JP2697208B2 - Two-way transmission between multiple points - Google Patents

Two-way transmission between multiple points

Info

Publication number
JP2697208B2
JP2697208B2 JP1317632A JP31763289A JP2697208B2 JP 2697208 B2 JP2697208 B2 JP 2697208B2 JP 1317632 A JP1317632 A JP 1317632A JP 31763289 A JP31763289 A JP 31763289A JP 2697208 B2 JP2697208 B2 JP 2697208B2
Authority
JP
Japan
Prior art keywords
optical
station
transmission
stations
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1317632A
Other languages
Japanese (ja)
Other versions
JPH03179940A (en
Inventor
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP1317632A priority Critical patent/JP2697208B2/en
Publication of JPH03179940A publication Critical patent/JPH03179940A/en
Application granted granted Critical
Publication of JP2697208B2 publication Critical patent/JP2697208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は複数地点間で双方向伝送する場合に、それぞ
れの地点から送信されてきた光信号を一つの増幅器によ
って一括して増幅することができる双方向伝送方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] In the present invention, when bidirectional transmission is performed between a plurality of points, it is possible to collectively amplify optical signals transmitted from each point by one amplifier. It relates to a possible bidirectional transmission method.

[従来の技術] 複数地点間でそれぞれに双方向伝送する光通信システ
ムの出現が強く望まれるようになってきた。この光通信
システムを実現する上では、光信号をそれぞれの地点へ
分配する必要があるが、その際、分配された光信号レベ
ルの低下を余儀なくされるために、分配数が制限された
り、伝搬距離が短くなったりする。これを改善するため
には光信号を光のまま直接増幅する。“光増幅器”を導
入していかなければならない。
[Prior Art] The emergence of an optical communication system for performing bidirectional transmission between a plurality of points has been strongly desired. In order to realize this optical communication system, it is necessary to distribute the optical signal to each point. At that time, the number of distributions is limited or the propagation The distance becomes shorter. To improve this, the optical signal is directly amplified as it is. "Optical amplifiers" must be introduced.

第4図は上記光増幅器を用いた3地点間(A,B,及び
C)の光通信方式の従来例を示したものである。この方
式においては、各地点に送信光周波数(または送信波
長)が個別に割り当てられ、各地点から送られてきた光
信号によるクロストークの劣化を抑制する構成になって
いる。
FIG. 4 shows a conventional example of an optical communication system between three points (A, B, and C) using the optical amplifier. In this method, a transmission optical frequency (or transmission wavelength) is individually assigned to each point, and the configuration is such that deterioration of crosstalk due to an optical signal transmitted from each point is suppressed.

[発明が解決しようとする課題] 従来の3地点間光通信方式によれば、A地点とC地点
間、B地点とC地点間で双方向伝送でき、しかも光増幅
器によって増幅された後、所望地点に到達する。しか
し、この方式ではA地点とB地点間は双方向通信を行う
ことができないという問題点がある。そのために、各地
点間の伝送距離を長くとることができない。また各地点
間の距離もバラバラになるので、光受信器の光受信レベ
ルが不安定になるという問題もあった。
[Problems to be Solved by the Invention] According to the conventional point-to-point optical communication system, bidirectional transmission can be performed between point A and point C, and between point B and point C. Reach the point. However, this method has a problem that two-way communication cannot be performed between the point A and the point B. Therefore, the transmission distance between each point cannot be made long. In addition, since the distance between the points varies, there is a problem that the optical reception level of the optical receiver becomes unstable.

本発明の目的は、前記した従来技術の問題点を解消
し、複数地点間を一つの光増幅器を介して双方向伝送で
きるようにした伝送方式を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a transmission system capable of bidirectional transmission between a plurality of points via one optical amplifier.

[課題を解決するための手段] 本発明の要旨は、局の数Nが少なくとも3つからなる
局間をお互いに1つの光増幅器を介してそれぞれの局間
で双方向伝送する方法において、2つの局は1つの光送
信部と1つの光受信部を有し、当該光送信部と当該光受
信部はY分岐器により1つの伝送路に接続され、上記2
つの局は上記光増幅器に対向接続され、残りの(N−
2)の局はそれぞれ2つの光送信部と1つの光受信部を
有し、2つの内の1つの光送信部と光受信部はY分岐器
と1つの伝送路を介して上記光増幅器の一方側に接続さ
れると共に、もう一つの光送信部と上記光受信部はY分
岐器と1つの伝送路を介して上記光増幅器の反対側に接
続されてなり、各局の光送信部は異なった光周波数の光
信号を送信し、各局の光受信部は上記光周波数を選択的
にチューニングして受信することにある。
[Means for Solving the Problems] The gist of the present invention is to provide a method for bidirectional transmission between stations having at least three stations N via one optical amplifier. One station has one optical transmitting unit and one optical receiving unit, and the optical transmitting unit and the optical receiving unit are connected to one transmission line by a Y-branch unit.
Stations are oppositely connected to the optical amplifier and the remaining (N-
The station 2) has two optical transmitting units and one optical receiving unit, and one of the two optical transmitting units and the optical receiving unit is connected to the optical amplifier of the optical amplifier through a Y branch and one transmission line. In addition to being connected to one side, another optical transmitter and the optical receiver are connected to the other side of the optical amplifier via a Y-branch and one transmission line, and the optical transmitters of the respective stations are different. The optical receiver of each station transmits the optical signal of the adjusted optical frequency, and selectively tunes and receives the optical frequency.

また、それぞれの局からの光伝送路の一部,光増幅
器,光増幅器からそれぞれの局までの光伝送路の一部
を、希土類元素イオンを添加したnポート対mポート型
光スターカプラ(n,m:≧3)と該ポートの先端の少なく
とも一つに励起光源を設けた構成で代用することもでき
る。この場合において、希土類元素イオンとして、Erイ
オンを用い、各光送信部の光信号の波長として1.5μm
帯を用いることができる。
Also, a part of the optical transmission line from each station, an optical amplifier, and a part of the optical transmission path from the optical amplifier to each station are connected to an n-port to m-port type optical star coupler (n-port doped with rare earth element ions). , m: ≧ 3) and a configuration in which an excitation light source is provided at at least one of the ends of the port. In this case, Er ions were used as the rare earth element ions, and the wavelength of the optical signal of each optical transmitter was 1.5 μm.
A band can be used.

次に、装置として構成する場合は、少なくとも1組の
光送信部と光受信部を備えたN個(Nは3以上の整数)
の局と、これらの局からの少なくとも4つの光伝送路
と、1つの光増幅器を備え、任意の1局を除く他の全て
の局からの光伝送路を上記光増幅器の一方の端子側に結
合させて接続し、上記除かれた1局からの光伝送路及び
それ以外の局中の任意の1局を除くN−1個の局からの
光伝送路を上記光増幅器の他方の端子側に結合させて接
続して、構成することができる。
Next, when configured as an apparatus, N units (N is an integer of 3 or more) including at least one set of an optical transmission unit and an optical reception unit
Station, at least four optical transmission lines from these stations, and one optical amplifier, and the optical transmission lines from all the other stations except any one station are connected to one terminal side of the optical amplifier. The optical transmission line from one of the removed stations and the optical transmission line from N-1 stations except any one of the other stations are connected to the other terminal side of the optical amplifier. Can be configured by being connected to and connected to.

[作用] 上記のように本発明は、光増幅器の一方の端子側に局
A側,局C側,局D側等の光伝送路を結合させて接続
し、光増幅器のもう一方の端子側に局B側、局C側,局
D側などの伝送路を結合させて接続した構成としたもの
である。そして、それぞれの光伝送路の先端には光送信
部と光受信部が接続され、各光送信部は異なった光周波
数の光信号を送信し、各光受信部はそれぞれの光周波数
を選択的にチューニングして受信できる機能を有してい
るものである。このような構成とすることにより、少な
くとも3地点間で双方向通信を実現させることができ
る。
[Operation] As described above, according to the present invention, one terminal side of an optical amplifier is coupled to and connected to an optical transmission line such as a station A side, a station C side, a station D side, and the other terminal side of the optical amplifier. And transmission lines such as the station B side, the station C side, and the station D side. An optical transmitter and an optical receiver are connected to the end of each optical transmission line, each optical transmitter transmits an optical signal having a different optical frequency, and each optical receiver selectively selects each optical frequency. It has the function of tuning and receiving. With such a configuration, two-way communication can be realized between at least three points.

例えば、A,B,Cの3局の場合、局Aから局Bへは、局
Aの光送信部からの光信号(光周波数f1)が光増幅器を
通して局Bの光受信部に送られることによって可能であ
り、逆に局Bから局Aへの光信号(光周波数f2)の伝送
も上記と逆方向の経路をたどって可能である。
For example, in the case of three stations A, B, and C, an optical signal (optical frequency f1) from the optical transmitter of the station A is transmitted from the station A to the station B through the optical amplifier to the optical receiver of the station B. On the contrary, the transmission of the optical signal (optical frequency f2) from the station B to the station A is also possible by following the route in the reverse direction.

次に局Aから局Cへは、局Aの光送信部からの光信号
(光周波数f1)が、光増幅器を通して局Cの光受信部に
送られることによって可能である。局Cから局Aの逆の
伝送の場合には、局Cの光送信部からの光信号(光周波
数f3)を上述と逆の経路を通って局Aの光受信部に送る
ことによって可能である。
Next, it is possible from the station A to the station C by transmitting an optical signal (optical frequency f1) from the optical transmission unit of the station A to the optical reception unit of the station C through an optical amplifier. The reverse transmission from the station C to the station A is possible by transmitting the optical signal (optical frequency f3) from the optical transmission unit of the station C to the optical reception unit of the station A through the reverse path. is there.

同様に、局Bと局C間の双方向伝送も、光増幅器を通
る経路を用いることによって可能である。
Similarly, bidirectional transmission between stations B and C is possible by using a path through an optical amplifier.

上記いずれの局間の双方向伝送も共通の一つの光増幅
器を介して行うだけであり、受信感度も均一なものとな
る。
Since the bidirectional transmission between any of the above stations is performed only through one common optical amplifier, the receiving sensitivity becomes uniform.

[実施例] 第1図に本発明の複数地点間双方向伝送方法及び装置
の実施例を示す。この実施例は局A,B及びCの3つの局
間を双方向伝送できるようにした構成のものであり、そ
れぞれの局は少なくとも1つの光送信部及び光受信部を
有している。
Embodiment FIG. 1 shows an embodiment of a method and apparatus for bidirectional transmission between plural points according to the present invention. This embodiment has a configuration in which bidirectional transmission can be performed between three stations A, B, and C, and each station has at least one optical transmitting unit and optical receiving unit.

すなわち、局Aの光送信部11と光受信部21はY分岐器
51の光結合回路で結合されて光伝送路41(光ファイバ)
に接続され、光増幅器3の一方の端子側に入力されてい
る。局Bの光送信部12と光受信部22もY分岐器54の光結
合回路で結合されて光伝送路42(光ファイバ)に接続さ
れ、光増幅器3の反対の端子側に入力されている。局C
については光増幅器3の一方の端子側と他方の端子側
に、光伝送路44と43が接続されている。すなわち、光送
信部13と光受信部23をY分岐器55,57で結合して光伝送
路43に接続し、光送信部14と光受信部23をY分岐器56,5
7で結合して光伝送路44に接続するように構成されてい
る。各光送信部11,12,13,14は互いに異なった光周波数
の光信号を送信し、各光受信部21,22,23はそれぞれの光
周波数を選択的にチューニングして受信できる機能を有
している。
That is, the optical transmitting unit 11 and the optical receiving unit 21 of the station A are Y branching devices.
Optical transmission line 41 (optical fiber) that is coupled by 51 optical coupling circuits
And input to one terminal side of the optical amplifier 3. The optical transmitting unit 12 and the optical receiving unit 22 of the station B are also coupled by the optical coupling circuit of the Y-branch unit 54, connected to the optical transmission line 42 (optical fiber), and input to the opposite terminal side of the optical amplifier 3. . Station C
The optical transmission lines 44 and 43 are connected to one terminal side and the other terminal side of the optical amplifier 3. That is, the optical transmitting unit 13 and the optical receiving unit 23 are coupled by the Y-branches 55 and 57 and connected to the optical transmission line 43, and the optical transmitting unit 14 and the optical receiving unit 23 are coupled to the Y-branching units 56 and 5,
It is configured to be coupled at 7 and connected to the optical transmission line 44. Each of the optical transmitters 11, 12, 13, and 14 transmits an optical signal having a different optical frequency, and each of the optical receivers 21, 22, and 23 has a function of selectively tuning and receiving each optical frequency. doing.

上記構成において、双方向伝送は次のように行われ
る。
In the above configuration, bidirectional transmission is performed as follows.

まず局Aから局Bへは、光送信部11からの光信号(光
周波数f1)をY分岐器51,光伝送路41,Y分岐器52,光増幅
器3,Y分岐器53,光伝送路42及びY分岐器54を通して光受
信部22に送られることによって行われる。逆に局Bから
局Aへは、光送信部12からの光信号(光周波数f2)をY
分岐器54,光伝送路42,Y分岐器53,光増幅器3,Y分岐器52,
光伝送路41,Y分岐器51を通して光受信部21に送られるこ
とによって行われる。
First, from the station A to the station B, the optical signal (optical frequency f1) from the optical transmission unit 11 is transmitted to the Y branch 51, the optical transmission line 41, the Y branch 52, the optical amplifier 3, the Y branch 53, and the optical transmission line. This is performed by being sent to the optical receiver 22 through 42 and the Y branch 54. Conversely, from station B to station A, the optical signal (optical frequency f2)
Branch unit 54, optical transmission line 42, Y branch unit 53, optical amplifier 3, Y branch unit 52,
This is performed by being transmitted to the optical receiving unit 21 through the optical transmission line 41 and the Y branch 51.

次に局Aから局Cへは、光送信部11からの光信号(光
周波数f1)をY分岐器51,光伝送路41,Y分岐器52,光増幅
器3,Y分岐器53,光伝送路43,Y分岐器55及び57を通して光
受信部23に送ることによって行われる。局Cから局Aの
逆の伝送の場合には、光送信部13からの光信号(光周波
数f3)を上述と逆の経路を通って光受信部21に送ること
によって行われる。
Next, from the station A to the station C, the optical signal (optical frequency f1) from the optical transmitter 11 is transmitted to the Y branch 51, the optical transmission line 41, the Y branch 52, the optical amplifier 3, the Y branch 53, and the optical transmission line. This is performed by sending the light to the optical receiver 23 through the path 43 and the Y-branches 55 and 57. In the case of the reverse transmission from the station C to the station A, the transmission is performed by transmitting the optical signal (optical frequency f3) from the optical transmission unit 13 to the optical reception unit 21 through the reverse path.

同様に、局Bと局C間の双方向伝送は、Y分岐器54,
光伝送路42,Y分岐器53,光増幅器3,Y分岐器52,光伝送路4
4,Y分岐器56の経路を用いることによって行われる。す
なわち、いずれの局間の双方向伝送も共通の一つの光増
幅器3を介して行われる。
Similarly, the bidirectional transmission between stations B and C is based on the Y branch 54,
Optical transmission line 42, Y-branch unit 53, optical amplifier 3, Y-branch unit 52, optical transmission line 4
4. This is performed by using the path of the Y branch 56. That is, bidirectional transmission between any stations is performed via one common optical amplifier 3.

第2図は4つの局A,B,C,D間での双方向伝送方法及び
装置構成の実施例を示したものである。第1図と異なる
点は、第1図のY分岐器52及び53の代わりに、3分岐器
61,62を設け、その伝送路46,45によって局dを追加的に
接続したところにある。この局Dは、局Cと同様に、光
送信部15と光受信部24をY分岐器58,60で結合して光伝
送路45に接続し、光送信部16と光受信部24をY分岐器5
9,60で結合して光伝送路46に接続した構成となってい
る。これにより、局Aと局D,局Bと局D,局Cと局D,局A
と局B,局Aと局C,局Bと局C間の双方向伝送を実現する
ことができる。
FIG. 2 shows an embodiment of a method and apparatus configuration for bidirectional transmission between four stations A, B, C and D. The difference from FIG. 1 is that instead of the Y-branches 52 and 53 of FIG.
61 and 62 are provided, and the station d is additionally connected by the transmission lines 46 and 45. The station D, like the station C, couples the optical transmitting unit 15 and the optical receiving unit 24 with Y branching devices 58 and 60 to connect to the optical transmission line 45, and connects the optical transmitting unit 16 and the optical receiving unit 24 to the Y line. Turnout 5
The configuration is such that the optical transmission line 46 is connected by coupling at 9,60. Thus, stations A and D, stations B and D, stations C and D, and station A
And station B, station A and station C, and station B and station C.

5つ以上の局間での双方向伝送を実現させるには、第
2図の3分岐器61及び62を4分岐器,5分岐器,…,等の
ように分岐数を増やすことによって可能となる。
Two-way transmission between five or more stations can be realized by increasing the number of branches of the three-branch units 61 and 62 shown in FIG. Become.

なお、上記実施例において、光送信部には反射戻り光
を抑圧するための光アイソレータを内蔵させておいても
よい。また光受信部の構成は可変光周波数フィルタ,光
増幅器などを含む構成のもの、あるいは光ヘテロダイン
または光ホモダイン検波方式を用いた構成のものであっ
てもよい。光増幅器としては、半導体レーザー増幅器
(共振形,進行波形など)、光ファイバー増幅器を用い
ることができる。
In the above embodiment, an optical isolator for suppressing reflected return light may be built in the optical transmission unit. The configuration of the optical receiving unit may be a configuration including a variable optical frequency filter, an optical amplifier, or the like, or a configuration using an optical heterodyne or optical homodyne detection method. As the optical amplifier, a semiconductor laser amplifier (resonant type, traveling waveform, etc.) or an optical fiber amplifier can be used.

第3図は本発明の複数地点間双方向伝送方法及び装置
の別の実施例を示したものである。これはA,B及びCの
3地点間での双方向伝送方向及び装置構成を示したもの
であり、第1図のY分岐器52及び53,光増幅器3の代わ
りに、Erイオンを添加したnポート対mポート(n,m:≧
3)型光スターカプラ7,励起光源81及び82,光伝送路47
及び48を用いて構成したものである。励起光源が2つ用
いられているが1個でもよい。
FIG. 3 shows another embodiment of the method and apparatus for bidirectional transmission between plural points according to the present invention. This shows the bidirectional transmission direction and device configuration between the three points A, B and C. Er ions were added instead of the Y-branches 52 and 53 and the optical amplifier 3 in FIG. n port vs. m port (n, m: ≧
3) type optical star coupler 7, excitation light sources 81 and 82, optical transmission line 47
And 48. Although two excitation light sources are used, one excitation light source may be used.

この構成では、光送信部の波長帯には1.53〜1.56μm
帯が用いられる。また、励起光源の波長には0.98μm,1.
46〜1.48μm,あるいは0.83μm,0.51μm,0.65μmなどが
用いられる。
In this configuration, the wavelength band of the optical transmitter is 1.53 to 1.56 μm
A belt is used. The wavelength of the excitation light source is 0.98 μm, 1.
46 to 1.48 μm, or 0.83 μm, 0.51 μm, 0.65 μm, or the like is used.

上記Erイオンを添加した光スターカプラ7は、光ファ
イバ型,あるいは導波路型のいずれであってもよい。ま
た、Erイオン以外にYb,Ndなどのイオンを共添加したも
のを用いてもよい。また上記光スターカプラ7内に添加
する希土類元素イオンは、光送信部の送信波長によって
異なり、Er,Nd,Sm,Ho,Tm,Tbなどのイオンを少なくとも
一種含んだものを用いることができる。さらに光スター
カプラ7の入出力ポート数を増やし、励起光源をさらに
増やし、光増幅器のゲインを増大させるようにしてもよ
い。
The optical star coupler 7 doped with Er ions may be of an optical fiber type or a waveguide type. Further, an ion co-added with ions such as Yb and Nd other than Er ion may be used. The rare earth element ions to be added into the optical star coupler 7 vary depending on the transmission wavelength of the optical transmission unit, and may be those containing at least one kind of ions such as Er, Nd, Sm, Ho, Tm, and Tb. Further, the number of input / output ports of the optical star coupler 7 may be increased, the number of pump light sources may be further increased, and the gain of the optical amplifier may be increased.

[発明の効果] 以上のように、本発明によれば少なくとも3地点間を
一つの光増幅器を介して双方向伝送することができるの
で、長距離で、かつ、光受信器の受信感度も均一に保つ
ことができる。
[Effects of the Invention] As described above, according to the present invention, since bidirectional transmission can be performed between at least three points via one optical amplifier, the reception sensitivity of the optical receiver is long and uniform. Can be kept.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第3図はそれぞれ本発明の複数地点間双方伝送
方法及び装置の実施例を示した図、第4図は従来の複数
地点間双方向伝送システムの構成を示した図である。 図中、3は光増幅器、11〜16は光送信部、21〜24は光受
信部、41〜46は送伝送路、51〜60はY分岐器、61,62は
3分岐器、7はErイオンを添加した光スターカプラ、8
1,82は励起光源を示す。
1 to 3 show an embodiment of a method and apparatus for transmitting data between plural points according to the present invention, respectively, and FIG. 4 shows the structure of a conventional bidirectional transmission system between plural points. In the figure, 3 is an optical amplifier, 11 to 16 are optical transmitters, 21 to 24 are optical receivers, 41 to 46 are transmission lines, 51 to 60 are Y-branches, 61 and 62 are three-branches, and 7 is Optical star coupler doped with Er ions, 8
1,82 indicates an excitation light source.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】局の数Nが少なくとも3つからなる局間を
お互いに1つの光増幅器を介してそれぞれの局間で双方
向伝送する方法において、2つの局は1つの光送信部と
1つの光受信部を有し、当該光送信部と当該光受信部は
Y分岐器により1つの伝送路に接続され、上記2つの局
は上記光増幅器に対向接続され、残りの(N−2)の局
はそれぞれ2つの光送信部と1つの光受信部を有し、2
つの内の1つの光送信部と光受信部はY分岐器と1つの
伝送路を介して上記光増幅器の一方側に接続されると共
に、もう一つの光送信部と上記光受信部はY分岐器と1
つの伝送路を介して上記光増幅器の反対側に接続されて
なり、各局の光送信部は異なった光周波数の光信号を送
信し、各局の光受信部は上記光周波数を選択的にチュー
ニングして受信することを特徴とする複数地点間双方向
伝送方法。
1. A method for bi-directionally transmitting between stations each having at least three stations N through one optical amplifier, the two stations comprising one optical transmitting unit and one optical transmitting unit. The optical transmitter and the optical receiver are connected to one transmission line by a Y-branch device, the two stations are connected to the optical amplifier in opposition, and the remaining (N-2) Stations each have two optical transmitters and one optical receiver,
One of the optical transmitters and the optical receiver is connected to one side of the optical amplifier via a Y-branch and one transmission line, and the other optical transmitter and the optical receiver are Y-branch. Bowl and 1
Connected to the opposite side of the optical amplifier via two transmission lines, the optical transmitter of each station transmits an optical signal of a different optical frequency, and the optical receiver of each station selectively tunes the optical frequency. A two-way transmission method between a plurality of points.
JP1317632A 1989-12-08 1989-12-08 Two-way transmission between multiple points Expired - Fee Related JP2697208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1317632A JP2697208B2 (en) 1989-12-08 1989-12-08 Two-way transmission between multiple points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1317632A JP2697208B2 (en) 1989-12-08 1989-12-08 Two-way transmission between multiple points

Publications (2)

Publication Number Publication Date
JPH03179940A JPH03179940A (en) 1991-08-05
JP2697208B2 true JP2697208B2 (en) 1998-01-14

Family

ID=18090327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1317632A Expired - Fee Related JP2697208B2 (en) 1989-12-08 1989-12-08 Two-way transmission between multiple points

Country Status (1)

Country Link
JP (1) JP2697208B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060780A (en) * 2006-08-30 2008-03-13 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system and optical branching filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA997181A (en) * 1973-07-05 1976-09-21 Roy E. Love Optical communication system
JPS57154955A (en) * 1981-03-19 1982-09-24 Nec Corp Optical broadcast communication network

Also Published As

Publication number Publication date
JPH03179940A (en) 1991-08-05

Similar Documents

Publication Publication Date Title
US5652675A (en) Two-way repeater employing optical amplification
US5140655A (en) Optical star coupler utilizing fiber amplifier technology
JPH06222412A (en) Optical transmission device
JP2002062552A (en) Raman amplifier and optical communication system
US5170447A (en) Optical communication system with a fiber-optic amplifier
US6014481A (en) Device for coupling and decoupling optical signals of two transmission channels
EP0287378B1 (en) Transmitter and transceiver for a coherent optical system
JP2697208B2 (en) Two-way transmission between multiple points
EP0474426A2 (en) Optical star coupler utilizing fiber amplifier technology
US6175444B1 (en) Bi-directional optical amplifier
EP0739103A2 (en) Bidirectional optical amplifier using an active fibre
EP1309111A1 (en) Method of and device for performing bi-directional transmission using a single-wire
US5731891A (en) Optical amplifier
US4933990A (en) Optical privacy communication system in two-way optical transmission system
JP3487253B2 (en) Optical transmission line monitoring system and optical transmission line monitoring method
JP2677682B2 (en) Active transmission line for multi-wavelength transmission and transmission system using the same
JPH02281831A (en) Optical shutdown system
JPH03195221A (en) Multiplex optical distributor
CA2407343C (en) Lossless optical splitter
JPH03156429A (en) Optical amplifier
JPS598100B2 (en) Optical data bus system
JP3290707B2 (en) Optical amplifier
JP2670376B2 (en) Optical multiplexing device
JPH10163978A (en) Bidirectional amplification/transmission method
JPH06268654A (en) Optical network

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees