JP2694660B2 - Space environment utilization device - Google Patents

Space environment utilization device

Info

Publication number
JP2694660B2
JP2694660B2 JP63316372A JP31637288A JP2694660B2 JP 2694660 B2 JP2694660 B2 JP 2694660B2 JP 63316372 A JP63316372 A JP 63316372A JP 31637288 A JP31637288 A JP 31637288A JP 2694660 B2 JP2694660 B2 JP 2694660B2
Authority
JP
Japan
Prior art keywords
membrane structure
pressure
microgravity environment
environment utilization
microgravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63316372A
Other languages
Japanese (ja)
Other versions
JPH02164700A (en
Inventor
靖 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63316372A priority Critical patent/JP2694660B2/en
Publication of JPH02164700A publication Critical patent/JPH02164700A/en
Application granted granted Critical
Publication of JP2694660B2 publication Critical patent/JP2694660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Pressure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は宇宙空間などの微小重力環境を用いる実験で
使用する宇宙環境利用装置に関する。
The present invention relates to a space environment utilization device used in an experiment using a microgravity environment such as outer space.

〔従来の技術〕[Conventional technology]

従来、微小重力環境を用いる実験の実験装置の加速度
絶縁、及び固定の方法は(Adv.Astronaut Sci,VOL61,
(1986),PP119−128に論じられているように、打ち上
げ時、回収時は実験機をボルトで固定し、微小重力環境
で実験を行う際には磁気アクチユエータによつて実験装
置を他の機器と非接触で保持し、擾乱加速度の進入を防
いでいる。
Conventionally, the acceleration insulation and fixing method of the experimental equipment of the experiment using the microgravity environment is (Adv.Astronaut Sci, VOL61,
(1986), PP119-128, the experimental device is fixed with bolts at launch and during recovery, and when performing an experiment in a microgravity environment, the experimental device is replaced with another device by a magnetic actuator. It is held in non-contact with and prevents the entry of disturbance acceleration.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来技術は打ち上げ時、回収時の微小重力利用機
器の固定をボルトで行わなければならず、人間の操作が
必要となり、フリーフライヤー等の無人宇宙船には対応
できないといつた問題があつた。
The above-mentioned conventional technology has a problem that it is necessary to fix the microgravity-using device at the time of launch and recovery with bolts, which requires human operation, and cannot cope with unmanned spacecraft such as free flyers. .

又、当装置は磁気アクチユエータを制御して、微小重
力利用装置に擾乱加速度の進入を防ぐものであるが、磁
気的な反力が存在するために完全な振動絶縁とはならな
いといった問題がある。
Further, this device controls the magnetic actuator to prevent the entry of the disturbance acceleration into the device for utilizing microgravity, but there is a problem that the vibration is not completely insulated due to the magnetic reaction force.

更に、当装置は軽量化が必要とされる宇宙機器であり
ながら、重量が40kgと重いといつた問題、エネルギー源
の乏しい宇宙空間において大きな電力を必要とするとい
つた問題があつた。
Further, although this device is a space device that needs to be lightweight, it has a problem when the weight is as heavy as 40 kg and a problem that it requires a large amount of electric power in a space where energy sources are scarce.

本発明は微小重力環境利用装置の打ち上げ時、回収時
当の固定−解放の無人化、微小重力環境下における擾乱
加速度の絶縁性を高めることを目的とし、更にそれらを
軽量で、消費電力の小さい装置で行うことを目的として
いる。
The present invention aims at unmanning the fixing-release during launch and recovery of the microgravity environment utilization device, and improving the insulation of the disturbance acceleration under the microgravity environment. Furthermore, they are lightweight and consume less power. It is intended to be done on a device.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的は、微小重力環境利用装置と微小重力環境利
用装置収納ラツクの間に気体を封入し、その圧力を可変
とした膜構造物を微小重力環境利用装置を囲むように配
し、膜構造物の圧力調整装置と圧力調整装置の制御装置
を有し、宇宙船の打ち上げ時、回収時等の微小重力環境
利用装置の固定が必要な場合、膜構造物内の圧力を高
め、膜構造物の剛性を増し、微小重力環境利用装置の垂
直・水平方向,回転運動等を拘束し、装置を固定し、
又、微小重力環境下で実験、材料製造を行う場合等の外
部より擾乱加速度が加わつたり、外部に擾乱加速度が伝
わるのを防ぐ必要がある場合は、膜構造物の圧力を低
め、膜構造の剛性を低め、微小重力環境利用装置を他と
接触が無いように浮遊させ、擾乱加速度の絶縁を行うこ
とによつて達成される。
The purpose of the above is to enclose a gas between the microgravity environment utilization device and the microgravity environment utilization device storage rack, and arrange a membrane structure whose pressure is variable so as to surround the microgravity environment utilization device. When the spacecraft is to be launched or recovered, it is necessary to fix the microgravity environment utilization device with the pressure adjustment device and the control device for the pressure adjustment device. The rigidity is increased, the vertical / horizontal directions of the microgravity environment utilization device, the rotational movement, etc. are constrained, and the device is fixed,
In addition, if it is necessary to prevent the disturbance acceleration from being applied to the outside or to transmit the disturbance acceleration to the outside, such as when performing experiments or material manufacturing in a microgravity environment, lower the pressure of the membrane structure and It is achieved by lowering the rigidity of the device, suspending the microgravity environment utilizing device so that it does not come into contact with other devices, and insulating the turbulent acceleration.

〔作用〕[Action]

膜構造内の圧力調節によつて、微小重力利用装置の固
定が可能であるため、操作及び装置が簡略化され、作業
の無人化及び装置の軽量化が可能となる。又、微小重力
環境下では装置を浮遊させ、他と非接触で保持すること
によつて、装置に擾乱加速度が伝搬するのを防ぐことが
できる。
By adjusting the pressure in the membrane structure, the microgravity utilizing device can be fixed, so that the operation and the device can be simplified, and the work can be unmanned and the device can be made lightweight. In addition, by suspending the device in a microgravity environment and holding it in a non-contact state with other devices, it is possible to prevent the disturbance acceleration from propagating to the device.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。各
種の宇宙環境利用装置は1のようなラツクに収められ、
スペースシヤトル、フリーライヤー等の宇宙環境利用施
設に搭載され、利用される。そのうちの一つ微小重力環
境利用装置2は3a,3b,3c,3dの気体が封入され、その封
入気体の圧力が可変であることを特徴とする膜構造を介
して、ラツク内に収められている。膜構造の材質として
は、ケブラー繊維強化プラスチツク複合膜に代表される
複合材膜構造や高分子材料による膜構造などが使用可能
である。膜構造3a,3b,3c,3dはラツク壁4a,4b,4c,4dに接
し、又は、固定されており、ラツク壁より反力を受け
る。
Hereinafter, an embodiment of the present invention will be described with reference to FIG. Various space environment utilization devices are stored in a rack like 1.
It is installed and used in space environment utilization facilities such as Space Shuttle and Free Liar. One of them, the microgravity environment utilization apparatus 2, is filled with gas of 3a, 3b, 3c, 3d, and the pressure of the filled gas is variable, and is housed in the rack through a membrane structure. There is. As the material of the membrane structure, a composite material membrane structure represented by a Kevlar fiber reinforced plastic composite membrane, a membrane structure made of a polymer material, or the like can be used. The film structures 3a, 3b, 3c, 3d are in contact with or fixed to the rack walls 4a, 4b, 4c, 4d, and receive a reaction force from the rack walls.

膜構造の封入気体の圧力調節は一例として、バルブa,
b(5,6)、管路7、膜構造内に封入するガスが封入され
たガスタンク8より成る膜構造内の封入気体圧力調節装
置と重力レベルの検知を行う重力検知装置12、膜構造内
圧力検知センサ9などの測定系とその信号及び地上から
の指令などによつて、封入気体圧力調節装置に信号を送
り、膜構造内の圧力を調節する圧力制御装置10により行
われる。
As an example, the pressure adjustment of the enclosed gas of the membrane structure is performed by the valve a,
b (5,6), pipe line 7, enclosed gas pressure adjusting device in membrane structure consisting of gas tank 8 in which gas to be enclosed in the membrane structure, gravity detector 12 for detecting gravity level, inside membrane structure This is performed by the pressure control device 10 which sends a signal to the enclosed gas pressure adjusting device in accordance with the measuring system such as the pressure detecting sensor 9 and its signal and a command from the ground to adjust the pressure in the membrane structure.

第2図,第3図,第4図を用いて、本発明の概念説明
を行う。第1図を模式的に表したものが、第2図,第3
図,第4図である。
The concept of the present invention will be described with reference to FIGS. 2, 3, and 4. A schematic representation of FIG. 1 is shown in FIGS.
FIG. 4 and FIG.

第2図は打ち上げ時,回収時等の大きな外力が加わ
り、微小重力環境利用装置2の保護が必要な場合などを
示している。この場合は微小重力環境利用装置2を取り
囲むように配置されている膜構造3a,3b,3c,3dの封入気
体の圧力を高くし、膜構造の剛性を高くし、微小重力環
境利用装置2の水平,垂直方向の運動、及び、回転運動
を拘束する。その結果として、微小重力環境利用装置2
はラツク壁4a,4b,4c,4dに対して、リジツドに固定さ
れ、打ち上げ時,回収時等の大きな外力が加わる場合に
おける微小重力環境利用装置2の破壊を防ぐ。第3図,
第4図は微小重力環境下における動作を示す。微小重力
環境下において、微小重力環境利用装置2を動作させ、
実験又は材料製造を行う際には、第3図に示すように、
微小重力環境利用装置2を取り囲む膜構造3a,3b,3c,3d
の封入気体圧力を低め、膜構造3a,3b,3c,3dの剛性を低
め、微小重力環境利用装置2に外部より、擾乱加速度が
伝わつたり、外部に対して、擾乱加速度を伝えることを
防ぐ。
FIG. 2 shows a case where a large external force is applied at the time of launch, recovery, etc., and the microgravity environment utilization apparatus 2 needs to be protected. In this case, the pressure of the enclosed gas of the membrane structures 3a, 3b, 3c, 3d arranged so as to surround the microgravity environment utilization device 2 is increased, the rigidity of the membrane structure is increased, and the microgravity environment utilization device 2 Constrain horizontal and vertical movements and rotational movements. As a result, the microgravity environment utilization device 2
Is fixed to the rack walls 4a, 4b, 4c, 4d to prevent the destruction of the microgravity environment utilization device 2 when a large external force is applied at the time of launch, recovery, etc. Fig. 3,
FIG. 4 shows the operation under a microgravity environment. In the microgravity environment, the microgravity environment utilization device 2 is operated,
When conducting an experiment or material production, as shown in FIG.
Membrane structure 3a, 3b, 3c, 3d surrounding the microgravity environment utilization device 2
The pressure of the enclosed gas is reduced, the rigidity of the membrane structures 3a, 3b, 3c, 3d is reduced, and the disturbance acceleration is transmitted to the microgravity environment utilization device 2 from the outside, or the disturbance acceleration is transmitted to the outside. .

第4図に、膜構造3a,3b,3c,3d内の圧力を低め、微小
重力環境利用装置2を他の機器と非接触で浮遊せしめ、
微小重力環境利用装置2に加わる接触力を0とし、完全
な擾乱加速度の絶縁を行うことによつて、良い微小重力
環境を得る方法を示す。
In FIG. 4, the pressure in the membrane structures 3a, 3b, 3c, 3d is lowered, and the microgravity environment utilization apparatus 2 is floated in a non-contact manner with other equipment
A method of obtaining a good microgravity environment by setting the contact force applied to the microgravity environment utilization apparatus 2 to 0 and performing complete insulation of the disturbance acceleration will be described.

膜構造の圧力調節機構について、第1図,第5図を用
いて、その一例について説明を行う。
An example of the pressure adjusting mechanism having a membrane structure will be described with reference to FIGS. 1 and 5.

膜構造3の圧力調節は先に述べたように、5,6のバル
ブa,b、管路7、封入ガスタンク8,膜構造内の圧力計測
用圧力センサ9,圧力制御装置10,信号線11などより成
る。本装置においては、状況によつて、膜構造3の内圧
を変化させたい場合、圧力制御装置10より信号を発生さ
せ、バルブa,b(5,6)を開閉することによつて、膜構造
3内の圧力を調節する。
As described above, the pressure adjustment of the membrane structure 3 includes the valves a and b of 5,6, the pipe line 7, the enclosed gas tank 8, the pressure sensor 9 for measuring the pressure in the membrane structure, the pressure control device 10, and the signal line 11. And so on. In this device, depending on the situation, when it is desired to change the internal pressure of the membrane structure 3, a signal is generated from the pressure control device 10 to open and close the valves a, b (5, 6) to change the membrane structure. Adjust pressure in 3.

膜構造内の圧力を高める場合、5のバルブaを閉じ、
6のバルブbを開き、ガスタンク8内の高圧気体を膜構
造3内に導き、その内圧を高める。
To increase the pressure in the membrane structure, close valve 5 of
The valve b of 6 is opened to guide the high pressure gas in the gas tank 8 into the membrane structure 3 to increase its internal pressure.

膜構造内の圧力を低める場合、6のバルブbを閉じ、
5のバルブaを開き、真空中に解放することによつて、
膜構造3の内圧を低めることができる。
When lowering the pressure in the membrane structure, close valve b of 6,
By opening the valve a of No. 5 and releasing it in vacuum,
The internal pressure of the membrane structure 3 can be lowered.

第1図に示されている圧力調節を制御する圧力制御装
置10を用いた圧力制御の方法について、第6図を使つ
て、説明する。重力検出装置12,加速度センサ13,圧力セ
ンサ14、から情報や打ち上げからの経過時間などから、
宇宙環境利用施設の重力レベルが一例として、10-3g以
下程度と判断され、微小重力環境実験が可能と判断され
る場合、又、地上,宇宙船上からの指令15によつて、実
験が開始される場合などにおいては、圧力制御装置10よ
り、圧力調整装置に膜構造3内の圧力を低める信号を出
力する。又、微小重力利用装置2に大きな外力が加わる
場合は、圧力制御装置10より、圧力調整装置に膜構造3
内の圧力を高める信号を出力する。微小重力環境利用装
置2を地上に回収する場合や宇宙環境利用施設の軌道変
更などのように、大きな外力があらかじめ加わることが
わかつているような場合は、地上,宇宙船上からの信号
を打ち上げからの時間経過などにより、圧力制御装置10
より、圧力調整装置に膜構造3内の圧力を高める信号を
出力する。尚、膜構造3に取り付けられた圧力センサな
どの膜構造内圧力検知装置により、膜構造内の圧力をモ
ニターすることによつて、圧力制御を行う。
A pressure control method using the pressure control device 10 for controlling the pressure adjustment shown in FIG. 1 will be described with reference to FIG. From the gravity detection device 12, the acceleration sensor 13, the pressure sensor 14, from the information and the elapsed time from the launch,
As an example, the gravity level of the space environment utilization facility is judged to be about 10 -3 g or less, and when it is judged that a microgravity environment experiment is possible, and the experiment is started by a command 15 from the ground or spacecraft. In such a case, the pressure control device 10 outputs a signal for lowering the pressure in the membrane structure 3 to the pressure adjusting device. When a large external force is applied to the microgravity utilizing device 2, the pressure control device 10 causes the pressure adjusting device to apply the membrane structure 3 to the microstructure.
It outputs a signal to increase the internal pressure. When it is known that a large external force will be applied in advance, such as when collecting the microgravity environment utilization device 2 on the ground or when changing the orbit of a space environment utilization facility, launch a signal from the ground or spacecraft. The pressure control device 10
As a result, a signal for increasing the pressure in the membrane structure 3 is output to the pressure adjusting device. In addition, the pressure control is performed by monitoring the pressure inside the membrane structure with a pressure detection device inside the membrane structure such as a pressure sensor attached to the membrane structure 3.

第7図,第8図を用いて、微小重力環境下において、
微小重力環境利用装置を浮遊させ、実験中に予期せぬ大
きな外力が宇宙環境利用施設に加わつた場合の微小重力
環境利用装置2の破壊防止のための機構及びその制御方
法について説明する。本装置は前述の装置の他に微小重
力環境利用装置2とラツク壁4とのクリアランスを測定
する変位計17,微小重力環境利用装置2に加わる加速度
を測定する加速度センサ18,ラツクに加わる加速度を測
定する加速度センサ19を有する。これらのセンサから得
られた情報により、ラツク4と微小重力環境利用装置2
の位置関係並びに相対加速度より、微小重力環境利用装
置2がラツク壁4と衝突し、破壊の恐れがあると判断さ
れた場合、圧力制御装置より膜構造内の圧力を高める信
号を出力し、微小重力環境利用装置の速やかな保護、並
びに固定を行う。
Using Fig. 7 and Fig. 8, under microgravity environment,
A mechanism for preventing destruction of the microgravity environment utilization apparatus 2 and a control method thereof when the microgravity environment utilization apparatus is suspended and an unexpectedly large external force is applied to the space environment utilization facility during the experiment will be described. In addition to the above-mentioned device, this device measures the displacement between the microgravity environment utilization device 2 and the rack wall 4, the displacement gauge 17, the acceleration sensor 18 which measures the acceleration applied to the microgravity environment utilization device 2, the acceleration applied to the rack. It has an acceleration sensor 19 for measuring. Based on the information obtained from these sensors, the rack 4 and the microgravity environment utilization device 2
If it is determined that the microgravity environment utilization device 2 collides with the rack wall 4 due to the positional relationship and the relative acceleration, the pressure control device outputs a signal for increasing the pressure in the membrane structure, Promptly protect and fix the gravity environment utilization device.

第9図,第10図,第11図を使つて、本発明を電磁バル
ブに適用した例を示す。
An example in which the present invention is applied to an electromagnetic valve will be described with reference to FIGS. 9, 10, and 11.

装置取り付け面20にケース25が固定されている。ケー
ス25の内部には擾乱加速度の発生源である電磁バルブ21
が膜構造a,b(22,23)によつて上下方向の位置を決めら
れ、膜構造c(24)によつて横方向の位置を決められる
ように、膜構造によつて周囲を囲まれている。前述のよ
うに、電磁バルブ21の固定が必要な場合は、膜構造a,b,
c(22,23,24)の圧力を高め、電磁バルブ21の運動を拘
束する。
A case 25 is fixed to the device mounting surface 20. Inside the case 25 is the electromagnetic valve 21 that is the source of the disturbance acceleration.
Are surrounded by the membrane structure so that they can be vertically positioned by the membrane structures a and b (22, 23) and can be laterally positioned by the membrane structure c (24). ing. As described above, when it is necessary to fix the electromagnetic valve 21, the film structure a, b,
The pressure of c (22, 23, 24) is increased to restrain the movement of the electromagnetic valve 21.

微小重力環境実験中のように、電磁バルブ21の発生さ
せる擾乱加速度の他への伝搬を防ぐ必要がある場合は、
膜構造a,b,c(22,23,24)の内圧を低め、電磁バルブを
浮かせた状態で作動させ、擾乱加速度の絶縁を行う。
When it is necessary to prevent propagation to the disturbance acceleration generated by the electromagnetic valve 21 as in the microgravity environment experiment,
The internal pressure of the membrane structure a, b, c (22, 23, 24) is lowered and the electromagnetic valve is operated in a floating state to insulate disturbance acceleration.

尚、本適用例においては、管路26の伝わる擾乱加速度
の絶縁を行うために、ジヤバラ27を用いている。又、膜
構造の圧力制御の方法等は前述の方法に準ずる。
In this application example, the jar rose 27 is used to insulate the disturbance acceleration transmitted through the pipe line 26. The method for controlling the pressure of the membrane structure is based on the above-mentioned method.

〔発明の効果〕〔The invention's effect〕

本発明によれば、内圧可変の膜構造の内圧を変えるこ
とによつて、微小重力環境利用装置の固定並びに装置を
浮遊させた擾乱加速度の絶縁といつた全く異なる条件を
容易に作り出すことが可能となり、又擾乱加速度の絶縁
を軽量な装置により行うことが可能となつた。
According to the present invention, by changing the internal pressure of the variable internal pressure membrane structure, it is possible to easily create a completely different condition from fixing the microgravity environment utilization device and insulating the turbulent acceleration in which the device is suspended. In addition, it is possible to insulate the turbulent acceleration with a lightweight device.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の宇宙環境利用装置の実施例の斜視図、
第2図,第3図,第4図は本発明の動作概念図、第5図
は膜構造内圧を調節する装置の動作概念図、第6図は膜
構造内圧の圧力制御のシステム図、第7図,第8図は微
小重力環境実験装置の非常用保護機構の動作概念図、第
9図,第10図,第11図はそれぞれ本発明を電磁バルブに
適用した例で、第9図は第10図のA−A′線に沿った横
断面図、第10図は縦断面図、第11図は一部を断面で示し
た側面図である。 1……ラツク、2……微小環境利用装置、3a,b,c,d……
膜構造、4a,b,c,d……ラツク壁、5,6……バルブ、7…
…管路、8……タンク、9……圧力センサ、10……圧力
制御装置、11……信号線、12……重力検知装置、13……
加速度センサ、14……圧力計、15……圧力調節命令、16
……圧力調節装置、17……変位計、18,19……加速度セ
ンサ、20……装置取り付け面、21……電磁バルブ、22,2
3,24……膜構造、25……ケース、26……管路、27……ジ
ヤバラ。
FIG. 1 is a perspective view of an embodiment of a space environment utilization device of the present invention,
2, 3 and 4 are conceptual diagrams of the operation of the present invention, FIG. 5 is an operational conceptual diagram of an apparatus for adjusting the internal pressure of the membrane structure, and FIG. 6 is a system diagram of pressure control of the internal pressure of the membrane structure. 7 and 8 are conceptual diagrams of the operation of the emergency protection mechanism of the microgravity environment experimental device, and FIGS. 9, 10 and 11 are examples in which the present invention is applied to an electromagnetic valve, respectively. FIG. 10 is a lateral sectional view taken along the line AA ′ of FIG. 10, FIG. 10 is a longitudinal sectional view, and FIG. 11 is a side view showing a part of the section. 1 ... Rack, 2 ... Micro environment utilization device, 3a, b, c, d ......
Membrane structure, 4a, b, c, d ... Rack wall, 5, 6 ... Valve, 7 ...
… Pipeline, 8 …… Tank, 9 …… Pressure sensor, 10 …… Pressure control device, 11 …… Signal line, 12 …… Gravity detection device, 13 ……
Accelerometer, 14 ... Pressure gauge, 15 ... Pressure adjustment command, 16
...... Pressure adjusting device, 17 …… Displacement meter, 18,19 …… Acceleration sensor, 20 …… Device mounting surface, 21 …… Electromagnetic valve, 22,2
3,24 …… Membrane structure, 25 …… Case, 26 …… Pipeline, 27 …… Jabara.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】収納ラック内に設けられた微小重力環境利
用装置を備えた宇宙環境利用装置において、前記収納ラ
ックの剛体面と前記微小重力環境利用装置との間に設け
られ、内部に気体を封入可能な膜構造と、前記膜構造内
に気体を供給もしくは膜構造内の気体を外部に排出し
て、膜構造内の気体圧力を調整するする圧力調整器と、
宇宙環境利用装置本体が置かれた環境の重力を検知する
重力検知装置と、前記重力検知装置からの信号を取り込
むとともに、宇宙環境利用装置本体が微小重力環境の下
に置かれているときは、前記微小重力環境利用装置が前
記収納ラック内で浮遊又は浮遊に近い状態で保持される
ように前記膜構造内の気体圧力を低下させる信号を前記
圧力調整器に対して出力し、宇宙環境利用装置本体が微
小重力環境以外の下に置かれているときは、前記微小重
力環境利用装置が前記収納ラック内に拘束されるように
前記膜構造内の気体圧力を上昇させる信号を前記圧力調
整器に対して出力する圧力制御装置と、を備えたことを
特徴とした宇宙環境利用装置。
1. A space environment utilization apparatus equipped with a microgravity environment utilization apparatus provided in a storage rack, wherein the space environment utilization apparatus is provided between a rigid surface of the storage rack and the microgravity environment utilization apparatus. A membrane structure that can be enclosed, and a pressure regulator that adjusts the gas pressure in the membrane structure by supplying gas into the membrane structure or discharging gas in the membrane structure to the outside.
A gravity detection device that detects the gravity of the environment in which the space environment utilization device body is placed, and a signal from the gravity detection device is taken in, and when the space environment utilization device body is placed under a microgravity environment, The microgravity environment utilization apparatus outputs a signal for lowering the gas pressure in the membrane structure to the pressure regulator so that the microgravity environment utilization apparatus is held in a floating state or a state close to a floating state in the storage rack. When the main body is placed below the environment other than the microgravity environment, a signal for increasing the gas pressure in the membrane structure is applied to the pressure regulator so that the microgravity environment utilization apparatus is constrained in the storage rack. A space environment utilization device, characterized in that it is provided with a pressure control device for outputting to.
JP63316372A 1988-12-16 1988-12-16 Space environment utilization device Expired - Lifetime JP2694660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63316372A JP2694660B2 (en) 1988-12-16 1988-12-16 Space environment utilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63316372A JP2694660B2 (en) 1988-12-16 1988-12-16 Space environment utilization device

Publications (2)

Publication Number Publication Date
JPH02164700A JPH02164700A (en) 1990-06-25
JP2694660B2 true JP2694660B2 (en) 1997-12-24

Family

ID=18076362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63316372A Expired - Lifetime JP2694660B2 (en) 1988-12-16 1988-12-16 Space environment utilization device

Country Status (1)

Country Link
JP (1) JP2694660B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2664993B2 (en) * 1989-06-08 1997-10-22 宇宙開発事業団 Microgravity environment test equipment
JPH0356741A (en) * 1989-07-25 1991-03-12 Ishikawajima Harima Heavy Ind Co Ltd Supporting method and device for weightless experiment equipment
CN110525698B (en) * 2019-08-13 2021-03-23 北京卫星环境工程研究所 Testing system and testing method for pressure protection system of spacecraft sealed cabin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232899U (en) * 1985-08-16 1987-02-26
JPH0216400U (en) * 1988-07-19 1990-02-01

Also Published As

Publication number Publication date
JPH02164700A (en) 1990-06-25

Similar Documents

Publication Publication Date Title
CN104930113B (en) A kind of shock resistance passive hybrid isolator of type master
US5734246A (en) Active piezo-electric vibration isolation and directional systems
KR101441628B1 (en) Gyrodyne and device for assembly thereof
CN102459946A (en) An active vibration isolation and damping system
JP2694660B2 (en) Space environment utilization device
JPH0911999A (en) Non-contact and separation stabilizing type fine specific gravity platform system
Xie et al. Simulation and experiment on lateral vibration transmission control of a shafting system with active stern support
US20070284794A1 (en) Active vibration isolation system which is more effective against seismic vibration
EP0628745A1 (en) Vibration cancellation device
Abdel-Mooty et al. Time-Delay Compensation in Active Damping of Stuctures
JP2637287B2 (en) Attitude control method and apparatus for rotating three-axis stable spacecraft
US11312398B2 (en) Active control deflection neutralizer
Joshi et al. Position control of a flexible cable gantry crane: theory and experiment
WO2016058643A1 (en) Object, such as a building, provided with a system for preventing damage from earthquakes to the object
AU2001248606A1 (en) Arrangement for damping of structural resonance
WO2001084012A1 (en) Arrangement for damping of structural resonance
Edberg et al. Performance assessment of the STABLE microgravity vibration isolation flight demonstration
EP3019768B1 (en) Improvements in and relating to vibration control
Kojima et al. Cluster filtering/control of bending/torsional vibrations of a tape tether using smart-film sensors/actuators
US20190011001A1 (en) Emergency Braking of a Flywheel
US5022202A (en) High strength post framed enclosure
Bushnell et al. Active rack isolation system development for the International Space Station
JP2014059183A (en) Impact force measuring device
Shahinpoor Conceptual design, kinematics and dynamics of swimming robotic structures using active polymer gels
JPH0616200A (en) Zero gravity experimental device of dropping type