軸(x,y,z)の取り方に無関係に(σx +σy +σ
z )に等しいことが弾性論によって証明されている。Δ
Tが主応力和に比例するのは、弾性体の体積の変化が第
1次応力不変量によって決まり、剪断応力成分τxy,τ
yz,τzxによっては弾性体の体積変化は起きないからで
ある。
It has been known from the 19th century by Weber, Kelvin, and the like, as a thermoelastic effect, that a temperature change occurs in proportion to an adiabatic stress change applied to an elastic body. Assuming that a temperature difference before and after stress application caused by the thermoelastic effect is ΔT, there is a relationship of ΔT = −KT (σ 1 + σ 2 + σ 3 ). Here, K is a constant unique to the material and a thermoelastic constant, and T is an absolute temperature. Here, the sum of the principal stresses (σ 1 + σ 2 + σ 3 ) is a primary stress invariant and is (σ x + σ y + σ irrespective of how to take the coordinate axes (x, y, z)).
z ) is proved by the theory of elasticity. Δ
T is proportional to the sum of the principal stresses because the change in volume of the elastic body is determined by the first-order stress invariant, and the shear stress components τ xy , τ
This is because the volume change of the elastic body does not occur depending on yz and τ zx .

【0004】本出願人は、この熱弾性効果を利用して、
弾性体に圧縮・引っ張り荷重を繰り返し加え、それに伴
う弾性体表面の温度変化パターンを赤外線カメラで検出
することにより、簡単に応力分布を測定する方法を特公
昭62−1204〜5号、同63−7333号等におい
て提案している。
[0004] The present applicant utilizes this thermoelastic effect,
A method of easily measuring a stress distribution by repeatedly applying a compressive / tensile load to an elastic body and detecting a temperature change pattern of the surface of the elastic body with an infrared camera is disclosed in JP-B-62-1204-5 and JP-B-63-12063. No. 7333 and the like.

【0005】一方、弾性体の応力分布を数値解析的に求
める方法として、有限要素法、境界要素法、差分法等が
知られている。これらは、実物と同じ形状のモデルに弾
性定数と加える外力を境界条件として与え、近似的に弾
性体内部及びその表面の応力分布等を求める数値解析的
手法である。
On the other hand, a finite element method, a boundary element method, a difference method and the like are known as methods for obtaining the stress distribution of an elastic body by numerical analysis. These are numerical analysis techniques that give an elastic constant and an external force to be applied to a model having the same shape as the actual product as boundary conditions, and approximately determine the stress distribution and the like inside the elastic body and its surface.

【0006】[0006]

【発明が解決しようとする課題】上記のように、熱弾性
効果による弾性体表面の温度変化パターンは、主応力和
(σ1 +σ2 +σ3 )の分布に比例するが、この温度変
化パターンデータからは、応力成分σx ,σy ,σz
τxy,τyz,τzxそれぞれを分離して知ることはできな
い。一方、有限要素法等の数値応力解析法においては、
境界条件を適正に与えることが容易ではなく、そのため
得られた結果が実物の応力分布に対応するかは必ずしも
確実ではない。
As described above, the temperature change pattern of the elastic body surface due to the thermoelastic effect is proportional to the distribution of the sum of the principal stresses (σ 1 + σ 2 + σ 3 ). From the stress components σ x , σ y , σ z ,
τ xy , τ yz , and τ zx cannot be separately known. On the other hand, in numerical stress analysis methods such as the finite element method,
It is not easy to give the boundary conditions properly, and it is not always certain that the obtained result corresponds to the actual stress distribution.

【0007】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、その目的は、熱弾性効果によ
る弾性体表面の温度変化パターンデータと数値応力解析
による解析データを組み合わせることにより、弾性体の
個々の応力成分を含めた応力分布を求める簡単な方法を
提供することである。
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to combine temperature change pattern data of an elastic body surface due to a thermoelastic effect with analysis data obtained by numerical stress analysis. Another object of the present invention is to provide a simple method for obtaining a stress distribution including individual stress components of an elastic body.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明の弾性体表面の温度変化パターンから応力分布を求め
る方法は、弾性体実物に断熱的に応力変化を与えて熱弾
性効果による実物表面の温度変化パターンを検出し、そ
の温度変化パターンから実物表面の内点における主応力
和を求め、また、その実物と同形状の構造体モデルの境
界に複数の自由接点を定め、特定の1つの自由接点に単
位外力を印加した時の実物表面の内点における主応力和
を数値応力解析により求め、次いで、重ね合わせ原理と
最小自乗法により、実測主応力和分布に最も近い主応力
和分布を与える各自由接点にかかる外力分布を求め、得
られた外力分布から数値応力解析により実物の任意の点
にかかる応力成分を求めることを特徴とする方法であ
る。
In order to achieve the above object, a method of obtaining a stress distribution from a temperature change pattern on an elastic body surface according to the present invention is a method for adiabatically applying a stress change to an elastic body by adiabatic thermal elasticity effect. The temperature change pattern is detected, the principal stress sum at the inner point of the actual surface is determined from the temperature change pattern, and a plurality of free contact points are determined at the boundary of the structural model having the same shape as the actual object, and a specific one The principal stress sum at the inner point of the actual surface when a unit external force is applied to the free contact point is obtained by numerical stress analysis, and then the principal stress sum distribution closest to the measured principal stress sum distribution is calculated by the superposition principle and the least square method. The method is characterized in that an external force distribution applied to each given free contact point is obtained, and a stress component applied to an arbitrary point on the actual object is obtained from the obtained external force distribution by numerical stress analysis.

【0009】[0009]

【作用】本発明においては、熱弾性効果による弾性体表
面の温度変化パターンデータから求めた実測主応力和分
布に最も近い主応力和分布を与える各自由接点にかかる
外力分布を求め、得られた外力分布から数値応力解析に
より実物の任意の点にかかる応力成分を求めるので、実
物表面及び内部における応力成分の分布を簡単な方法で
精度よく求めることができる。
In the present invention, the external force distribution applied to each free contact which gives the main stress sum distribution closest to the measured main stress distribution obtained from the temperature change pattern data of the elastic body surface due to the thermoelastic effect was obtained and obtained. Since the stress component applied to an arbitrary point on the actual object is obtained from the external force distribution by numerical stress analysis, the distribution of the stress component on the surface and inside of the actual object can be accurately obtained by a simple method.

【0010】なお、異なる外力によって同一点に同じ主
応力和が生じる平滑な丸棒の引っ張りの問題と捩じりと
引っ張りを受ける問題等は、主応力和のみの情報からは
原理的に応力成分の分離が不可能であるが、このような
問題は実用上の重要性は低く、一般に実用上重要な問題
ではこのような不都合は生じず、本発明によって解決す
ることができる。
[0010] The problem of pulling a smooth round bar and the problem of being subject to torsion and pulling, in which the same principal stress sum is generated at the same point due to different external forces, is due to the fact that the stress component is in principle based on the information of the principal stress sum alone. However, such a problem is of low practical importance, and generally, such a problem does not cause such inconvenience, and can be solved by the present invention.

【0011】[0011]

【実施例】以下、本発明の原理を説明するが、前提とし
て、弾性体実物に所定の応力変化を与えた時の温度変化
パターンが、本出願人による特公昭62−1204〜5
号、同63−7333号等の熱弾性効果を利用した方法
により検出され、そのパターンデータから弾性体実物表
面における主応力和(σ1 +σ2 +σ3 )の分布が求め
られているものとする(なお、この主応力和(σ1 +σ
2 +σ3 )は(σx+σy +σz )に等しい。)。ま
た、この実物に対応する形状のモデルに弾性定数を与
え、その境界に境界条件として外力を与えることによ
り、そのモデルの内部及びその表面の応力分布が有限要
素法等の数値応力解析により求まるものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The principle of the present invention will be described below. The premise is that the temperature change pattern when a predetermined stress change is applied to an actual elastic body is determined by the applicant of the present invention.
No. 63-7333, and the distribution of the principal stress sum (σ 1 + σ 2 + σ 3 ) on the surface of the actual elastic body is determined from the pattern data. (Note that this principal stress sum (σ 1 + σ
2 + σ 3 ) is equal to (σ x + σ y + σ z ). ). By giving an elastic constant to the model of the shape corresponding to this real object and applying an external force to the boundary as a boundary condition, the stress distribution inside the model and its surface can be obtained by numerical stress analysis such as the finite element method. And

【0012】さて、このような前提の下に、図1に模式
的に示すように、このモデル1の主応力和が求まってい
る表面を要素j(j=1〜n)に分割し、その要素位置
(内点)における主応力和(σ1 +σ2 +σ3 )をZ(j)
とする。このように、実物1表面におけるZ(j)の分布が
分かった時に、実物1表面の自由接点(変位の拘束がな
い接点)iにかかる外力P(i)(i=1〜m)を見積も
る。なお、P(i)にはその自由接点iにおける垂直成分と
接線成分があるが、以下の議論では、簡単のために1つ
のみとする。
Under the above assumption, as shown schematically in FIG. 1, the surface of the model 1 for which the sum of the principal stresses is obtained is divided into elements j (j = 1 to n). The principal stress sum (σ 1 + σ 2 + σ 3 ) at the element position (inner point) is Z (j)
And As described above, when the distribution of Z (j) on the surface of the actual object 1 is known, the external force P (i) (i = 1 to m) applied to the free contact (contact point having no displacement) i on the actual object 1 surface is estimated. . Note that P (i) has a vertical component and a tangential component at the free contact point i, but in the following discussion, only one is provided for simplicity.

【0013】自由接点iに外力P(i)=1のみをかけた時
の要素jにおける主応力和(σ1 +σ2 +σ3 )をF(i,
j)と定義する(なお、主応力和(σ1 +σ2 +σ3 )は
(σx +σy +σz )に等しい。)。このF(i,j)は、上
記したように、有限要素法等の数値応力解析により求ま
る。
The principal stress sum (σ 1 + σ 2 + σ 3 ) at element j when only external force P (i) = 1 is applied to free contact point i is represented by F (i,
j) (Note that the sum of the principal stresses (σ 1 + σ 2 + σ 3 ) is equal to (σ x + σ y + σ z ).) This F (i, j) is obtained by numerical stress analysis such as the finite element method as described above.

【0014】さて、F(i,j)が求まると、次式(1)を満
たすP(i)を求める。 P(1)F(1,1)+ …+P(i) F(i,1)+ …+P(m)F(m,1)=Z(1) ・ ・ ・ ・ ・ ・ ・ ・ P(1)F(1,j)+ …+P(i) F(i,j)+ …+P(m)F(m,j)=Z(j) ・ ・ ・ ・ ・ ・ ・ ・ P(1)F(1,n)+ …+P(i) F(i,n)+ …+P(m)F(m,n)=Z(n) ・・・・(1) すなわち、重ね合わせの原理により、実際に熱弾性効果
を利用して求めたZ(j)に等しくなるような外力P(i)の分
布を求めようとする。
When F (i, j) is obtained, P (i) satisfying the following equation (1) is obtained. P (1) F (1,1) +… + P (i) F (i, 1) +… + P (m) F (m, 1) = Z (1) ・ ・ ・ ・ ・ ・ ・ ・ P (1) F (1, j) +… + P (i) F (i, j) +… + P (m) F (m, j) = Z (j) ・ ・ ・ ・ ・ ・ ・ ・ P ( 1) F (1, n) +… + P (i) F (i, n) +… + P (m) F (m, n) = Z (n) (1) That is, superposition According to the principle of, an attempt is made to obtain a distribution of the external force P (i) that is equal to Z (j) actually obtained by using the thermoelastic effect.

【0015】しかしながら、実際には、測定誤差や計算
誤差が生じ得るので、式(1)を厳密に満たすP(i)を求
めることは意味が薄い。そこで、誤差を考慮して、式
(1)を次の式(2)のように改める。
However, in practice, a measurement error or a calculation error may occur, and it is meaningless to find P (i) that strictly satisfies the equation (1). Therefore, in consideration of the error, the equation (1) is revised as the following equation (2).

【0016】 P(1)F(1,1)+ …+P(i) F(i,1)+ …+P(m)F(m,1)-Z(1) =ε(1) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ P(1)F(1,j)+ …+P(i) F(i,j)+ …+P(m)F(m,j)-Z(j) =ε(j) ・ ・ ・ ・ ・ ・ ・ ・ P(1)F(1,m)+ …+P(i) F(i,m)+ …+P(m)F(m,n)-Z(n) =ε(n) ・・・・(2) そして、最小自乗法を適用して、 を最小にするようにP(i)を見積もる。すなわち、 ∂E/∂P(i)=0 ・・・・(4) を満たすP(i)(i=1〜m)を求めることにする。P (1) F (1,1) +... + P (i) F (i, 1) +... + P (m) F (m, 1) -Z (1) = ε (1)・ ・ ・ ・ ・ ・ ・ ・ ・ P (1) F (1, j) +… + P (i) F (i, j) +… + P (m) F (m, j) -Z (j) = ε (j) ・ ・ ・ ・ ・ ・ ・ ・ ・ P (1) F (1, m) +… + P (i) F (i, m) +… + P (m) F (m, n)- Z (n) = ε (n) (2) Then, applying the least squares method, P (i) is estimated to minimize. That is, P (i) (i = 1 to m) that satisfies ∂E / ∂P (i) = 0 (4) is determined.

【0017】式(4)において、i=1の時、 となる。In equation (4), when i = 1, Becomes

【0018】以下、i=mまで同様に整理すると、次の
ような連立一次方程式(5)が導出できる。 この式(5)をLU(Lower−Upper)分解
法、ガウス法等で解くと、P(i)、すなわち、実際に求め
たZ(j)に等しいか近接した値を与える外力P(i)の分布が
求まる。
Hereinafter, by similarly organizing up to i = m, the following simultaneous linear equation (5) can be derived. When this equation (5) is solved by an LU (Lower-Upper) decomposition method, a Gauss method, or the like, an external force P (i) giving a value equal to or close to P (i), that is, Z (j) actually obtained. Is obtained.

【0019】次いで、この外力分布P(i)をモデル1の境
界条件として、有限要素法等の数値応力解析を行うと、
モデル1の内部及びその表面の任意の点の応力成分
σx ,σy ,σz ,τxy,τyz,τzx、変位εx
εy ,εz 等を求めることができる。
Next, using this external force distribution P (i) as a boundary condition of the model 1, a numerical stress analysis such as a finite element method
Stress components σ x , σ y , σ z , τ xy , τ yz , τ zx , displacement ε x ,
ε y , ε z, etc. can be obtained.

【0020】以上の応力分布を求める方法の手順をフロ
ーチャートに示すと図2のようになる。すなわち、ま
ず、ステップ1において、例えば特公昭62−1204
〜5号、同63−7333号等の方法を用いて、熱弾性
効果を利用して実物表面の温度変化ΔTパターンを検出
し、次に、ステップ2において、ΔT=−KT(σ1
σ2 +σ3 )の関係から、実物表面の主応力和(σx
σy +σz =Z(j))を求める。さらに、ステップ3にお
いて、この主応力和を求めた実物と同形状のモデルの数
値応力解析に必要な接点の座標、拘束条件、弾性定数
(ヤング率、ポアソン比等)、外力P(i)のかかる座標、
ステップ2で求めた内点jでの主応力和Z(j)を入力
する。そして、ステップ4において、例えば有限要素法
を適用して、数値応力解析により特定の1つの外力にP
(i)=1を印加した時の主応力和F(i,j)を求める。こ
の時、弾性体が釣合い条件を保つように境界の任意の部
分を拘束しておく(拘束部分の節点に作用する力は、最
終的に解が求まった時点で正しい値が求まる。)。そし
て、ステップ5において、これらZ(j))、F(i,j)から、
重ね合わせ原理及び最小自乗法により、式(5)に基づ
き、実測主応力和分布Z(j)に近い主応力和分布を与える
外力P(i)の分布を求める。その後、ステップ6におい
て、ステップ5において得られた外力分布P(i)から数値
応力解析により応力成分σx,σy ,σz ,τxy
τyz,τzx等を求める。
FIG. 2 is a flowchart showing the procedure of the method for obtaining the stress distribution described above. That is, first, in step 1, for example, JP-B-62-1204
No. 5, No. 5, No. 63-7333, etc., the temperature change ΔT pattern of the actual surface is detected by utilizing the thermoelastic effect, and then, in step 2, ΔT = −KT (σ 1 +
From the relationship σ 2 + σ 3 , the sum of the principal stresses on the actual surface (σ x +
σ y + σ z = Z (j)). Further, in step 3, the coordinates of the contact points, constraint conditions, elastic constants (Young's modulus, Poisson's ratio, etc.), and external force P (i) required for numerical stress analysis of the model having the same shape as the real product for which the sum of the principal stresses was obtained. Such coordinates,
The principal stress sum Z (j) at the inner point j obtained in step 2 is input. Then, in step 4, for example, a finite element method is applied, and P
(I) The main stress sum F (i, j) when 1 is applied is obtained. At this time, an arbitrary portion of the boundary is constrained so that the elastic body keeps the balance condition (the correct value is obtained for the force acting on the node of the constrained portion when the solution is finally obtained). Then, in step 5, from these Z (j)) and F (i, j),
The distribution of the external force P (i) that gives the main stress sum distribution close to the measured main stress sum distribution Z (j) is obtained based on the equation (5) by the superposition principle and the least square method. Thereafter, in step 6, the stress components σ x , σ y , σ z , τ xy , and σ x , σ y , σ xy are obtained from the external force distribution P (i) obtained in step 5 by numerical stress analysis.
τ yz , τ zx, etc. are obtained.

【0021】以上が本発明の弾性体表面の温度変化パタ
ーンから応力分布を求める方法の原理であるが、2次元
実物についての具体例を示す。図3に示すような中心に
円孔を有する矩形板ABCD内の内点56点について、
主応力和(σx +σy =Z(j))を熱弾性効果を利用した
方法により求める。そのデータは次の表−1の通りであ
る。なお、ヤング率は21000.0N/mm2 、ポア
ソン比は0.3である。
The principle of the method for obtaining a stress distribution from a temperature change pattern on the surface of an elastic body according to the present invention has been described above. A specific example of a two-dimensional actual product will be described below. Regarding 56 points inside the rectangular plate ABCD having a circular hole at the center as shown in FIG.
The principal stress sum (σ x + σ y = Z (j)) is determined by a method utilizing the thermoelastic effect. The data is as shown in Table 1 below. The Young's modulus is 21000.0 N / mm 2 and the Poisson's ratio is 0.3.

【0022】 この矩形板ABCDの数値応力解析を行うために、図4
に示すように、外力P(1)〜P(30) を定める。
[0022] In order to perform a numerical stress analysis of this rectangular plate ABCD, FIG.
As shown in (1), external forces P (1) to P (30) are determined.

【0023】次いで、上記の各P(i)のみにP(i)=1の外
力をかけた時の内点jにおける主応力和(σx +σy
をF(i,j)と定義し、例えば境界要素法を用いて各F(i,j)
を求める。ここまでに得られているデータは次の表−2
の通りである。
Next, the principal stress sum (σ x + σ y ) at the inner point j when an external force of P (i) = 1 is applied only to each of the above P (i)
Is defined as F (i, j), and for example, each F (i, j)
Ask for. The data obtained so far is shown in Table 2 below.
It is as follows.

【0024】 この結果、式(5)は次の式(6)のように書ける。[0024] As a result, equation (5) can be written as the following equation (6).

【0025】 式(6)のマトリックスをガウス法により解くと、P
(1),P(2)…P(30) が得られる。表−1に対する境界の
垂直力成分(NF)及び接線力成分(SF)は表−3の
通りである。
[0025] Solving the matrix of Equation (6) by the Gaussian method gives P
(1), P (2) ... P (30) are obtained. Table 3 shows the normal force component (NF) and the tangential force component (SF) of the boundary with respect to Table 1.

【0026】 この求まった外力分布P(i)を矩形板ABCDの境界条件
として、有限要素法等の数値応力解析によりこの矩形板
ABCD内部の任意の点の応力成分σx ,σy,τxy
ひずみεx ,εy 等を求めることができる。
[0026] Using the obtained external force distribution P (i) as a boundary condition of the rectangular plate ABCD, stress components σ x , σ y , τ xy , at arbitrary points inside the rectangular plate ABCD are obtained by numerical stress analysis such as a finite element method.
The strains ε x and ε y can be obtained.

【0027】以上、本発明の弾性体表面の温度変化パタ
ーンから応力分布を求める方法の原理と実施例について
説明したが、本発明はこれら実施例に限定されず種々の
変形が可能である。なお、弾性体実物に応力変化を与え
て熱弾性効果による実物表面の温度変化パターンを検出
し、それから実物表面の主応力和分布を求める方法とし
ては、本出願人の提案に係る赤外線カメラを利用する方
法以外にも、その他の公知の方法を利用することができ
る。また、構造体モデルに境界条件を与えることによ
り、その内部及び表面における応力分布を数値解析的に
求める方法も、有限要素法、境界要素法又は差分法に限
定されず、その他の種々の方法を利用することができ
る。
Although the principle and embodiments of the method for obtaining the stress distribution from the temperature change pattern on the surface of the elastic body according to the present invention have been described above, the present invention is not limited to these embodiments, and various modifications are possible. In addition, as a method of applying a stress change to the elastic real object to detect a temperature change pattern of the real surface due to the thermoelastic effect, and then obtaining a main stress sum distribution of the actual surface, the infrared camera according to the proposal of the present applicant is used. In addition to the method described above, other known methods can be used. Also, the method of obtaining the stress distribution inside and on the surface by numerical analysis by giving the boundary condition to the structure model is not limited to the finite element method, the boundary element method or the difference method, but various other methods may be used. Can be used.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、本発明
の弾性体表面の温度変化パターンから応力分布を求める
方法によると、熱弾性効果による弾性体表面の温度変化
パターンデータから求めた実測主応力和分布に最も近い
主応力和分布を与える境界の各自由接点にかかる外力分
布を求め、得られた外力分布から数値応力解析により実
物の任意の点にかかる応力成分を求めるので、実物表面
及び内部における応力成分の分布を簡単な方法で精度よ
く求めることができる。
As is clear from the above description, according to the method of obtaining the stress distribution from the temperature change pattern of the elastic body surface according to the present invention, the actual measurement based on the temperature change pattern data of the elastic body surface due to the thermoelastic effect is obtained. The external force distribution applied to each free contact at the boundary that gives the principal stress sum distribution closest to the stress sum distribution is obtained, and the stress component applied to any point of the actual object is obtained from the obtained external force distribution by numerical stress analysis. The distribution of the stress component inside can be accurately obtained by a simple method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において用いるパラメータを説明するた
めの模式図である。
FIG. 1 is a schematic diagram for explaining parameters used in the present invention.

【図2】本発明のより応力分布を求める方法の手順を示
すフローチャートである。
FIG. 2 is a flowchart showing a procedure of a method for obtaining a stress distribution according to the present invention.

【図3】1つの実施例の矩形板の形状と内点を示す図で
ある。
FIG. 3 is a diagram showing the shape and inner points of a rectangular plate according to one embodiment.

【図4】図3の矩形板にかかる外力を定める図である。FIG. 4 is a diagram for determining an external force applied to the rectangular plate of FIG. 3;

【符号の説明】[Explanation of symbols]

1…モデル(実物) 1 ... Model (real)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 弾性体実物に断熱的に応力変化を与えて
熱弾性効果による実物表面の温度変化パターンを検出
し、その温度変化パターンから実物表面の内点における
主応力和を求め、また、その実物と同形状の構造体モデ
ルの境界に複数の自由接点を定め、特定の1つの自由接
点に単位外力を印加した時の実物表面の内点における主
応力和を数値応力解析により求め、次いで、重ね合わせ
原理と最小自乗法により、実測主応力和分布に最も近い
主応力和分布を与える各自由接点にかかる外力分布を求
め、得られた外力分布から数値応力解析により実物の任
意の点にかかる応力成分を求めることを特徴とする弾性
体表面の温度変化パターンから応力分布を求める方法。
1. An adiabatic stress change is applied to a real elastic body to detect a temperature change pattern on a real surface due to a thermoelastic effect, and a principal stress sum at an inner point of the real surface is obtained from the temperature change pattern. A plurality of free contacts are defined at the boundary of the structure model having the same shape as the real object, and a principal stress sum at an inner point of the real surface when a unit external force is applied to one specific free contact is obtained by numerical stress analysis, and then By using the superposition principle and the least squares method, the external force distribution applied to each free contact that gives the principal stress sum distribution closest to the measured main stress sum distribution is obtained, and the obtained external force distribution is used to calculate the actual stress to an arbitrary point on the real object by numerical stress analysis. A method for obtaining a stress distribution from a temperature change pattern on the surface of an elastic body, wherein the stress distribution is obtained.
JP5239392A 1993-09-27 1993-09-27 A method for obtaining stress distribution from temperature change patterns on the surface of an elastic body Expired - Fee Related JP2698029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5239392A JP2698029B2 (en) 1993-09-27 1993-09-27 A method for obtaining stress distribution from temperature change patterns on the surface of an elastic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5239392A JP2698029B2 (en) 1993-09-27 1993-09-27 A method for obtaining stress distribution from temperature change patterns on the surface of an elastic body

Publications (2)

Publication Number Publication Date
JPH0792039A JPH0792039A (en) 1995-04-07
JP2698029B2 true JP2698029B2 (en) 1998-01-19

Family

ID=17044105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5239392A Expired - Fee Related JP2698029B2 (en) 1993-09-27 1993-09-27 A method for obtaining stress distribution from temperature change patterns on the surface of an elastic body

Country Status (1)

Country Link
JP (1) JP2698029B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340217B1 (en) * 2000-05-29 2002-06-12 윤숙희 Numerical Analysis Method For Analyzing Residual Stress of Welding
JP4898320B2 (en) * 2006-06-28 2012-03-14 Jfeスチール株式会社 Structure defect detection method and apparatus, and cargo handling machine having defect detection function
KR100821958B1 (en) * 2007-05-15 2008-04-15 학교법인조선대학교 Finite element method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637333A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
JPH05223661A (en) * 1992-02-17 1993-08-31 Babcock Hitachi Kk Method for measuring residual stress

Also Published As

Publication number Publication date
JPH0792039A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
CN107330176B (en) Strain gauge and accelerometer joint layout method based on structural modal estimation
Dailey Eigenvector derivatives with repeated eigenvalues
US20200089733A1 (en) Sensor placement method for reducing uncertainty of structural modal identification
Li et al. Finite element and experimental studies on single-lap balanced joints in tension
JP2008511972A5 (en)
CN107315874B (en) Sensor layout method for simultaneously acquiring local deformation and overall modal information of structure
Voyles et al. The shape from motion approach to rapid and precise force/torque sensor calibration
CN105866735B (en) The reaching time-difference iteration localization method of amendment cost function based on MDS models
Aubry et al. Equilibrium shape of dislocation shear loops in anisotropic α-Fe
CN110008521B (en) Distributed dynamic load time domain identification method based on sub-region interpolation
D'Ambrogio et al. A unified approach to substructuring and structural modification problems
CN109282785A (en) A kind of deformation monitoring method of the elastically supported plate based on strain monitoring
JP2698029B2 (en) A method for obtaining stress distribution from temperature change patterns on the surface of an elastic body
US5616866A (en) Method of finding stress distribution from temperature variation pattern on surface of elastic body
JP3956302B2 (en) Damaged part detection device for structure and method for detecting damaged part of structure
Maniatty et al. Method for solving inverse elastoviscoplastic problems
JPH05223661A (en) Method for measuring residual stress
CN105259533A (en) Three-stage arrival time difference positioning method based on multidimensional scaling sub space analysis
JP2003139627A (en) Method for finding physical quantity
Entezami et al. New sensitivity-based methods for structural damage diagnosis by least square minimal residual techniques
Hung et al. Identification of dynamic systems from data composed by combination of their response compoments
Li et al. Structural shape reconstruction through modal approach using strain gages
Sladek et al. The dynamic response of a tactile sensor
Schirmer et al. Design, implementation and experimental testing of an inertial sensor system to quantify wing deflection
JPH0395424A (en) Tension measuring apparatus for membrane

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees