JP2697461B2 - Internal reforming molten carbonate fuel cell - Google Patents

Internal reforming molten carbonate fuel cell

Info

Publication number
JP2697461B2
JP2697461B2 JP4052369A JP5236992A JP2697461B2 JP 2697461 B2 JP2697461 B2 JP 2697461B2 JP 4052369 A JP4052369 A JP 4052369A JP 5236992 A JP5236992 A JP 5236992A JP 2697461 B2 JP2697461 B2 JP 2697461B2
Authority
JP
Japan
Prior art keywords
gas
reforming
fuel
fuel gas
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4052369A
Other languages
Japanese (ja)
Other versions
JPH05258758A (en
Inventor
順二 新倉
一仁 羽藤
昇 谷口
栄一 安本
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP4052369A priority Critical patent/JP2697461B2/en
Priority to US08/028,976 priority patent/US5348814A/en
Publication of JPH05258758A publication Critical patent/JPH05258758A/en
Application granted granted Critical
Publication of JP2697461B2 publication Critical patent/JP2697461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内部改質型溶融炭酸塩
型燃料電池に関し、特にスタックおよび改質器プレート
の構造を改良した内部改質型溶融炭酸塩型燃料電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal reforming molten carbonate fuel cell, and more particularly to an internal reforming molten carbonate fuel cell having improved structures of a stack and a reformer plate.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は燃料ガスとして
水素を主成分とするガスを用いており、大規模な溶融炭
酸塩型燃料電池発電では石炭ガス利用や天然ガスを改質
装置で改質して水素を主成分としたガスに変えて使用す
ることが考えられている。比較的小規模な発電、特に需
要地発電(オンサイト発電)においても原燃料として都
市ガス(メタンが主成分)などを使用するため、これを
水蒸気改質などの方法によって改質する必要がある。し
かし小規模な発電装置の場合、大がかりな改質装置を発
電部分と別個に設置することは、コンパクト性、システ
ム効率の低下やコストの上昇をもたらす。このため特に
オンサイト用途では電池内部で改質を行ういわゆる内部
改質方式がとられることが多い。
2. Description of the Related Art Molten carbonate fuel cells use a gas mainly composed of hydrogen as a fuel gas. In large-scale molten carbonate fuel cell power generation, coal gas and natural gas are reformed by a reformer. It has been considered that the gas is used after being converted to a gas containing hydrogen as a main component. Even in relatively small-scale power generation, particularly in demand-based power generation (on-site power generation), since city gas (mainly methane) is used as a raw fuel, it must be reformed by a method such as steam reforming. . However, in the case of a small-scale power generation unit, installing a large-scale reformer separately from the power generation unit results in compactness, reduced system efficiency, and increased cost. For this reason, especially for on-site use, a so-called internal reforming method of reforming inside the battery is often used.

【0003】内部改質方式は、燃料電池の反応発熱およ
び電池部材の抵抗発熱などが電池内部の温度を上昇させ
るのに対して改質反応が吸熱反応であることを利用し、
電池スタック内部において改質反応を行わせる方式であ
る。従って内部改質方式では外部の改質装置を必要とし
ないうえ電池を冷却する効果も得られる。こうした方式
は燃料ガスとして都市ガスを直接供給することができる
うえ電池の発熱を有効に利用できるため、システム効率
の向上、コスト低減、コンパクト性向上のうえで大変有
利である。
[0003] The internal reforming system utilizes the fact that the reaction heat of a fuel cell and the resistance heat of a battery member raise the temperature inside the cell, whereas the reforming reaction is an endothermic reaction.
In this method, a reforming reaction is performed inside the battery stack. Therefore, the internal reforming method does not require an external reforming device and also has the effect of cooling the battery. Such a method can directly supply city gas as fuel gas and can effectively use the heat generated by the battery, which is very advantageous in improving system efficiency, reducing costs, and improving compactness.

【0004】このため従来からいわゆる直接内部改質
型,間接内部改質型の2つの内部改質方式が検討されて
きている。直接内部改質型は効率が高いが発電部分に触
媒を設置するため電解質のしみだしや電解質蒸気との接
触により改質触媒の劣化が起こるという問題がある。こ
れに対して間接内部改質型は熱効率の点で多少不利では
あるが、発電部分と改質部分を分離しているため寿命の
点で有利である。
For this reason, two internal reforming systems, so-called direct internal reforming type and indirect internal reforming type, have been studied. The direct internal reforming type has a high efficiency, but has a problem that the catalyst is installed in the power generation part and the reforming catalyst is deteriorated due to seepage of the electrolyte or contact with the electrolyte vapor. In contrast, the indirect internal reforming type is somewhat disadvantageous in terms of thermal efficiency, but is advantageous in terms of life because the power generation part and the reforming part are separated.

【0005】一方、スタックを構成する各素電池へのガ
ス供給方式には外部マニホルド方式と内部マニホルド方
式がある。外部マニホルド方式はスタックの側面に各素
電池の燃料側あるいは酸化剤側の気室が開口している構
造とし、ここに箱状の外部マニホルドを取り付けて、各
素電池にガスを分配する方式である。一方内部マニホル
ド方式は素電池の周辺部分にガスの流通孔を設置し、こ
の孔(内部マニホルド)から各素電池にガスを分配する
方式である。
On the other hand, there are an external manifold system and an internal manifold system as a gas supply system to each unit cell constituting the stack. The external manifold system has a structure in which an air chamber on the fuel side or oxidizer side of each unit cell is opened on the side of the stack, and a box-shaped external manifold is attached here to distribute gas to each unit cell. is there. On the other hand, the internal manifold system is a system in which a gas flow hole is provided in a peripheral portion of a unit cell, and gas is distributed to each unit cell from this hole (internal manifold).

【0006】外部マニホルド方式で間接内部改質を行う
場合、たとえば特開昭61−13576号公報に開示さ
れるようにマニホルド内部を二分した構造とする方式が
あるが、マニホルド構造が複雑になるうえガスシールを
確実に行うのが困難となる。また外部マニホルド方式で
はマニホルドシール材を介して電解質の移動が起こるた
め、その対策を施すことが必要であるなどの不利な面が
ある。
In the case of performing indirect internal reforming by an external manifold system, for example, there is a system in which the inside of the manifold is divided into two as disclosed in JP-A-61-13576, but the manifold structure becomes complicated. It is difficult to reliably perform gas sealing. Further, in the external manifold system, since the movement of the electrolyte occurs through the manifold seal material, there is a disadvantage such that it is necessary to take a countermeasure.

【0007】一方、内部マニホルド型で内部改質を行う
方法としては特開平3−105865号公報に開示され
ているように素電池内を二分し、ガス上流側に改質触媒
を充填した改質域を設けここで改質するなどの手段があ
る。その他、改質器プレート内部を平面に沿って二分
し、片側に改質触媒を充填し他の側に燃料極からの排出
未反応燃料を燃焼させるための燃焼触媒を充填し、これ
を素電池の間に設置し燃焼熱と電池の熱で改質すること
も考えられている。
On the other hand, as a method of performing internal reforming using an internal manifold type, as disclosed in Japanese Patent Application Laid-Open No. 3-105865, a reforming method in which the inside of a unit cell is divided into two and a reforming catalyst is filled on the upstream side of gas. There is a means of providing a region and reforming here. In addition, the inside of the reformer plate is bisected along the plane, one side is filled with a reforming catalyst, and the other side is filled with a combustion catalyst for burning unreacted fuel discharged from the fuel electrode, and this is a unit cell. It is also considered to be installed between them and reform by combustion heat and battery heat.

【0008】[0008]

【発明が解決しようとする課題】しかし、内部マニホル
ド型で内部改質を行う場合、前記従来法のうち前者の方
式では素電池の一部が改質部分に当てられるために、改
質部では温度が下がり、一方の発電部では温度上昇が起
こるなど温度均一性の点に問題があった。また後者の方
式では燃料排ガスの燃焼熱も改質反応に利用できるが、
改質器プレートの改質側に接する素電池は冷却される反
面、触媒燃焼部分に接する素電池は逆に温度が上昇する
ため好ましいとは言えない。さらにこの方式では燃料排
ガスや燃焼用空気を供給するためにスタック構造がやや
複雑になる問題があった。そこで本発明はこれらの問題
を回避し、構造が簡単でかつスタックの冷却が均一に行
える内部改質型溶融炭酸塩型燃料電池を得ることを目的
としている。
However, in the case of performing internal reforming using an internal manifold type, in the former method of the above-mentioned conventional method, a part of the unit cell is applied to the reforming portion, so that the reforming section is not used. There was a problem in temperature uniformity, such as a decrease in temperature and an increase in temperature in one power generation unit. In the latter method, the combustion heat of the fuel exhaust gas can be used for the reforming reaction.
The unit cells in contact with the reforming side of the reformer plate are cooled, but the unit cells in contact with the catalytic combustion part are not preferable because the temperature rises conversely. Further, in this method, there is a problem that the stack structure becomes slightly complicated to supply fuel exhaust gas and combustion air. Therefore, an object of the present invention is to avoid these problems and to obtain an internal reforming molten carbonate fuel cell having a simple structure and capable of uniformly cooling the stack.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
本発明の内部改質型溶融炭酸塩型燃料電池は、積層され
た素電池および原燃料を改質する改質器プレートと、こ
の改質器プレートを縦貫した状態で設けられた原燃料ガ
ス供給用内部マニホルド孔、燃料ガス用,酸化剤ガス用
のマニホルド孔とを備え、前記素電池は前記燃料ガス
用,酸化剤ガス用のそれぞれのマニホルド孔を介して各
ガスを給排し、前記改質器プレートは素電池のバイポー
ラ板と類似し、かつ前記原燃料ガス供給用内部マニホル
ド孔および燃料ガス用マニホルド孔にのみ給排できる構
造を有し、バイポーラ板としても機能するとともに供給
された原燃料ガスを改質して得られた燃料ガスを各素電
池に供給する簡単な構成を備えている。
In order to achieve this object, an internal reforming molten carbonate fuel cell according to the present invention comprises a stacked unit cell and a reformer plate for reforming a raw fuel, and a reformer plate for reforming the fuel cell. An internal manifold hole for supply of raw fuel gas and a manifold hole for fuel gas and an oxidizing gas provided in a state in which the fuel cell plate extends longitudinally. Each reformer plate is similar to a bipolar plate of a unit cell, and can supply and discharge only to the raw fuel gas supply internal manifold hole and the fuel gas manifold hole. the a, that have a simple structure to supply to each unit cell of the fuel gas obtained by reforming the supplied raw fuel gas together also function as a bipolar plate.

【0010】らに改質器プレート内部を、切欠きを有
する仕切により3つのガス流路に分割し、中央に位置す
る流路の中央部にのみ改質触媒を設置し、その外縁部分
に原燃料ガス供給用内部マニホルド孔の開口部を設け、
改質した燃料ガスは切欠き部から両側のガス流路を経て
流れを反転し、前記原燃料ガス供給用内部マニホルド孔
の両側に設けた燃料用マニホルド孔を経て各素電池に供
給する構造としスタック冷却の均一化をはかっている。
[0010] is found in the internal reformer plate is divided into three gas flow passages by a partition having a notch, the reforming catalyst is placed only in the central portion of the passage located in the center, the outer edge portion Provide an opening for the internal manifold hole for raw fuel gas supply,
The flow of the reformed fuel gas is reversed from the notch through the gas flow paths on both sides, and is supplied to each unit cell through the fuel manifold holes provided on both sides of the raw fuel gas supply internal manifold hole. The stack cooling is made uniform.

【0011】[0011]

【作用】この構成により、原燃料ガス供給用内部マニホ
ルド孔は改質器プレートに原燃料を供給し、改質器プレ
ート内で改質した燃料ガスを各素電池に供給する。また
改質器プレート自体はバイポーラ板としても機能する。
With this configuration, the raw fuel gas supply internal manifold holes supply the raw fuel to the reformer plate, and supply the fuel gas reformed in the reformer plate to each unit cell. The reformer plate itself that acts as a bipolar plate.

【0012】質器プレート内部の3つのガス流路のう
ち、中央流路では改質触媒により原燃料の改質が行わ
れ、同時に上下に接する素電池群の中央部から熱を吸収
する。改質された燃料ガスは両側のガス流路および燃料
用マニホルド孔を経て各素電池に供給される。
[0012] Of the three gas flow paths inside the reformer plate, the reforming catalyst reforms the raw fuel in the central flow path, and at the same time absorbs heat from the central part of the unit cells that are in contact with each other vertically. The reformed fuel gas is supplied to each unit cell via gas passages on both sides and a fuel manifold hole.

【0013】[0013]

【実施例】以下、本発明の実施例の内部改質型溶融炭酸
塩型燃料電池について図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An internal reforming molten carbonate fuel cell according to an embodiment of the present invention will be described below with reference to the drawings.

【0014】(実施例1) 図1,図2において、改質器プレート1は素電池2の間
に挟持されており、素電池2のバイポーラ板と類似の構
造を有している。このため燃料極3,電解質板4,酸化
剤極5と組み合わせて電池の一部として機能することが
できる。また改質器プレート1および素電池2は、とも
にスタックを縦貫して設置された原燃料ガス供給用内部
マニホルド孔6,燃料ガス用マニホルド孔7,酸化剤ガ
ス用マニホルド8およびそれらの排ガス用マニホルド
9,10とを有し、これらガスは下部のヘッダ11から
供給あるいは排出される。
Embodiment 1 In FIGS. 1 and 2, a reformer plate 1 is sandwiched between unit cells 2 and has a structure similar to the bipolar plate of the unit cell 2. For this reason, it can function as a part of a battery in combination with the fuel electrode 3, the electrolyte plate 4, and the oxidant electrode 5. The reformer plate 1 and the unit cell 2 are each provided with a raw fuel gas supply internal manifold hole 6, a fuel gas manifold hole 7, an oxidizing gas manifold 8, and their exhaust gas manifolds, which are installed vertically through the stack. These gases are supplied or exhausted from a lower header 11.

【0015】原燃料ガス供給用内部マニホルド孔6に対
しては改質器プレート1内部へのみ開口部があり、ここ
から原燃料が供給され、素電池2には供給されない。
[0015] For the raw fuel gas supply internal manifold hole 6 has seen the opening to the reformer plate 1 inside the raw fuel supplied from here, have such is supplied to the unit cell 2.

【0016】質器プレート1はその内部が、切欠き1
5を有する仕切16により3つのガス流路に分割され、
中央に位置する流路の中央部にのみ改質触媒12を設置
している。また改質器プレート1の外縁部分1aには原
燃料ガス供給用内部マニホルド孔6への開口部(図示し
ていない)があり、ここから原燃料が供給され、途中の
改質触媒12がない部分を通過した後、改質触媒12が
充填された部位で改質触媒12に接触して改質される。
改質された燃料ガスは切欠き部15から両側のガス流路
を経て流れを反転し、燃料ガス出口から燃料ガス用マニ
ホルド孔7を経て各素電池2に供給される。
The reformer plate 1 has a notch 1 inside.
Divided into three gas channels by a partition 16 having 5
The reforming catalyst 12 is provided only at the center of the flow path located at the center. Also the outer edge portion 1a of the reformer plate 1 has opening into the raw fuel gas supply internal manifold holes 6 (you have not shown), wherein the raw fuel is supplied, in the middle of the reforming catalyst 12 After passing through the portion where no reforming catalyst 12 is present, the portion where the reforming catalyst 12 is filled comes into contact with the reforming catalyst 12 and is reformed.
The flow of the reformed fuel gas is reversed from the notch 15 through the gas flow paths on both sides, and is supplied to each unit cell 2 from the fuel gas outlet through the fuel gas manifold hole 7.

【0017】図2ではバイポーラ板としてみた場合、燃
料極3側が上面となっており、酸化剤極5側は下面とな
る。また酸化剤ガスは酸化剤ガス用マニホルド8から各
素電池2に供給され、反応後の排ガスは燃料排ガス用マ
ニホルド9,酸化剤排ガス用マニホルド10から排出さ
れる。
In FIG . 2, when viewed as a bipolar plate,
The electrode 3 side is the upper surface, and the oxidizer electrode 5 side is the lower surface.
You. The oxidizing gas is supplied from the oxidizing gas manifold 8.
The exhaust gas supplied to the unit cell 2 and reacted is used as a fuel exhaust gas
Exhaust from the manifold 9 and the oxidant exhaust manifold 10
It is.

【0018】図2は改質器プレート1の燃料極側の端板
14を取り外した状態を示しているが、実際にはガス漏
れがないように溶接あるいはろうづけにより外縁部分1
aと接合されている。改質器プレート1の外縁部分1a
および端板14は耐熱合金で製作されており内部にはや
はり同一素材からなり充分な機械的強度を有する支持部
13がバイポーラ板構造を有する端板14と接する高さ
で設置してある。本実施例の改質器プレート1は大きさ
が40cm角のもので、厚みは1.2cm、支持部13は1
cm角でこれを5cm間隔で設置した。
FIG . 2 shows an end plate of the reformer plate 1 on the fuel electrode side.
14 shows a state in which the gas leakage is actually removed.
Outer edge 1 by welding or brazing
a. Outer edge portion 1a of reformer plate 1
And the end plate 14 is made of a heat-resistant alloy,
Supports made of the same beam and having sufficient mechanical strength
Height at which 13 is in contact with end plate 14 having a bipolar plate structure
It is installed in. The reformer plate 1 of this embodiment has a size
Is 40 cm square, the thickness is 1.2 cm, and the support portion 13 is 1
These were placed at 5 cm intervals in a cm square.

【0019】熱収支の観点から以上の過程をみると、原
燃料ガス供給用内部マニホルド孔6から改質触媒12が
ない流路部分および、改質後の燃料ガスが両ガス流路を
経て燃料ガス用マニホルド孔7に至る過程では素電池2
との熱のやりとりは極めて小さく、改質が行われている
中央付近で大きな吸熱が起こり、素電池2の中心付近を
重点的に冷却することとなる。
In view of the above process from the viewpoint of heat balance, the flow path portion where there is no reforming catalyst 12 from the raw fuel gas supply internal manifold hole 6 and the fuel gas after reforming pass through both gas flow paths In the process of reaching the gas manifold hole 7, the cell 2
The exchange of heat with the cell 2 is extremely small, and a large heat absorption occurs near the center where the reforming is performed, so that the vicinity of the center of the unit cell 2 is mainly cooled.

【0020】ところで燃料電池では一般的にいえば周辺
部分よりは中央部分のほうが高温化する傾向がある。大
形のスタックの場合には燃料ガスおよび酸化剤ガスの供
給方向、たとえば直行流か並行流かなどにより素電池2
内部の温度上昇部位が変化するが、傾向としてはやはり
中心よりの部位が高温化する。特にオンサイト発電など
に用いられる比較的小規模のスタックの場合、スタック
側面からの放熱の影響が大きくなるためこうした傾向は
顕著である。このため本実施例の改質器プレート1では
改質反応による吸熱が中心付近に集中し、他のガス流路
では熱のやりとりは極めて小さいため素電池2中央部の
温度上昇を効果的に抑制することができ、スタックの温
度均一化に大きく寄与することができる。
Incidentally, in a fuel cell, generally speaking, the temperature tends to be higher in the central portion than in the peripheral portion. In the case of a large stack, the unit cell 2 depends on the supply direction of the fuel gas and the oxidizing gas, for example, whether it is a direct flow or a parallel flow.
Although the internal temperature rise part changes, the tendency is that the part from the center also tends to become hotter. In particular, in the case of a relatively small-scale stack used for on-site power generation or the like, such a tendency is remarkable because the influence of heat radiation from the side surface of the stack increases. For this reason, in the reformer plate 1 of this embodiment, heat absorption due to the reforming reaction is concentrated near the center, and heat exchange is extremely small in other gas flow paths, so that the temperature rise in the central part of the unit cell 2 is effectively suppressed. This can greatly contribute to uniform temperature of the stack.

【0021】この改質器プレート1を40cm角の素電池
2を10セル積層したスタックの中央部に設置し、運転
試験を行った。原燃料ガスとしては脱硫した都市ガス
(メタン主成分)にスチーム/カーボン比3.0の割合
で水蒸気を添加し、これを650℃に予熱して原燃料供
給用内部マニホルド孔6を用いて改質器プレート1に供
給した。酸化剤ガスには空気70%、炭酸ガス30%の
混合ガスをやはり予熱して供給した。また、運転中のス
タック圧は4トン(2.5kg/cm2)を加えた。スタッ
ク平均温度650℃で定常運転している状態において改
質器プレート1の温度分布を測定したところ、高温部分
が660℃、低温部分が630℃で差は約30℃であり
温度均一化に大きく寄与することがわかった。
This reformer plate 1 is used for a unit cell of 40 cm square.
2 is installed at the center of the stack of 10 cells
The test was performed. The raw fuel gas is desulfurized city gas
(Methane main component) steam / carbon ratio of 3.0
Steam is added at 650 ° C.
Supply to the reformer plate 1 using the supply internal manifold holes 6
Paid. The oxidizing gas contains 70% air and 30% carbon dioxide.
The mixed gas was also supplied with preheating. Also, while driving,
The tack pressure was 4 tons (2.5 kg / cm2). When the temperature distribution of the reformer plate 1 was measured in a state where the stack was operated at an average temperature of 650 ° C., the temperature was 660 ° C. in the high temperature portion and 630 ° C. in the low temperature portion. It was found to contribute.

【0022】以上実施例で記述した素電池,改質器プレ
ートはともに矩形であるがこれは他の形状、例えば円形
などであっても良い。また各マニホルド孔およびその出
入口の形状も実施例に関わらずどのような形状であって
も良く、配置についても本発明の実施上可能な範囲でど
のようなものであっても良い。
The unit cell described in following UeMinoru施例, although reformer plates are both rectangular which other shapes, for example, or the like circle. Or it may be of any type in the manifold holes and the shape of the entrance even may be of any shape irrespective of the actual施例, carried on the possible range of the present invention also arranged.

【0023】また改質器プレートの構造については実施
例では切欠きは仕切板の端部にのみあるが、これは仕切
板の任意の位置であって良い。質触媒については実
例では粒状のものを図示しているが、これは他の形状の
もの、たとえばハニカム状のものでも良い。また触媒と
ともに他の物体、たとえば触媒保持用の部材や炭酸塩蒸
気除去用の部材が存在していても良い。
The structure of the reformer plate was
In the example, the notch is only at the end of the partition, but it can be at any position of the partition. Although for the reforming catalyst in the real施例are illustrated those particulate, which those of other shapes, may be for example one honeycomb. In addition to the catalyst, other objects such as a member for holding the catalyst and a member for removing the carbonate vapor may be present.

【0024】[0024]

【発明の効果】以上の実施例の説明により明らかなよう
に、本発明の内部改質型溶融炭酸塩型燃料電池によれ
ば、特にガス供給関係の構造簡略化を可能としたうえ、
改質器プレートに接する素電池群を均等に冷却すること
ができる。また、改質器プレート内部は、切欠きを有す
る仕切により3つのガス流路に分割し、中央に位置する
流路にのみ改質触媒を設置しているため、反応による吸
熱が中心付近に集中し、素電池中央部の温度上昇を効果
的に抑制し、より均一な冷却効果を得ることができ、電
池の温度管理のための設備を軽減し信頼性も大きく向上
させる効果がある。
As is apparent from the above description of the embodiment, the internal reforming type molten carbonate fuel cell of the present invention not only enables the simplification of the gas supply-related structure,
The unit cell group in contact with the reformer plate can be uniformly cooled. In addition , the inside of the reformer plate has a notch
The gas is divided into three gas flow paths, and the reforming catalyst is installed only in the flow path located at the center. Therefore, the heat absorption due to the reaction is concentrated near the center, and the temperature at the center of the unit cell The rise can be effectively suppressed, a more uniform cooling effect can be obtained, and the equipment for controlling the temperature of the battery can be reduced and the reliability can be greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の内部改質型溶融炭酸塩型燃料
電池の構成の概念を示す斜視図
FIG. 1 is a perspective view showing the concept of the configuration of an internal reforming molten carbonate fuel cell according to an embodiment of the present invention.

【図2】同実施例の改質器プレートの一部を切り欠いて
断面を示す斜視
FIG. 2 is a perspective view showing a cross section of a part of the reformer plate of the embodiment cut out .

【符号の説明】 1 改質器プレート 2 素電池 6 原燃料ガス供給用内部マニホルド孔 7 燃料ガス用マニホルド孔 8 酸化剤ガス用マニホルド 9 燃料排ガス用マニホルド 10 酸化剤排ガス用マニホルド12 改質触媒 15 仕切 DESCRIPTION OF SYMBOLS 1 Reformer plate 2 Unit cell 6 Internal manifold hole for raw fuel gas supply 7 Manifold hole for fuel gas 8 Manifold for oxidant gas 9 Manifold for fuel exhaust gas 10 Manifold for oxidant exhaust gas 12 Reforming catalyst 15 Partition

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安本 栄一 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 蒲生 孝治 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−186565(JP,A) 特開 昭61−58174(JP,A) 特開 平5−89896(JP,A) ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Eiichi Yasumoto 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Koji Gamo Inventor 1006 Kazama Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. In-house (56) References JP-A-2-186565 (JP, A) JP-A-61-58174 (JP, A) JP-A-5-89896 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 積層された素電池および原燃料を改質す
る改質器プレートと、この改質器プレートを縦貫した状
態で設けられた原燃料ガス供給用内部マニホルド孔、燃
料ガス用,酸化剤ガス用のマニホルド孔とを備え、前記
素電池は前記燃料ガス用,酸化剤ガス用のそれぞれのマ
ニホルド孔を介して前記各ガスを給排し、前記改質器プ
レートは素電池のバイポーラ板と類似し、かつ前記原燃
料ガス供給用内部マニホルド孔および燃料ガス用マニホ
ルド孔にのみ給排できる構造を有し、バイポーラ板とし
ても機能するとともに、供給された原燃料ガスを改質し
て得られた燃料ガスを各素電池に供給する構成を備えた
内部改質型溶融炭酸塩型燃料電池において、前記改質器
プレート内部を切欠きを有する仕切により3つのガス流
路に分割し、中央に位置する流路の中央部にのみ改質触
媒を設置し、その外縁部分に原燃料ガス供給用内部マニ
ホルド孔の開口部を設け、改質した燃料ガスは切欠き部
から両側のガス流路を経て流れを反転し、前記原燃料ガ
ス供給用内部マニホルド孔の両側に設けた燃料用マニホ
ルド孔を経て各素電池に供給する構成を備えたことを特
徴とする内部改質型溶融炭酸塩型燃料電池。
1. A reformer plate for reforming a stacked unit cell and a raw fuel, a raw fuel gas supply internal manifold hole provided in a state in which the reformer plate is pierced, and a fuel gas, oxidation A manifold hole for a chemical gas, the unit cell supplies and exhausts the gases through respective manifold holes for the fuel gas and the oxidizing gas, and the reformer plate is a bipolar plate of the unit cell. And has a structure that can supply and discharge only the raw fuel gas supply internal manifold hole and the fuel gas manifold hole, and also functions as a bipolar plate, and is obtained by reforming the supplied raw fuel gas. To supply fuel gas to each unit cell
In the internal reforming molten carbonate fuel cell, the reformer
Three gas flows through a notched partition inside the plate
And reforming only at the center of the channel located at the center.
Medium, and an inner manifold for supplying raw fuel gas
The opening of the hold hole is provided, and the reformed fuel gas is cut out.
Flow through the gas flow path on both sides from
Fuel manifolds on both sides of the internal manifold hole for fuel supply
It is equipped with a configuration to supply to each unit cell through the
Internal reforming molten carbonate fuel cell according to symptoms.
JP4052369A 1992-03-11 1992-03-11 Internal reforming molten carbonate fuel cell Expired - Fee Related JP2697461B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4052369A JP2697461B2 (en) 1992-03-11 1992-03-11 Internal reforming molten carbonate fuel cell
US08/028,976 US5348814A (en) 1992-03-11 1993-03-10 Internal reforming type molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4052369A JP2697461B2 (en) 1992-03-11 1992-03-11 Internal reforming molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH05258758A JPH05258758A (en) 1993-10-08
JP2697461B2 true JP2697461B2 (en) 1998-01-14

Family

ID=12912898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4052369A Expired - Fee Related JP2697461B2 (en) 1992-03-11 1992-03-11 Internal reforming molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP2697461B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965066B2 (en) * 2004-08-19 2012-07-04 株式会社日立製作所 Fuel cell
KR100744940B1 (en) * 2006-06-14 2007-08-01 삼성전기주식회사 A micro reformer and its manufacturing method
JP5267820B2 (en) * 2010-03-08 2013-08-21 日産自動車株式会社 Solid oxide fuel cell
US11201275B1 (en) 2020-06-10 2021-12-14 Palo Alto Research Center Incorporated Superconducting stress-engineered micro-fabricated springs

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239774A (en) * 1988-03-18 1989-09-25 Sanyo Electric Co Ltd Molten carbonate fuel cell
JPH0240863A (en) * 1988-08-01 1990-02-09 Sanyo Electric Co Ltd Molten carbonate fuel cell

Also Published As

Publication number Publication date
JPH05258758A (en) 1993-10-08

Similar Documents

Publication Publication Date Title
US5348814A (en) Internal reforming type molten carbonate fuel cell
JP3930045B2 (en) Fuel cell module having a multi-fuel cell stack
US9123946B2 (en) Fuel cell stack
US8187559B2 (en) Heat exchanger system comprising fluid circulation zones which are selectively coated with a chemical reaction catalyst
US8034496B2 (en) Fuel cell
US7976592B2 (en) Plate type reformer and fuel cell system including the reformer
JPH06260189A (en) Fuel cell
US7855028B2 (en) Separator plate for molten carbonate fuel cell
US8227126B2 (en) Fuel cell system
JP2008521184A (en) Equipment for carrying out chemical reactions
JPH05190187A (en) Fuel cell stack
KR20080000674A (en) Fuel cell system
JP4667298B2 (en) Heat exchanger and heat exchange type reformer
US8168341B2 (en) Fuel cell and fuel cell stack
JP4797352B2 (en) Solid oxide fuel cell
JP2737535B2 (en) Internal reforming molten carbonate fuel cell
JP2697461B2 (en) Internal reforming molten carbonate fuel cell
JP4513282B2 (en) Fuel cell
US7749289B2 (en) Fuel cell system, reformer used for the same, and method of manufacturing the same
JP2008257939A (en) Fuel cell stack structure
JP2009129701A (en) Fuel cell module
JP2001253703A (en) Fuel reforming device
JP3555704B2 (en) Plate reformer with preheating function
JP5077384B2 (en) Fuel cell
JP2003109639A (en) Fuel cell system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees