JP2694693B2 - Coal coal blending method - Google Patents

Coal coal blending method

Info

Publication number
JP2694693B2
JP2694693B2 JP62261885A JP26188587A JP2694693B2 JP 2694693 B2 JP2694693 B2 JP 2694693B2 JP 62261885 A JP62261885 A JP 62261885A JP 26188587 A JP26188587 A JP 26188587A JP 2694693 B2 JP2694693 B2 JP 2694693B2
Authority
JP
Japan
Prior art keywords
coal
blending
coke
ratio
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62261885A
Other languages
Japanese (ja)
Other versions
JPH01104688A (en
Inventor
幸二 土橋
良一 成松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP62261885A priority Critical patent/JP2694693B2/en
Publication of JPH01104688A publication Critical patent/JPH01104688A/en
Application granted granted Critical
Publication of JP2694693B2 publication Critical patent/JP2694693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原料炭の配合決定方法、特に種々の性状を
有する多銘柄の石炭を配合して目標品質のコークスを製
造する場合の配合炭コストをミニマムにする各石炭の配
合率を決定する方法に関するものである。 〔従来の技術〕 従来の原料炭の配合決定方法は、配合炭の性状とコー
クス品質の推算を作業者が過去の経験にもとづいて考え
た各配合ケースについてそれぞれ電卓やパソコン等を用
いて計算するものであつた。この方法の場合、計算対象
となる配合ケース(各石炭の配合率の組合せ数)が多く
て演算に時間がかかり、演算時間の制約からコストミニ
マムの配合率を求めるのは不可能でコークス品質を満足
させるのがやつとである。 また従来、大型コンピユーターによるシステム化した
配合決定方法も行なわれていたが、石炭別の配合率変化
範囲やきざみ幅等の初期の入力値の範囲内に限つて計算
を行ない配合率を計算するものであつた。したがつて結
果は必ずしもコストミニマム配合にはならず、またコス
トミニマム配合を求めようとする場合は演算時間が長く
なり実用的でない。 更に上記の従来の配合決定方法は、いずれも初期の入
力値の影響が支配的であるために、ある限られた熟練者
のみが可能であつた。 〔発明が解決しようとする問題点〕 本発明が解決しようとする問題点は、配合炭コストの
大幅な削減が可能となるようにコストをも考慮に入れた
もので、特に熟練を有するものでなくとも一定の知識を
有するものであれば客観的な配合計算が短時間で出来る
ような原料炭の配合決定方法を提供することにある。 〔問題点を解決するための手段〕 本発明の原料炭の配合決定方法は、多種類の原料炭か
らコークスを製造する際に、各石炭の配合率変化範囲と
きざみ幅および要求コークス品位の範囲等を初期値とし
て入力して演算を行ない、更に配合率変化範囲ときざみ
幅を初期値からある一定比率で自動的に縮小して演算を
順次行ない、すべての演算値の中から最終コストミニマ
ム配合値を決定するようにしたもので、これによつてコ
ストをも考慮に入れた最適な原料炭の配合を求めるよう
にしたものである。 更に本発明の配合決定方法は、上記の方法における演
算により求めた値の中に要求されるコークスの品質を満
足するものがない場合には、自動的にコークス品質要求
幅をあらかじめ決められた品質項目について順次一定比
率で拡張して再計算することを数回繰返し、いかなるコ
ークス品質項目が満足できなかつたかの情報を得ると同
時に拡張されたコークス品質を満足するもののうちから
コストミニマム配合を短時間にて決定し得るようにした
ものである。これによつて初期のコークス品位の要求し
た範囲がきびしすぎた場合であつても適切でコストミニ
マムな配合が求められる。 〔実施例〕 次に図面に示す本発明の配合決定方法のシステムフロ
ーの概略図をもとに本発明の一実施例について具体的に
説明する。 まず図面に示すように各配合炭の配合率変化範囲、き
ざみ幅、コークス品位等のデーター即ち下記のような内
容のデーターを所定のフオーマツトにしたがつてインプ
ツトする。 (a) 石炭銘柄数および銘柄名 (b) 各銘柄の石炭の性状(通常は灰分(%)、揮発
分(%)、全硫黄分(%)、燐分(%)、石炭の平均反
射率(%)、石炭のギーセラー最高流動度の対数値(lo
g dd pm)、石炭のトータルイナート量(%)、単味炭
の熱間反応後強度(%)、石炭グレード) (c) 消費単価、使用制約量 (d) 各石炭の配合率変化範囲、きざみ幅 (e) コークス銘柄名、銘柄数 (f) 目標コークスの品質の範囲(配合炭品位とし
て:石炭グレード別配合割合、揮発分、石炭の平均反射
率、石炭のギーセラー最高流動度の対数値、燐分、コー
クス品位として:コークスの灰分、コークスの全硫黄
分、コークスの燐分等) 以上のインプツトされたデーターにもとづいて各コー
クス銘柄毎に次のような配合計算に入る。 即ちある銘柄についてインプツトデーターにしたがつ
て各石炭毎にミニマム配合率からきざみ幅を逐次加えて
マキシム配合率まで各組合せについて計算する。この場
合、全配合率が100%になる場合についてのみ石炭グレ
ード別配合率の計算に入る。ただし、石炭銘柄数がN個
の場合、配合設定の自由度はN−1となり、N番目の石
炭の配合率は、100からの差引きにより求め、その値が
マイナスになつた場合は、計算対象から除外する。 石炭グレード別配合率がインプツトした条件を満足す
る場合のみ配合炭性状の計算に入る。ここで配合炭の揮
発分、コークス灰分、コークスの全硫黄分、配合炭の平
均反射率、配合炭のギーセラー最高流動度の対数値、コ
ークスの燐分と逐次各項目の条件を満足した時の計算に
入つていき、何れかの項目で条件を満足しないもの(N
O)は、矢印のように最初の配合組合せのところに戻
り、次の配合組合せについて同様の計算が行なわれる。 尚ここでのコークス品質の条件を満足するか否かの判
定のための配合炭性状からのコークス品質の推定につい
ては次のようにして行なう。即ちコークスの灰分、全硫
黄分、燐分については、配合灰の灰分、硫黄分、燐分お
よび配合炭の揮発分から求められるコークス歩留から推
算する。またコークスの強度関係については配合炭の平
均反射率、ギーセラー最高流動度の対数値、石炭のトー
タルイナート量、単味炭の熱間反応後強度値等から推算
される。 又石炭グレードは、平均反射率により次のランク
1からランク5までに分けられる。 ランク1 1.4≦ ランク2 1.2≦≦1.4 ランク3 1.0≦≦1.2 ランク4 0.8≦≦1.0 ランク5 <0.8 以上の計算の結果コークス品質の諸条件を満足した配
合の組合せについてのみ配合炭コストの計算を実施し、
その中で最もコストの安い配合がアウトプツトされる。
その際、石炭使用量に制約がある場合は、それに応じて
再度配合組合せ計算が行なわれ配合率が再設定される。 更に、配合きざみ幅、配合率変化幅を変えての配合決
定を行なう。例えば以上の計算において、初期の各石炭
の配合率変化幅、配合のきざみ幅をベースにして求めら
れた配合率をもとにして、初期のきざみ幅の1/3をきざ
み幅にし、又前記の求められた配合率ののものを新たな配合率変化幅として配合最適化計算を行
なう。 これらの手続を3回繰返して最終的なコストミニマム
配合を決定する。 以上のようにして、配合率変化範囲,配合きざみ幅を
一定の割合いで変化させての配合組合せ計算も含めて計
算された各配合について配合炭コストミニマム計算を行
なう。 即ち、一定の大きな値(例えば50000)を初期の比較
コストとして設定しておき、この値と配合炭コストとを
比較して小さい方を比較コストと置き換える操作を順次
行ないコストミニマム計算を実施する。 次に配合炭コストが初期の比較コストに等しい場合
(YES)は、初期の配合率変化範囲内では目標コークス
品位を満足する配合の組合せが存在しなかつたこととな
り、次のようにコークス諸性状条件の自動拡張が行なわ
れ、拡張された新たな条件に基づいて再度演算が行なわ
れる。 他方、配合炭コストが初期の比較コストに等しくなか
つた場合は、コークス度の計算を行なつて結果を出力す
る。 また初期の配合率変化幅ときざみ幅では、目標コーク
ス品質を満足できる配合が存在しない場合は、コークス
諸性状条件の自動拡張が行なわれる。即ちコークスの諸
性状の中で、まず灰分の初期値を5%拡張し、再度上記
の計算を行なう。次に配合炭の揮発分,平均反射率を初
期値の5%拡張して計算する。次にコークスの灰分を更
に5%拡張し、次に配合炭の揮発分,平均反射率を更に
5%拡張し、配合計算を行なうことによつて、初期のコ
ークス品質の要求が厳しすぎた場合でも条件を満足する
結果が得られる。又どのコークス品質項目が満足されな
かつたかも同時にわかる。 以上の実施例で行なわれた配合率変化幅およびきざみ
幅の変更の際の自動設定は次の表に示す通りである。 ただし最小きざみ幅0.1%、下限がマイナスの場合は
0%、Xは前回の最適配合率である。 つまり1回目の変更(表の(2))においてはきざみ
幅を初期値DXの1/3のDX/3とし、配合率変化幅を下限が
初期値をもとにした配合計算での最適配合率Xより2/3D
X小さい値で上限が2/3DX大きい値に自動的に変更され、
縮少される。更に続いて表の(3)のようにきざみ幅が
DX/9に、配合率変化幅が に自動的に縮少され、最後に表の(4)のようにきざみ
幅がDX/27に、配合率変化幅が に自動的に縮少される。 しかしこれに限ることなく他の比率でもよい。 又コークス諸条件の自動拡張は次の表の通りである。 この表のように初期の配合率変化幅の条件下では要求
するコークス品位を満足する配分が存在しない場合は、
まずコークスの灰分を初期値の5%拡張して配合計算す
る。これでも満足する配合が存在しない場合は、配合炭
の揮発分と平均反射率を夫々初期値の5%拡張して配合
計算を行なう。これでも存在しない場合は、コークスの
灰分を更に5%拡張する。次に配合炭の揮発分と平均反
射率を夫々更に5%拡張して配合計算を行なう。このよ
うにして4ステツプ順次拡張して配合計算を行なう。 この場合もステツプ数や、拡張するコークス品位項目
の順序,比率等は他のものでもよい。 〔発明の効果〕 本発明の原料炭配合決定方法によれば、配合炭の配合
計を配合率変化幅,きざみ幅による演算およびこの初期
の配合率変化幅,きざみ幅をもとにしてこれを一定の変
化率にて縮小したものを次の配合率変化幅,きざみ幅と
して自動設定しての演算を順次行ないこれらの配合のコ
スト計算を行なつてコストミニマム配合を求めるように
したので、コストをも含めた配合が短時間にて自動的に
決定し得る。 更にコークス性状条件の自動拡張の方法を用いれば、
コークス性状の要求がきびしすぎた等の理由により前記
の方法によりコークス性状を満足する配合を決定し得な
い場合でもコークス性状を満足するものでコストミニマ
ムの配合を決定することが短時間に自動決定し得る。 又熟練者でなくとも配合決定が可能である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method for determining the blending of raw coal, and in particular, blending coal for blending coals of various brands having various properties to produce coke of target quality. The present invention relates to a method for determining the blending ratio of each coal that minimizes the cost. [Prior art] The conventional method for determining the blending of the raw coal is to calculate the properties of the blended coal and the coke quality for each blending case that the operator considered based on past experience, using a calculator or a personal computer. It was a thing. In the case of this method, there are many mix cases to be calculated (the number of combinations of the mix ratios of each coal) and it takes a long time to calculate, and it is impossible to calculate the mix ratio of the cost minimum from the constraint of the calculation time, and the coke quality is determined. It is the one who satisfies him. Conventionally, a systematic formulation determination method using a large-scale computer was also used, but the calculation is performed only within the range of the initial input values such as the range of variation of the blending ratio for each coal and the step size. It was. Therefore, the result is not always the cost minimum combination, and when the cost minimum combination is to be obtained, the calculation time becomes long and it is not practical. Further, in any of the above-mentioned conventional compounding determination methods, since the influence of the initial input value is dominant, only a limited expert can do it. [Problems to be Solved by the Invention] A problem to be solved by the present invention is one in which cost is also taken into consideration so that the cost of blended coal can be significantly reduced, and one having particular skill An object of the present invention is to provide a method for determining the blending ratio of coking coal that enables objective blending calculation in a short time if it has certain knowledge. [Means for Solving Problems] The method for determining the blending ratio of the coking coal of the present invention is, when producing coke from various types of coking coal, the blending ratio change range of each coal and the step width and the required coke quality range. Etc. are input as the initial value to perform the calculation, and the range for changing the mixing ratio and the step size are automatically reduced from the initial value by a certain ratio and the calculation is performed sequentially, and the final cost minimum combination is selected from all the calculated values. The value is determined so that the optimum coking coal composition can be obtained by taking the cost into consideration. Furthermore, in the compounding determination method of the present invention, when none of the values obtained by the calculation in the above method satisfies the required coke quality, the coke quality request width is automatically determined by a predetermined quality. Repeated several times by sequentially expanding and recalculating the items at a fixed ratio, and obtaining information on which coke quality item was unsatisfied and at the same time, the cost minimum formula was selected in a short time from the ones satisfying the expanded coke quality. It can be decided by. Therefore, even when the required range of the initial coke quality is too severe, an appropriate cost-minimum composition is required. [Embodiment] Next, one embodiment of the present invention will be specifically described based on the schematic diagram of the system flow of the compounding determination method of the present invention shown in the drawings. First, as shown in the drawings, data such as the range of change of the blending ratio of each blended coal, the step size, the coke quality, that is, the data having the following contents are filled in according to a predetermined format. (A) Number of coal brands and brand names (b) Properties of each brand of coal (usually ash (%), volatile (%), total sulfur (%), phosphorus (%), average reflectance of coal) (%), Logarithm of the maximum fluidity of the Gieseler of coal (lo
g dd pm), total amount of coal inert (%), strength of hot coal after hot reaction (%), coal grade) (c) Unit consumption, restricted amount of use (d) Range of change in blending ratio of each coal, Step width (e) Coke brand name, number of brands (f) Target coke quality range (as blended coal grade: blending ratio by coal grade, volatile matter, average reflectance of coal, logarithm of coal's maximum fluidity of Giseller) , Phosphorus content, coke quality: ash content of coke, total sulfur content of coke, phosphorus content of coke, etc.) Based on the above-mentioned data, the following formula calculation is performed for each coke brand. That is, according to the impression data for a certain brand, the minimum blending ratio is sequentially added to each coal and the step width is sequentially added to calculate the maximum blending ratio for each combination. In this case, the calculation of the blending ratio by coal grade is started only when the total blending ratio becomes 100%. However, when the number of coal brands is N, the degree of freedom in setting the mix is N-1, and the mix ratio of the Nth coal is obtained by subtracting from 100, and if that value becomes negative, it is calculated. Exclude from the target. Calculation of blended coal properties is started only when the blending ratio by coal grade satisfies the implied conditions. Here, the volatile content of the coal blend, the coke ash content, the total sulfur content of the coke, the average reflectance of the coal blend, the logarithmic value of the Gieseler maximum fluidity of the coal blend, and the phosphorus content of the coke and the conditions of each item are sequentially satisfied. Those that do not satisfy the condition in any of the items (N
O) returns to the first combination combination as indicated by the arrow, and the same calculation is performed for the next combination combination. The estimation of the coke quality from the blended coal properties for determining whether or not the coke quality condition is satisfied is performed as follows. That is, the ash content, total sulfur content, and phosphorus content of coke are estimated from the coke yield obtained from the ash content, sulfur content, phosphorus content, and volatile content of blended coal of the mixed ash. The strength relationship of coke is estimated from the average reflectance of blended coal, logarithmic value of Giessler maximum fluidity, total amount of inert coal, strength value of hot coal after hot reaction, etc. The coal grade is classified into the following ranks 1 to 5 according to the average reflectance 0 . Rank 1 1.4 ≤ 0 Rank 2 1.2 ≤ 0 ≤ 1.4 Rank 3 1.0 ≤ 0 ≤ 1.2 Rank 4 0.8 ≤ 0 ≤ 1.0 Rank 5 0 <0.8 As a result of the above calculation, only for combinations that satisfy the various conditions of coke quality Carry out the cost of charcoal,
The cheapest combination of them is output.
At this time, if there is a constraint on the amount of coal used, the blending combination calculation is performed again according to it, and the blending ratio is reset. Furthermore, the compounding step is performed by changing the compounding step width and the compounding rate change range. For example, in the above calculation, based on the blending rate change width of each initial coal, the blending rate obtained based on the blending step width, 1/3 of the initial stepping width is set as the stepping width, and Of the required blending ratio With the new range of the blending ratio as the new one, the blending optimization calculation is performed. These procedures are repeated 3 times to determine the final cost minimum formulation. As described above, the minimum coal coal cost is calculated for each mixture calculated including the combination combination calculation by changing the mixture ratio change range and the mixture step size at a constant rate. That is, a fixed large value (for example, 50000) is set as the initial comparison cost, and this value is compared with the coal blending cost, and the operation of replacing the smaller one with the comparison cost is sequentially performed to perform the cost minimum calculation. Next, if the blended coal cost is equal to the initial comparison cost (YES), it means that there was no combination of blends that satisfied the target coke quality within the initial blending ratio change range. The condition is automatically expanded, and the operation is performed again based on the new expanded condition. On the other hand, when the coal blend cost does not equal the initial comparison cost, the coke degree is calculated and the result is output. In addition, when there is no mixture that satisfies the target coke quality in the initial mixture ratio change width and step width, the coke property characteristics are automatically expanded. That is, in the various properties of coke, the initial value of ash content is first expanded by 5%, and the above calculation is performed again. Next, the volatile content and average reflectance of blended coal are expanded by 5% of the initial value for calculation. If the ash content of the coke is further expanded by 5%, then the volatile content of the coal blend and the average reflectance are further expanded by 5%, and the initial coke quality is too strict due to the calculation of the mixture. However, the result that satisfies the condition is obtained. At the same time, it is possible to know which coke quality item was not satisfied. The automatic setting for changing the blending ratio change width and the step width performed in the above examples is as shown in the following table. However, the minimum step size is 0.1%, 0% when the lower limit is negative, and X is the previous optimum mixing ratio. In other words, in the first change ((2) in the table), the step size is set to DX / 3, which is 1/3 of the initial value DX, and the lower limit of the mixing rate change width is the optimal compounding ratio in the compounding calculation. 2 / 3D from rate X
X smaller value will automatically change the upper limit to 2/3 DX larger value,
Be reduced. Then, as shown in (3) of the table, the step size is
DX / 9 has a wide range of mixing ratio Automatically reduced, and finally, as shown in (4) of the table, the step size is DX / 27 and the blending ratio change range is Automatically reduced. However, the ratio is not limited to this, and another ratio may be used. The table below shows the automatic expansion of coke conditions. If there is no distribution that satisfies the required coke quality under the conditions of the initial mixing ratio variation range as shown in this table,
First, the ash content of coke is expanded by 5% of the initial value to calculate the composition. If there is still no satisfactory composition, the composition calculation is performed by expanding the volatile content and the average reflectance of the coal blend by 5% of the initial values. If still absent, further expand coke ash by 5%. Next, the volatile content and the average reflectance of the blended coal are further expanded by 5%, and the blending calculation is performed. In this way, the composition calculation is performed by sequentially expanding by 4 steps. Also in this case, the number of steps, the order of the coke quality items to be expanded, the ratio, etc. may be different. [Effect of the invention] According to the method for determining the blending ratio of the raw coal, the distribution sum of the blended coal is calculated based on the blending ratio change width and the step size, and based on the initial blending rate change range and the step size. The cost is calculated by calculating the cost minimum formula by performing the calculation by automatically setting the reduction ratio with the constant change ratio as the next mixture ratio change width and step width, and calculating the cost of these combinations. The composition including also can be automatically determined in a short time. Furthermore, if the method of automatic expansion of coke property conditions is used,
Even if it is not possible to determine the composition that satisfies the coke property by the above method because the demand for the coke property is too severe, etc., it is automatically determined in a short time to determine the composition of the cost minimum because it satisfies the coke property. You can In addition, even an unskilled person can determine the composition.

【図面の簡単な説明】 図面は本発明の一実施例のシステムフローの概略図であ
る。
BRIEF DESCRIPTION OF THE DRAWINGS The drawing is a schematic diagram of the system flow of one embodiment of the present invention.

フロントページの続き (56)参考文献 実開 昭57−20004(JP,U) コークス・サーキュラー第25巻 第2 号(1976)110頁〜120頁Continuation of front page    (56) Bibliography Shou 57-20004 (JP, U)                 Coke Circular Volume 25 Volume 2               Issue (1976) Pages 110-120

Claims (1)

(57)【特許請求の範囲】 1.多種類の石炭からコークスを製造する際に要求され
るコークスの品質を全て満足ししかもコストミニマムの
配合を決定する方法で、各配合炭の配合率変化範囲、配
合きざみ幅、要求コークス品位の範囲、石炭の性状およ
び原料炭単価を初期値として入力して演算を行ない要求
コークス品位の範囲を満足する配合率を求め、この求め
られた配合率を中心として前記の配合率変化範囲、配合
きざみ幅を初期値からある一定比率で自動的に縮小して
演算を順次行って配合を求め、それらのうちから最終コ
ストミニマム配合を決定することを特徴とする原料炭の
配合決定方法。
(57) [Claims] It is a method that satisfies all the coke qualities required when producing coke from various types of coal and determines the blending of the cost minimum.The blending rate variation range of each blended coal, the blending step width, and the required coke grade range. , The properties of coal and the unit price of raw coal are input as initial values to calculate the blending ratio that satisfies the range of required coke quality, and the above-mentioned blending ratio change range and blending step width are centered around the obtained blending ratio. A method for determining the blending ratio of the coking coal, which is characterized by automatically reducing from the initial value at a certain ratio and sequentially performing calculations to determine the blending, and determining the final cost minimum blending from them.
JP62261885A 1987-10-19 1987-10-19 Coal coal blending method Expired - Fee Related JP2694693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62261885A JP2694693B2 (en) 1987-10-19 1987-10-19 Coal coal blending method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62261885A JP2694693B2 (en) 1987-10-19 1987-10-19 Coal coal blending method

Publications (2)

Publication Number Publication Date
JPH01104688A JPH01104688A (en) 1989-04-21
JP2694693B2 true JP2694693B2 (en) 1997-12-24

Family

ID=17368116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62261885A Expired - Fee Related JP2694693B2 (en) 1987-10-19 1987-10-19 Coal coal blending method

Country Status (1)

Country Link
JP (1) JP2694693B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170001399A (en) * 2015-06-26 2017-01-04 주식회사 포스코 Method and apparatus for blending plan making

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4465011B2 (en) * 2008-01-21 2010-05-19 新日本製鐵株式会社 Compounding plan creation device, method and program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720004U (en) * 1980-07-04 1982-02-02

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
コークス・サーキュラー第25巻 第2号(1976)110頁〜120頁

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170001399A (en) * 2015-06-26 2017-01-04 주식회사 포스코 Method and apparatus for blending plan making
KR101705051B1 (en) * 2015-06-26 2017-02-09 주식회사 포스코 Method and apparatus for blending plan making

Also Published As

Publication number Publication date
JPH01104688A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
Charlton Hypolimnion oxygen consumption in lakes: discussion of productivity and morphometry effects
CN109765788B (en) Multi-target crude oil blending online optimization method
Bounds et al. The relationship of dietary and lifestyle factors to bone mineral indexes in children
JP2694693B2 (en) Coal coal blending method
Bosman et al. Serum phosphate, BMI, and body composition of middle-aged and older adults: a cross-sectional association analysis and bidirectional Mendelian randomization study
CN113662230B (en) Uniform feeding control method for redrying production
CN110990719A (en) Information pushing method and device, readable storage medium and electronic equipment
Oldham Pneumoconiosis in Cornish china clay workers.
CN113239322A (en) Construction method of Zimbabwe imported tobacco substitute module
JP2001243301A (en) Device and method for preparing coal blending plan
KR20160111158A (en) Method and apparatus for blending plan making
JP6323150B2 (en) Method for estimating specific volume of blended coal
Berg Periodic selection and hitchhiking in a bacterial population
CN114118898B (en) Improved method, device and storage medium for generating blending Block plan
CN109765789B (en) Crude oil blending double-blending head coordination optimization method considering tank bottom oil property
JPH09255966A (en) Method for estimating coke properties of coal blend
Blöte et al. Monte Carlo renormalization of the three-dimensional Ising model: the influence of truncation
JP3683189B2 (en) Raw material blending planning system and raw material blending planning method
JPH01104689A (en) Determination of compounding ratio of stock coal
JP3385912B2 (en) Coal blending plan optimization system
Horáčková et al. Generation Y on the labour market: regional analysis of the Visegrad Group countries
Lettau et al. Explaining the Differential Growth Rates of the ECI and the ECEC
JP2001133379A (en) Method for estimating maximum fluidity of coal blend added with caking additive
JPH09255965A (en) Method for estimating specific volume of coal blend
CN106282548A (en) The ore-proportioning method of a kind of many ore deposits iron ore pellets and device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees