JP2694453B2 - Method for producing pyrazine derivative - Google Patents

Method for producing pyrazine derivative

Info

Publication number
JP2694453B2
JP2694453B2 JP18915388A JP18915388A JP2694453B2 JP 2694453 B2 JP2694453 B2 JP 2694453B2 JP 18915388 A JP18915388 A JP 18915388A JP 18915388 A JP18915388 A JP 18915388A JP 2694453 B2 JP2694453 B2 JP 2694453B2
Authority
JP
Japan
Prior art keywords
pyrazine derivative
pyrazine
alkylating agent
producing
tetrahydrofuran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18915388A
Other languages
Japanese (ja)
Other versions
JPH0240370A (en
Inventor
秀道 府川
正道 西谷
三男 千葉
Original Assignee
豊玉香料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊玉香料株式会社 filed Critical 豊玉香料株式会社
Priority to JP18915388A priority Critical patent/JP2694453B2/en
Publication of JPH0240370A publication Critical patent/JPH0240370A/en
Application granted granted Critical
Publication of JP2694453B2 publication Critical patent/JP2694453B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fats And Perfumes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 [発明の詳細な説明] 本発明は香料成分として有用なピラジン誘導体の製造
方法に関する。
[Detailed Description of the Invention] [Detailed Description of the Invention] The present invention relates to a method for producing a pyrazine derivative useful as a perfume ingredient.

[従来の技術] ピラジン誘導体は一般式 で示されるピラジン誘導体(中でもR4が低級アルキル基
でXR2が低炭素数のアルコキシ、アルキルチオ、ジアル
キルアミノ基のもの)はコーヒー、ココア等の食品の風
味を著しく増強させるところから食品香料として使用さ
れるだけでなく、化粧品の香気改良成分としての使用例
もある。
[Prior Art] Pyrazine derivatives have the general formula The pyrazine derivative shown in (among others, R 4 is a lower alkyl group and XR 2 is a low carbon number alkoxy, alkylthio, dialkylamino group) is used as a food flavor because it significantly enhances the flavor of foods such as coffee and cocoa. In addition to being used, there are examples of use as a fragrance improving component of cosmetics.

従来これらのピラジン誘導体は次のようにして製造さ
れている。
Conventionally, these pyrazine derivatives are produced as follows.

その第1の方法は、一般式(I) (式中、R1は水素、アルキル基を表わし、XR2は低炭素
数のアルコキシ、アルキルチオ、を表わす)に示した化
合物を液体アンモニア中で金属ナトリウムの存在下ハロ
ゲン化アルキルで2位のアルキル基をアルキル化する方
法(米国特許第3767425号明細書)である。
The first method is represented by the general formula (I) (Wherein R 1 represents hydrogen or an alkyl group and XR 2 represents an alkoxy or alkylthio having a low carbon number), and the compound at the 2-position is an alkyl halide in the presence of sodium metal in liquid ammonia. A method of alkylating a group (US Pat. No. 3,767,425).

また、第2の方法はL−ロイシンアミドを用いて2−
イソブチル−3−メトキシピラジンを得る方法(米国特
許第3720672号明細書)である。
In addition, the second method uses L-leucine amide to
A method for obtaining isobutyl-3-methoxypyrazine (US Pat. No. 3,720,672).

[発明が解決しようとする課題] しかし、上記したピラジン誘導体の製造方法はいずれ
も製造上の難点を有し、目的とするピラジン誘導体を工
業的に得るには不向きである。
[Problems to be Solved by the Invention] However, any of the above-described methods for producing a pyrazine derivative has a difficulty in production and is not suitable for industrially obtaining a desired pyrazine derivative.

第1の方法においては、溶媒として使用した大量のア
ンモアの処理と、金属ナトリウムの取扱いについて難点
を有する。
The first method has a difficulty in treating a large amount of anmore used as a solvent and handling sodium metal.

即ち、前者においては、既存の反応装置及び溶媒回収
の装置の活用ができなくなってアンモニア回収のための
特別な装置が必要となり設備の新設により設備費が嵩む
ことである。また、後者においては余剰の金属ナトリウ
ムを使用する場合、後処理を行うときに溶媒回収後直ち
に注水を行うなどの操作が行えず、特別の注意と工夫が
必要となる。従って、一般に第1の方法では出発原料に
対し等モル以下の金属ナトリウム及びハロゲン化アルキ
ル化合物を用いる方法がとられており、その結果出発原
料が完全になくなるまで反応を行わせることができず、
収率が低下する。その上、反応生成物から香料グレード
の製品を得るためには反応の選択性が低いため、煩雑な
精製操作を必要とすることなど、製造コストの上からも
有利な方法とはいえないという難点を有している。
That is, in the former case, the existing reaction device and the solvent recovery device cannot be used, a special device for ammonia recovery is required, and the equipment cost increases due to the installation of new equipment. Further, in the latter case, when excess metal sodium is used, it is not possible to perform an operation such as water injection immediately after solvent recovery when performing a post-treatment, and special care and ingenuity are required. Therefore, in the first method, generally, a method using equimolar amounts or less of metal sodium and an alkyl halide compound relative to the starting material is employed, and as a result, the reaction cannot be performed until the starting material is completely consumed.
The yield decreases. In addition, since the selectivity of the reaction is low in order to obtain a fragrance-grade product from the reaction product, a complicated refining operation is required, which is not an advantageous method in terms of manufacturing cost. have.

その、上第1の方法においては、アルキル化剤として
イソプロプルブロマイド、2−オクチルブロマイドなど
の2級のハロゲン化アルキル化合物を用いた場合、収率
が低下し、特に2−メチル−3−メチルチオピラジンと
イソプロピルブロマイドとの反応では、一層顕著な収率
低下が認められる。
In the above first method, when a secondary halogenated alkyl compound such as isopropylpropromide or 2-octylbromide is used as the alkylating agent, the yield is lowered, and particularly 2-methyl-3-methylthio is used. In the reaction of pyrazine and isopropyl bromide, a more remarkable decrease in yield is observed.

また、第2の方法においては、ピラジン誘導体のうち
2−イソブチル−3−メトキシピラジンのみの製造法が
開示されているにすぎない。これ以外のピラジン誘導体
を製造しようとする時には出発主原料を変えなければな
らないが、その出発原料の合成自体がむずかしく、しか
も高価になるという難点がある。
In the second method, only a method for producing 2-isobutyl-3-methoxypyrazine among pyrazine derivatives is disclosed. When trying to produce other pyrazine derivatives, the starting main raw material must be changed, but the synthesis itself of the starting raw material is difficult and expensive.

その上この第2の方法は、反応途中で2−ハイドロキ
シ−3−イソプロピルピラジンにジアゾメタンを作用さ
せるもので、上記以外のエトキシ、メチルチオ、ジメチ
ルアミノ等の他のピラジン誘導体の製造には応用するこ
とができず、しかも工業的に実施しにくいという難点を
も有する。
In addition, this second method is one in which diazomethane is allowed to act on 2-hydroxy-3-isopropylpyrazine during the reaction, and should be applied to the production of other pyrazine derivatives such as ethoxy, methylthio and dimethylamino other than the above. However, it is difficult to carry out industrially.

上記第1の方法、第2の方法以外にナトリウムアミド
と同様、アニオン発生剤として利用されるアルキルリチ
ウムと一般式(I)で示される化合物を反応させる方法
が考えられる。しかしながら、この場合にはアルキル化
剤(ハロゲン化アルキル化合物)のアルキル基が化合物
(I)の2位のメチル基に導入された目的の化合物だけ
ではなくアルキルリチウムのアルキル基が化合物(I)
の5位、6位(and/or)の核水素と交換した生成物など
多くの副生成物を伴い、目的とするピラジン誘導体を選
択的に効率良く合成することが難しい。
In addition to the above-mentioned first and second methods, a method of reacting an alkyllithium used as an anion generator with a compound represented by the general formula (I) can be considered as in the case of sodium amide. However, in this case, not only the target compound in which the alkyl group of the alkylating agent (halogenated alkyl compound) is introduced into the 2-position methyl group of the compound (I) but the alkyl group of alkyllithium is the compound (I).
It is difficult to selectively and efficiently synthesize the desired pyrazine derivative with many by-products such as products exchanged with nuclear hydrogen at the 5th and 6th positions (and / or).

本発明は、上記した事情に鑑みてなされたものであ
り、ピラジン誘導体を収率よく、かつ工業的に有利に製
造できる製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a production method capable of producing a pyrazine derivative in a high yield and industrially advantageously.

[課題を解決するための手段] 本発明は、一般式 (式中、R1は水素、アルキル基を表わし、XR2は低炭素
数のアルコキシ、アルキルチオ、ジアルキルアミノ基を
表わす)で示されるピラジン類とアルキル化剤とを不活
性溶媒中リチウムジイソプロピルアミドの存在下で反応
させることを特徴とする一般式 (式中、R1及びXR2は前記と同じものを表わし、R3はア
ルキル化剤に対応するアルキル基を表わす)で示される
ピラジン誘導体の製造方法である。
[Means for Solving the Problems] The present invention provides a compound represented by the general formula (Wherein, R 1 represents hydrogen or an alkyl group, and XR 2 represents a low carbon number alkoxy, alkylthio or dialkylamino group), and the alkylating agent and a pyrazine represented by lithium diisopropylamide in an inert solvent. General formula characterized by reacting in the presence (Wherein R 1 and XR 2 represent the same as those described above, and R 3 represents an alkyl group corresponding to the alkylating agent).

上記式中のXR2はアルコキシ基としてメトキシ、エト
キシがアルキルチオ基としてメチルチオが、ジアルキル
アミノ基としてジメチルアミノが例示される。
Examples of XR 2 in the above formula include methoxy as an alkoxy group, ethoxy as an alkylthio group and methylthio as a dialkylamino group.

この反応は原料ピラジン類、溶媒、及びアルキル化剤
の種類によって適宜定められるが−80〜0℃、好ましく
は−30〜−10℃の反応温度で反応するとよい。
This reaction is appropriately determined depending on the types of the raw material pyrazines, the solvent, and the alkylating agent, but it may be carried out at a reaction temperature of -80 to 0 ° C, preferably -30 to -10 ° C.

また、アルキル化剤としては例えばヨウ化メチル、エ
チルブロマイド、イソプロピルブロマイド、n−プロピ
ルブロマイド、あるいはn−アミルブロマイド等のC1
C10のハロゲン化アルキル、又はジメチル硫酸、ジエチ
ル硫酸等のジアルキル硫酸が用いられる。
Examples of the alkylating agent include C 1 to C such as methyl iodide, ethyl bromide, isopropyl bromide, n-propyl bromide, and n-amyl bromide.
A C 10 alkyl halide or a dialkyl sulfuric acid such as dimethyl sulfuric acid or diethyl sulfuric acid is used.

さらに、上記不活性溶媒は、例えばテトラヒドロフラ
ン、エーテル、あるいはヘキサンが用いられる。
Furthermore, as the above-mentioned inert solvent, for example, tetrahydrofuran, ether, or hexane is used.

[作 用] 本発明は上記したように構成されているので、原料ピ
ラジン類のメチル基を選択的にアルキル化するので、副
生成物量も少なく目的のピラジン誘導体を製造し得る。
[Operation] Since the present invention is configured as described above, the methyl group of the starting pyrazines is selectively alkylated, so that the desired pyrazine derivative can be produced with a small amount of by-products.

また、本発明は金属ナトリウム、アルキルリチウムな
どに比べて取扱いが容易なリチウムジイソプロピルアミ
ドを用いているため原料ピラジン類に対して過剰量のリ
チウムイソプロピルアミド及びハロゲン化アルキルを用
いることができ、これにより原料を完全に消失させて目
的とするピラジン誘導体を高収率で製造し得る。また、
リチウムジイソプロピルアミドは反応終了後溶媒回収を
行い特別な操作をすることなく直ちに後処理を行うこと
ができる。
Further, since the present invention uses lithium diisopropylamide which is easier to handle than metallic sodium, alkyllithium, etc., it is possible to use an excess amount of lithium isopropylamide and alkyl halide with respect to the raw material pyrazines. The target pyrazine derivative can be produced in high yield by completely eliminating the raw materials. Also,
Lithium diisopropylamide can be subjected to post-treatment immediately after the completion of the reaction without performing any special operation by recovering the solvent.

[発明の効果] 本発明は上記した構成からなるのでピラジン誘導体を
収率よく、かつ工業的に有利に製造できる。
EFFECTS OF THE INVENTION Since the present invention has the above-mentioned constitution, the pyrazine derivative can be produced in good yield and industrially advantageously.

即ち、溶媒回収が容易で既存の設備を活用でき、かつ
リチウムジイソプロピルアミドはその処理が容易である
と共に、アルキル化剤として1級ハロゲン化アルキル化
合物は勿論のこと、2級ハロゲン化アルキル化合物を用
いた場合でも原料ピラジン類のメチル基を選択的にアル
キル化して目的とするピラジン誘導体を極めて収率良く
得ることができる。
That is, solvent recovery is easy, existing equipment can be utilized, and the treatment of lithium diisopropylamide is easy, and in addition to the primary halogenated alkyl compound, the secondary halogenated alkyl compound is used as the alkylating agent. Even in such a case, the target pyrazine derivative can be obtained in an extremely high yield by selectively alkylating the methyl group of the raw material pyrazines.

更に、リチウムジイソプロピルアミドを原料ピラジン
に対し、2倍モル相当量以上、並びに過剰のアルキル化
剤を使用することにより同じアルキル基を原料ピラジン
のメシル基に2個同時に導入することもできる他、段階
的に異なるアルキル基2つ導入することも可能である。
Further, it is possible to introduce two or more lithium diisopropylamides into the mesyl group of the raw material pyrazine at the same time by using a molar equivalent of lithium diisopropylamide in an amount equal to or more than 2 times the molar amount of the raw material pyrazine and an excess amount of the alkylating agent. It is also possible to introduce two different alkyl groups.

また、本発明の反応は分離困難な副生成物の生成が殆
どなく、一度の通常の蒸留操作で極めて簡単に純度95%
以上のピラジン誘導体を得ることができる。
In addition, the reaction of the present invention produces almost no by-products that are difficult to separate, and the purity of 95% can be extremely easily obtained by one ordinary distillation operation.
The above pyrazine derivative can be obtained.

さらに、本発明によれば入手が容易なアルキル化剤を
種々変更するだけで同一の出発原料から各種のピラジン
誘導体を得ることができる。
Further, according to the present invention, various pyrazine derivatives can be obtained from the same starting material only by changing the alkylating agent that is easily available.

[実施例] 以下、本発明の実施例を示すが、本発明はこれに限定
されるものではない。
EXAMPLES Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.

実施例1 窒素又はアルゴン等の不活性ガス雰囲気中で2−メチ
ル−3−メトキシピラジン6.2g(0.05モル)のテトラヒ
ドロフラン50ml溶液を撹拌し、液温を−30〜−20℃に保
ちながら、この溶液にテトラヒドロフラン/ヘキサン溶
液のリチウムジイソプロピルアミンド30ml(0.05モル相
当量)を15分で滴下した。滴下後、更に30分撹拌した。
その後、液温を−25〜−15℃に保ちながらイソプロピル
ブロマイド12.3g(0.1モル)のテトラヒドロフラン20ml
溶液を15分で滴下した。滴下後、液温を−15〜−10℃に
保ち、更に2時間撹拌を続けた。この反応液を減圧濃縮
してテトラヒドロフランを回収した。濃縮残渣に水5ml
を加え、エーテル50mlで2回抽出した。エーテル層を無
水硫酸マグネシウムで乾燥した後、無水硫酸マグネシウ
ムを濾過して除き、濾液からエーテルを回収した。濃縮
残を減圧蒸留して沸点105〜107℃/mmHgの2−イソブチ
ル−3−メトキシピラジン6.23g(収率75%)を得た。
Example 1 A solution of 6.2 g (0.05 mol) of 2-methyl-3-methoxypyrazine in 50 ml of tetrahydrofuran was stirred in an atmosphere of an inert gas such as nitrogen or argon, while maintaining the liquid temperature at -30 to -20 ° C. To the solution, 30 ml of lithium diisopropylamine (0.05 mol equivalent amount) of a tetrahydrofuran / hexane solution was added dropwise over 15 minutes. After dropping, the mixture was further stirred for 30 minutes.
Then, while maintaining the liquid temperature at -25 to -15 ° C, 20 ml of tetrahydrofuran containing 12.3 g (0.1 mol) of isopropyl bromide.
The solution was added dropwise in 15 minutes. After the dropping, the liquid temperature was maintained at -15 to -10 ° C, and stirring was continued for 2 hours. The reaction solution was concentrated under reduced pressure to recover tetrahydrofuran. 5 ml of water in the concentrated residue
Was added, and the mixture was extracted twice with 50 ml of ether. After drying the ether layer with anhydrous magnesium sulfate, anhydrous magnesium sulfate was filtered off, and ether was recovered from the filtrate. The concentrated residue was distilled under reduced pressure to obtain 6.23 g (yield 75%) of 2-isobutyl-3-methoxypyrazine having a boiling point of 105 to 107 ° C./mmHg.

実施例2 実施例1と同様な操作をして下表の生成物を得た。Example 2 The procedure of Example 1 was repeated to obtain the products shown in the table below.

但し、生成物(R1=−H、R2=−CH(CH3、XR2
−SCH3)については反応温度及び時間を−30℃及び6時
間で行った。
However, the product (R 1 = -H, R 2 = -CH (CH 3 ) 2 , XR 2 =
-SCH 3) For the reaction was carried out temperature and time at -30 ° C. and 6 hours.

実施例3 窒素あるいはアルゴン等の不活性ガス雰囲気中で2−
メチル−3−メトキシピラジン2.5g(0.02モル)のテト
ラヒドロフラン30ml溶液を撹拌し、液温を−30〜−20℃
に保ちながら、この溶液にリチウムジイソプロピルアミ
ド溶液29ml(0.048モル相当量)を15分で滴下した。滴
下後、更に1時間撹拌した。その後、液温を−30〜−20
℃に保ちながらジメチル硫酸10.24g(0.081モル)のテ
トラヒドロフラン10ml溶液を15分で滴下した。滴下後、
液温−25〜−20℃に保ち、更に12時間撹拌を続けた。こ
の反応液を減圧濃縮し、テトラヒドロフランを回収し
た。濃縮残に10mlを加え、エーテル50mlで2回抽出し
た。エーテル層を無水硫酸マグネシウムで乾燥した後、
無水硫酸マグネシウムを濾過して除き濾液からエーテル
を回収した。濃縮残を減圧蒸留して沸点94〜95℃/35mmH
gの2−イソプロピル−3−メトキシピラジン1.99g(収
率65%)を得た。
Example 3 In an atmosphere of an inert gas such as nitrogen or argon 2-
A solution of 2.5 g (0.02 mol) of methyl-3-methoxypyrazine in 30 ml of tetrahydrofuran was stirred, and the liquid temperature was -30 to -20 ° C.
While maintaining the above, 29 ml (0.048 mol equivalent amount) of a lithium diisopropylamide solution was added dropwise to this solution in 15 minutes. After dropping, the mixture was further stirred for 1 hour. After that, increase the liquid temperature from -30 to -20.
A solution of 10.24 g (0.081 mol) of dimethyl sulfate in 10 ml of tetrahydrofuran was added dropwise over 15 minutes while maintaining the temperature at ℃. After dripping,
The liquid temperature was maintained at -25 to -20 ° C, and stirring was continued for 12 hours. The reaction solution was concentrated under reduced pressure to recover tetrahydrofuran. 10 ml was added to the concentrated residue, and the mixture was extracted twice with 50 ml of ether. After drying the ether layer with anhydrous magnesium sulfate,
The anhydrous magnesium sulfate was filtered off and ether was recovered from the filtrate. The concentrated residue is distilled under reduced pressure and the boiling point is 94-95 ℃ / 35mmH.
Thus, 1.99 g of 2-isopropyl-3-methoxypyrazine (yield: 65%) was obtained.

実施例4 窒素あるいはアルゴン等の不活性ガス雰囲気中で実施
例2で得た生成物2−n−プロピル−3−メトキシピラ
ジン2.0g(0.013モル)のテトラヒドロフラン30ml溶液
を撹拌し、液温を−30〜−20℃に保ちながら、この溶液
にリチウムジイソプロピルアミド溶液9.5ml(0.016モル
相当量)を15分で滴下した。滴下後、更に1時間撹拌し
た。その後、液温−30〜−20℃に保ちながら、ヨウ化メ
チル3.3g(0.023モル)のテトラヒドロフラン5ml溶液を
15分で滴下した。滴下後液温を−25〜−20℃に保ち、12
時間更に撹拌を続けた。この反応液を減圧濃縮し、テト
ラヒドロフランを回収した。濃縮残渣に水5mlを加え、
エーテル50mlで2回抽出した。エーテル層を無水硫酸マ
グネシウムで乾燥した後、無水硫酸マグネシウムを濾過
して除き、濾液からエーテルを回収した。濃縮残を減圧
蒸留して沸点104−105℃/30mmHgの2−(1−メチルプ
ロピル)−3−メトキシピラジン1.53g(収率70%)を
得た。
Example 4 A solution of 2.0 g (0.013 mol) of 2-n-propyl-3-methoxypyrazine obtained in Example 2 in 30 ml of tetrahydrofuran was stirred in an atmosphere of an inert gas such as nitrogen or argon, and the liquid temperature was adjusted to −. While maintaining the temperature at 30 to -20 ° C, 9.5 ml (0.016 mol equivalent amount) of a lithium diisopropylamide solution was added dropwise to this solution in 15 minutes. After dropping, the mixture was further stirred for 1 hour. Then, while maintaining the liquid temperature at −30 to −20 ° C., a solution of methyl iodide 3.3 g (0.023 mol) in tetrahydrofuran 5 ml was added.
Dropped in 15 minutes. After dropping, keep the liquid temperature at -25 to -20 ° C and
Further stirring was continued for an hour. The reaction solution was concentrated under reduced pressure to recover tetrahydrofuran. Add 5 ml of water to the concentrated residue,
It was extracted twice with 50 ml of ether. After drying the ether layer with anhydrous magnesium sulfate, anhydrous magnesium sulfate was filtered off, and ether was recovered from the filtrate. The concentrated residue was distilled under reduced pressure to obtain 1.53 g (yield 70%) of 2- (1-methylpropyl) -3-methoxypyrazine having a boiling point of 104-105 ° C / 30 mmHg.

以上述べた各実施例の最終生成物はいずれも95%以上
の純度を有し、かつその収率も従来の製造法に比べて高
いものであった。
All of the final products of the above-mentioned examples had a purity of 95% or more, and the yield was higher than that of the conventional production method.

2−イソブチル−3−メチルチオピラジンは従来法
(米国特許第3767425号明細書)では収率15%(ハロゲ
ン化アルキルを基準に求めているので本発明のように原
料ピラジン類を基準に求めた場合は更に低い収率とな
る)であるのに対して、本発明は実施例2で述べたよう
に収率51%となる。このように本発明は2級ハロゲン化
アルキル化合物をアルキル化剤と用いた場合格段に高い
収率で目的とするピラジン誘導体が得られる。
In the conventional method (US Pat. No. 3,767,425), 2-isobutyl-3-methylthiopyrazine was obtained in a yield of 15% (based on the alkyl halide as a reference, and therefore, when it was determined based on the starting pyrazines as in the present invention. Is a lower yield), whereas the present invention provides a yield of 51% as described in Example 2. As described above, in the present invention, the intended pyrazine derivative can be obtained in a significantly high yield when the secondary alkyl halide compound is used as the alkylating agent.

また、いずれの最終生成物も沸点及びNMR(CDCl3)、
GS−MSで目的とするピラジン誘導体であることを確認し
た。
In addition, all final products have boiling points and NMR (CDCl 3 ),
It was confirmed by GS-MS that it was the desired pyrazine derivative.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式 (式中、R1は水素、アルキル基を表わし、XR2は低炭素
数のアルコキシ、アルキルチオ、ジアルキルアミノ基を
表わす)で示されるピラジン類とアルキル化剤とを不活
性溶媒中リチウムジイソプロピルアミドの存在下で反応
させることを特徴とする一般式 (式中、R1及びXR2は前記と同じものを表わし、R3はア
ルキル化剤に対応するアルキル基を表わす) で示されるピラジン誘導体の製造方法。
(1) General formula (Wherein, R 1 represents hydrogen or an alkyl group, and XR 2 represents a low carbon number alkoxy, alkylthio or dialkylamino group), and the alkylating agent and a pyrazine represented by lithium diisopropylamide in an inert solvent. General formula characterized by reacting in the presence (Wherein R 1 and XR 2 represent the same as those described above, and R 3 represents an alkyl group corresponding to the alkylating agent).
【請求項2】反応温度は−80〜0℃である請求項(1)
項記載のピラジン誘導体の製造方法。
2. The reaction temperature is -80 to 0 ° C. (1)
A method for producing a pyrazine derivative according to the item.
【請求項3】アルキル化剤はC1〜C10のハロゲン化アル
キル又はジアルキル硫酸である請求項(1)項記載のピ
ラジン誘導体の製造方法。
3. The method for producing a pyrazine derivative according to claim 1, wherein the alkylating agent is a C 1 to C 10 alkyl halide or dialkyl sulfuric acid.
【請求項4】不活性溶媒はテトラヒドロフラン、エーテ
ル、あるいはヘキサンである請求項(1)項記載のピラ
ジン誘導体の製造方法。
4. The method for producing a pyrazine derivative according to claim 1, wherein the inert solvent is tetrahydrofuran, ether, or hexane.
JP18915388A 1988-07-28 1988-07-28 Method for producing pyrazine derivative Expired - Lifetime JP2694453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18915388A JP2694453B2 (en) 1988-07-28 1988-07-28 Method for producing pyrazine derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18915388A JP2694453B2 (en) 1988-07-28 1988-07-28 Method for producing pyrazine derivative

Publications (2)

Publication Number Publication Date
JPH0240370A JPH0240370A (en) 1990-02-09
JP2694453B2 true JP2694453B2 (en) 1997-12-24

Family

ID=16236324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18915388A Expired - Lifetime JP2694453B2 (en) 1988-07-28 1988-07-28 Method for producing pyrazine derivative

Country Status (1)

Country Link
JP (1) JP2694453B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260218B (en) * 2011-06-07 2013-05-08 北京理工大学 Method for synthesizing aminopyrazine perfumes
US20140179748A1 (en) 2012-12-14 2014-06-26 The Procter & Gamble Company Antiperspirant and Deodorant Compositions

Also Published As

Publication number Publication date
JPH0240370A (en) 1990-02-09

Similar Documents

Publication Publication Date Title
UA79157C2 (en) Method for the synthesis of thiophenecarboxylic acid esters and the use thereof
JP2003512294A (en) Process for producing β-phosphite nitroxide radical
CZ176599A3 (en) Process for preparing cyclopropyl amines
JP2694453B2 (en) Method for producing pyrazine derivative
Braverman et al. [2, 3] sigmatropic rearrangements of propargylic and allenic systems
US4778908A (en) Process for preparing disilylmethanes
Sánchez-Obregón et al. Asymmetric synthesis of α-acetylenic epoxides
JP4756608B2 (en) Process for producing α-aminophosphonate derivative
Kruse et al. Reactions of 2-chlorotetrahydrofuran and 2-chlorotetrahydrothiophene with phosphorus, carbon, and nitrogen nucleophiles
Paquet et al. Further studies on the synthesis of symmetrical anhydrides and 2, 4-disubstituted-5 (4 H)-oxazolones from N-alkoxycarbonylamino acids using soluble carbodiimide
Pietrusiewicz et al. OPTICALLY ACTIVE PHOSPHINE OXIDES. 6.1 CONJUGATE ADDITION OF THIOLS AND ALCOHOLS TO (-)-(S)-METHYL-PHENYLVINYLPHOSPHINE OXIDE
HU209737B (en) Process for preparation of 4-alkyl-2,6 bis (fluoromethyl)-3,4-dihydro-pyridine- dicarboxylic acid-oxyesters and thioesters
JP2004161702A (en) METHOD FOR PRODUCING gamma-JASMOLACTONE
Lim et al. Rhodium-catalyzed coupling reaction of 2-vinylpyridines with allyl ethers
LV12073B (en) METHOD OF RECOVERY OF DIOOPINOCAMPHENYLHORBORANA
KR101167233B1 (en) Method for producing a-fluoromalonic acid dialkyl esters
US7977487B2 (en) Method for producing N,N-bis(pyridin-2ylmethyl)-1,1-bis(pyridin-2-yl)-1-aminoalkane compounds and metal complex salts containing these compounds
Mukaiyama et al. A convenient method for the synthesis of α, β-unsaturated carbonyl compounds
Rippert et al. Synthesis of 4, 6, 8‐Trisubstituted Methyl Azulene‐2‐carboxylates
JP2683809B2 (en) Process for producing 1-benzyl-3-benzylaminopyrrolidines
JPH10504827A (en) Novel synthesis method of pentasubstituted guanidine
JP2582889B2 (en) Production method of high-purity aminosulfenyl chloride
JP2946678B2 (en) Chiral ferrocene derivatives
KR100343551B1 (en) Process for preparing 4-alkoxycarbonyl-5-chloropyrazole derivatives
JP3526606B2 (en) Method for producing N-substituted pyrazinecarboxamides