JP2694228B2 - Method for measuring anti-EBNA antibody - Google Patents

Method for measuring anti-EBNA antibody

Info

Publication number
JP2694228B2
JP2694228B2 JP62284334A JP28433487A JP2694228B2 JP 2694228 B2 JP2694228 B2 JP 2694228B2 JP 62284334 A JP62284334 A JP 62284334A JP 28433487 A JP28433487 A JP 28433487A JP 2694228 B2 JP2694228 B2 JP 2694228B2
Authority
JP
Japan
Prior art keywords
ebna
cells
gene
antibody
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62284334A
Other languages
Japanese (ja)
Other versions
JPH01128788A (en
Inventor
壹夫 柳
志津子 原田
Original Assignee
壹夫 柳
株式会社 コスモ総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 壹夫 柳, 株式会社 コスモ総合研究所 filed Critical 壹夫 柳
Priority to JP62284334A priority Critical patent/JP2694228B2/en
Publication of JPH01128788A publication Critical patent/JPH01128788A/en
Application granted granted Critical
Publication of JP2694228B2 publication Critical patent/JP2694228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16211Lymphocryptovirus, e.g. human herpesvirus 4, Epstein-Barr Virus
    • C12N2710/16222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエプスタイン・バール ウイルス(EBV)に
特異的なEBV核抗原(EBNA)を発現するEBNA関連抗原遺
伝子を含む発現組み換え体DNAを移入(トランスフェク
ト)した細胞を用いる抗EBNA抗体の測定法に関するもの
である。 (従来技術及び発明が解決しようとする問題点) EBVは1964年エプスタインおよびバールらによって見
出されたDNA型ウイルスであり、ヘルペスウイルス科に
属する。EBVはヒトの伝染性単核症の病原ウイルスであ
ることが知られているが、さらにアフリカのバーキット
リンパ腫や中国と東南アジアに多発する上咽頭癌などの
悪性腫瘍との病因論的関係が示唆されている。また、EB
Vをin vitroでヒトBリンパ球に感染させると、感染細
胞のimmortalization(細胞が無限増殖性を獲得するこ
と)が生ずる。ヒトの幼少児期においては、EBVの感染
は一般に不顕性であるが、初感染が思春期以降の場合、
感染者の半数に伝染性単核症の発症がみられる。EBV感
染Bリンパ球には核抗原(EBNA)、早期抗原(EA)、ウ
イルスカプシド抗原(VCA)、および膜抗原(MA)など
のEBV関連抗原が出現し、かつ患者血中には、これらに
対する抗体が検出されるようになる。これらの様々な抗
原に対する抗体価の消長から伝染性単核症などの確定診
断やEBVの感染との関連が疑われる慢性的疾病の診断を
しようとする試みがなされてきた。従来これらの抗体の
検出に際しては、一般に蛍光抗体法が行われ、抗原とし
てEBV陽性ヒトBリンパ細胞が使用されている。 しかるに抗EBNA抗体価の測定に関しては、従来法には
大きな問題がある。第一にEBNA蛋白質の発現量が他のEB
V関連抗原であるEA,VCA,MAなどに比べて極めて少ないた
め、血中の抗体の量を定量するのに充分な感度が得られ
ないことである。そこで蛍光抗体補体法という特殊な方
法が行われている。この方法はヒトの補体を添加するこ
とで検出感度を上げようとするものであるが、EBVに感
染していないヒトの血清を補体として用いなければなら
ず、これを入手するのが極めて困難であり、また操作が
繁雑で信頼し得る測定結果を得ることが難しい。さらに
第二に、感染細胞がEBNAポリペプチドのみを選択的に発
現しているのではないため、検出された抗体が果たして
真にEBNAに対する抗体であるか否かについて判断できな
い点である。一方、最近では、様々な免疫不全状態とEB
Vとの関連についての知見が集積されるにつれ、EBNA関
連抗原の中でもEBNA1、EBNA2に対する血中抗体を別々に
測定することの意義が報告さており、今後各EBNAに対す
る抗体価を個別に測定する必要がでてくるものと考えら
れる。 以上の問題点を解決し、更に今後予測される各EBNAに
対する抗体価の個別測定を可能にするための手段とし
て、遺伝子工学的手法により各々のEBV関連抗原をコー
ドしている遺伝子を含むDNAを細胞に移入した後、EBV関
連抗原を発現している細胞を大量に増殖させる方法があ
る。これに関連した基礎研究として「Expression in CO
S−1 cells of Epstein−Barr virus nuclear antigen
from a complete gene and deleted gene」(Robert.
M.,F.et al.,J.of Virol.,50,822−831,1984)があり、
またEBNA、EA、VCA全般についての発明「EBウイルス関
連抗原の発現組み換え体DNA及びそれを含む細胞」(特
開昭62−83889)が開示されている。これらの従来技術
における遺伝子移入に用いられるベクターは、PBR322な
どに動物細胞で発現可能なウイルスのプロモーターやレ
トロウイルスのLTR領域を導入したものである。また移
入可能な細胞としても霊長類、鳥類をはじめ様々な動物
細胞が用いられている。 (問題点を解決するための手段) そこで本発明者らは臨床診断上の実用性の観点から、
従来技術とは異なる新しいシステムを開発すべく鋭意研
究を重ねた。先ず、EBNA関連抗原を細胞に大量に発現さ
せるのに適した発現組み換え体DNAの構築を行い、これ
を種々の細胞にトランスフェクトして発現細胞の取得を
試み、さらに、発現組み換え体DNAと細胞の至適な組み
合わせを見出すべく努力を行った。即ち、EBNA関連抗原
を発現する系において細胞に発現したEBNA関連抗原と多
数のヒトの血清との反応が免疫学的に特異的に行われ、
偽陽性や偽陰性の結果を生じないような発現細胞を得る
ことを探究した。またその細胞が取扱いが容易で、増殖
性にも優れ、EBNA関連抗原を安定に発現する系を見出す
よう努力した。 その結果、本発明を完成したのである。 すなわち本発明は、被検血清と、EBNA関連抗原遺伝子
を含むDNA断片がSV40由来の遺伝子発現制御領域および
選択マーカー遺伝子を含むベクターDNAに挿入されてい
るEBNA関連抗原遺伝子の発現組み換え体DNAを移入した
細胞とを接触させて、被検血清中の抗EBNA抗体と発現し
たEBNA関連抗原とを反応せしめ、該反応物を検出するこ
とを特徴とする抗EBNA抗体の測定法である。 次に本発明をより詳細に説明する。 本発明でいうEBNA関連抗原遺伝子とはEBVゲノムに存
在し、EBVの感染後最も早期に出現し、かつ潜伏感染状
態で核に発現しているEBNA関連抗原をコードしている遺
伝子をいい、EBNA1、EBNA2、EBNA3、EBNA4、EBNA5遺伝
子などである。EBVゲノムを制限酵素で処理するか、あ
るいはcDNAの調製等により当該EBNA関連抗原遺伝子が単
離、取得できる。これをSV40由来の遺伝子発現制御領域
と選択マーカーを有するベクターDNAに挿入して発現組
み換え体DNAを構築する。尚、本発明でいうSV40由来の
遺伝子発現制御領域とはSV40ゲノム上の複製開始点とプ
ロモーターやエンハンサーなどを含む領域をいう。EBNA
関連抗原遺伝子の挿入は、例えば、SV40由来の遺伝子発
現制御領域と選択マーカーを有するベクターDNAを制限
酵素で切断し、これにEBNA関連抗原遺伝子を含むDNA断
片をリガーゼの存在下で結合させることにより達成でき
る。次に本発明でいう選択マーカーとしては、種々のも
のが使用できるが、特にミコフエノール酸、ハイグロマ
イシン、ネオマイシンなどの各薬剤耐性遺伝子やチミジ
ンキナーゼ遺伝子などは下記の理由からより好ましい。
即ち、これらの遺伝子を導入した発現組み換え体DNAを
移入(トランスフェクト)した細胞は上記薬剤(チミジ
ンキナーゼの場合はブロモデオキシウリジン)の存在下
で増殖可能なことから、該発現組み換え体DNAを有する
細胞のみを選択的に生育させて単離することができるか
らである。 次に、この発現組み換え体DNAを細胞に移入する。こ
の細胞としては種々のものが使用できるが、本発明を診
断薬の構成成分として用いることを勘案し、多数のヒト
の血清との反応が免疫学的に特異的に行われ、偽陽性や
偽陰性の結果を生じない細胞を宿主細胞として選んだ。
その結果、ハムスター、マウス、ラット、サル、ヒト由
来の細胞から目的に適うEBNA発現細胞を得た。 次に、本発明のEBNA関連抗原遺伝子の発現組み換え体
DNAを移入した細胞の取得方法について記述する。 本発明者らが構築したEBNA関連抗原発現組み換え体DN
Aを、例えばGrahamとVAN DEL Ebの方法(Graham,F.L.
VAN DEl Eb,A.J.Transformation of rat cells by
DNA of human adenovirus 5.Virology 54,536−539(1
973))すなわち、リン酸カルシウム法などによって細
胞内に移入(トランスフェクト)する。この細胞をミコ
フェノール酸などの薬剤存在下で培養し、形成された細
胞コロニーについて、間接螢光抗体法による観案を行
い、EBNA発現細胞を選択する。次にEBNAを安定に産生す
る細胞を樹立する。なおこの細胞(HOEBN1b−24)は工
業技術院微生物工業技術研究所へ受託を申請したが、受
理されなかった。この発現組み換え体DNAを移入して得
られた細胞は、血液中などに存在するEBNA関連抗原に対
する抗体を検出し、臨床診断の目的等に利用することが
できる。 [実施例1] EBVが感染している細胞株B95−8のDNAを制限酵素Bam
HIで消化し、プラスミドベクターPBR322に組み込ん
で、得られたクローンDNAからBam HI消化によってPBR32
2のベクター部分を除去し、EBNA1遺伝子を含むDNA断片
を調製した。次にこの断片とSV40由来の遺伝子発現制御
領域を含むDNA断片約0.4kbを結合し、pSV2gptのEcoRI消
化部位に挿入した。こうして構築した組み換え体DNAの
構造を制限酵素切断法で分析し、SV40の遺伝子発現制御
領域の下流にEBNA1遺伝子が正方向に結合したEBNA1発現
組み換え体DNAを得た。この発現組み換え体DNAを宿主大
腸菌c600にトランスフェクトし、LB培地で増殖後、この
発現組み換えDNAをフェノール法で抽出し、塩化セシウ
ムの密度勾配遠心法により精製した。次にこのプラスミ
ドをCHO−K1細胞にトランスフェクトした後、薬剤ミコ
フェノール酸の存在下で選択培養し、ミコフェノール酸
耐性クローンの中からEBNA1を構成的に発現しているク
ローンを樹立した。ミコフェノール酸耐性クローンのう
ち、100%がEBNA1陽性であった。 [実施例2] EBNA1の発現細胞クローンとEBNA1の遺伝子を含まない
ベクターをトランスフェクトして樹立したEBNA1非発現
細胞クローンを用いて間接螢光抗体法を実施した。細胞
培養は、テフロンコーティングした12ウエルのコーティ
ングスライドにウエルあたり2×104細胞を加え、37
℃、5%CO2インキュベーター中で培養した。培地は10
%牛胎児血清を含んだF−12培地を用いた。細胞が単層
培養されたことを確認したうえで、培地を捨て、細胞を
アセトン−メタノールで固定した。固定したスライドグ
ラスの各ウエルに2倍段階希釈した被験血清を加え、37
℃で90分反応させた。冷却したリン酸緩衝液で洗浄後、
FITC標識抗ヒト免疫グロブリンを加え、37℃で60分反応
させた。リン酸緩衝液で洗浄後、スライドグラスを乾燥
し、蛍光顕微鏡下で観察した。核の蛍光染色が観察され
る最大希釈倍数を血清の抗EBNA1抗体価とした。さらにR
aji細胞を用いた蛍光抗体補体法で求めた従来法による
抗EBNA抗体価を求め比較したところ、従来法に比べ感度
が高いことが認められた。その結果を表1に示した。 (発明の効果) 本発明は,EBNA関連抗原のうち発現量が極めて少ないE
BNA関連抗原を大量に、かつ安定に供給し、EBNA抗体価
を高感度でそして特異的に測定するシステムに利用でき
るものであり、臨床診断薬分野等で極めて有意義な発明
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention introduces an expression recombinant DNA containing an EBNA-related antigen gene expressing an EBV nuclear antigen (EBNA) specific for Epstein-Barr virus (EBV) ( The present invention relates to a method for measuring anti-EBNA antibody using transfected cells. (Problems to be Solved by Prior Art and Invention) EBV is a DNA-type virus found by Epstein and Barr et al. In 1964 and belongs to the herpesviridae family. EBV is known to be a pathogenic virus for infectious mononucleosis in humans, but further suggests an etiological relationship with African malignant tumors such as Burkitt lymphoma and nasopharyngeal cancer frequently occurring in China and Southeast Asia Has been done. Also, EB
Infection of human B lymphocytes with V in vitro results in immortalization of the infected cells (the cells acquire infinite proliferation). In human childhood, EBV infection is generally subclinical, but if the initial infection is postpubertal,
Infectious mononucleosis develops in half of the infected. EBV-related antigens such as nuclear antigen (EBNA), early antigen (EA), viral capsid antigen (VCA), and membrane antigen (MA) appear in EBV-infected B lymphocytes, and these antigens are present in the blood of patients. The antibody will be detected. Attempts have been made to make a definitive diagnosis of infectious mononucleosis or a chronic disease suspected of being associated with EBV infection based on the prevalence of antibody titers against these various antigens. Conventionally, in detecting these antibodies, a fluorescent antibody method is generally performed, and EBV-positive human B lymphocytes are used as an antigen. However, the conventional method has a big problem in measuring the anti-EBNA antibody titer. First, the expression level of EBNA protein is
Since it is extremely small compared with V-related antigens such as EA, VCA, and MA, it is impossible to obtain sufficient sensitivity to quantify the amount of antibody in blood. Therefore, a special method called the fluorescent antibody complement method is performed. This method attempts to increase the detection sensitivity by adding human complement, but human serum that is not infected with EBV must be used as complement, and this is extremely difficult to obtain. Difficult and difficult to obtain reliable measurement results due to complicated operation. Secondly, since the infected cells do not selectively express only the EBNA polypeptide, it is not possible to judge whether or not the detected antibody is truly an antibody to EBNA. On the other hand, recently, various immunodeficiency states and EB
As the knowledge about the relationship with V has been accumulated, the significance of separately measuring the blood antibodies against EBNA1 and EBNA2 among EBNA-related antigens has been reported, and it will be necessary to individually measure the antibody titer against each EBNA in the future. Is considered to come out. As a means for solving the above problems and further enabling individual measurement of antibody titers against each EBNA predicted in the future, DNA containing genes encoding each EBV-related antigen is prepared by a genetic engineering method. There is a method of growing a large number of cells expressing EBV-related antigens after the cells have been transferred. As a basic research related to this, `` Expression in CO
S-1 cells of Epstein-Barr virus nuclear antigen
from a complete gene and deleted gene "(Robert.
M., F. et al., J. of Virol., 50 , 822-831, 1984),
Also disclosed is the invention “EB recombinant virus-expressing antigen-expressing recombinant DNA and cells containing the same” (JP-A-62-83889) for EBNA, EA and VCA in general. The vectors used for gene transfer in these conventional techniques are PBR322 or the like into which a viral promoter that can be expressed in animal cells or a retroviral LTR region has been introduced. Various animal cells such as primates and birds have been used as transferable cells. (Means for Solving Problems) Therefore, the present inventors have considered from the viewpoint of practicality in clinical diagnosis,
We have conducted intensive research to develop a new system that differs from the conventional technology. First, construct an expression recombinant DNA suitable for expressing a large amount of EBNA-related antigen in cells, try to obtain expression cells by transfecting this with various cells, and further express the expression recombinant DNA and cells. I made an effort to find the optimum combination of. That is, a reaction between EBNA-related antigens expressed in cells and a large number of human sera in a system expressing EBNA-related antigens is immunologically specific,
We sought to obtain expressing cells that did not give rise to false positive or false negative results. We also tried to find a system in which the cells are easy to handle, have excellent proliferative properties, and stably express EBNA-related antigens. As a result, the present invention has been completed. That is, the present invention transfects a test serum and a recombinant DNA expressing an EBNA-related antigen gene in which a DNA fragment containing the EBNA-related antigen gene is inserted into a vector DNA containing a gene expression control region derived from SV40 and a selection marker gene. It is a method for measuring an anti-EBNA antibody, which comprises contacting the cells with each other to react the anti-EBNA antibody in the test serum with the expressed EBNA-related antigen and detecting the reaction product. Next, the present invention will be described in more detail. The EBNA-related antigen gene referred to in the present invention refers to a gene that exists in the EBV genome, appears at the earliest stage after EBV infection, and encodes an EBNA-related antigen that is expressed in the nucleus in a latent infection state. , EBNA2, EBNA3, EBNA4 and EBNA5 genes. The EBNA-related antigen gene can be isolated and obtained by treating the EBV genome with a restriction enzyme or by preparing cDNA. This is inserted into a vector DNA having an SV40-derived gene expression control region and a selection marker to construct an expression recombinant DNA. The SV40-derived gene expression control region referred to in the present invention refers to a region containing a replication origin on the SV40 genome and a promoter or enhancer. EBNA
Insertion of the relevant antigen gene is carried out by, for example, cleaving a vector DNA having an SV40-derived gene expression control region and a selection marker with a restriction enzyme, and ligating a DNA fragment containing the EBNA-related antigen gene thereto in the presence of ligase. Can be achieved. Next, various kinds of selection markers can be used in the present invention, but drug resistance genes such as mycophenolic acid, hygromycin, neomycin, and thymidine kinase gene are more preferable because of the following reasons.
That is, since cells transfected (transfected) with the expression recombinant DNA into which these genes have been introduced can grow in the presence of the above-mentioned drug (bromodeoxyuridine in the case of thymidine kinase), they have the expression recombinant DNA. This is because only cells can be selectively grown and isolated. The expressed recombinant DNA is then transferred into cells. Although various cells can be used as the cells, in consideration of the use of the present invention as a component of a diagnostic agent, a reaction with a large number of human sera is immunologically specific, resulting in a false positive or a false positive. Cells that did not give a negative result were chosen as host cells.
As a result, EBNA-expressing cells suitable for the purpose were obtained from cells derived from hamster, mouse, rat, monkey and human. Next, a recombinant expressing the EBNA-related antigen gene of the present invention
A method for obtaining cells into which DNA has been transferred will be described. EBNA-related antigen-expressing recombinant DN constructed by the present inventors
A, for example, the method of Graham and VAN DEL Eb (Graham, FL
& VAN DEl Eb, AJTransformation of rat cells by
DNA of human adenovirus 5.Virology 54 , 536-539 (1
973)) That is, it is transferred (transfected) into cells by the calcium phosphate method or the like. The cells are cultured in the presence of a drug such as mycophenolic acid, and the formed cell colonies are examined by the indirect fluorescent antibody method to select EBNA-expressing cells. Next, cells that stably produce EBNA are established. The cells (HOEBN1b-24) were submitted to the Institute of Microbial Technology, Institute of Industrial Science, but were not accepted. The cells obtained by transfecting this expressed recombinant DNA can detect antibodies against EBNA-related antigens present in blood or the like, and can be used for clinical diagnosis purposes and the like. [Example 1] Restriction enzyme Bam for the DNA of cell line B95-8 infected with EBV
It was digested with HI, integrated into the plasmid vector PBR322, and the cloned DNA obtained was digested with Pam32 by Bam HI digestion.
The vector portion of 2 was removed to prepare a DNA fragment containing the EBNA1 gene. Next, this fragment was ligated to about 0.4 kb of a DNA fragment containing the SV40-derived gene expression control region and inserted into the EcoRI digestion site of pSV2gpt. The structure of the recombinant DNA thus constructed was analyzed by the restriction enzyme cleavage method to obtain an EBNA1 expressing recombinant DNA in which the EBNA1 gene was bound in the forward direction downstream of the SV40 gene expression control region. The expressed recombinant DNA was transfected into host Escherichia coli c600, grown in LB medium, and then the expressed recombinant DNA was extracted by the phenol method and purified by cesium chloride density gradient centrifugation. Next, this plasmid was transfected into CHO-K1 cells, which were then selectively cultured in the presence of the drug mycophenolic acid to establish clones constitutively expressing EBNA1 among the mycophenolic acid resistant clones. Of the mycophenolic acid resistant clones, 100% were EBNA1 positive. [Example 2] An indirect fluorescent antibody method was carried out using an EBNA1 non-expressing cell clone established by transfecting an EBNA1 expressing cell clone and a vector not containing the EBNA1 gene. Cell culture was performed by adding 2 × 10 4 cells per well to a teflon-coated 12-well coated slide, and
Cultivated in a 5% CO 2 incubator at ℃. Medium is 10
F-12 medium containing% fetal bovine serum was used. After confirming that the cells were cultured in a monolayer, the medium was discarded and the cells were fixed with acetone-methanol. Add the test serum diluted 2-fold to each well of the fixed slide glass,
The mixture was reacted at 90 ° C for 90 minutes. After washing with cold phosphate buffer,
FITC-labeled anti-human immunoglobulin was added and reacted at 37 ° C for 60 minutes. After washing with a phosphate buffer, the slide glass was dried and observed under a fluorescence microscope. The maximum dilution factor at which fluorescent staining of nuclei was observed was taken as the serum anti-EBNA1 antibody titer. Further R
When the anti-EBNA antibody titer by the conventional method obtained by the fluorescent antibody complement method using aji cells was determined and compared, it was found that the sensitivity was higher than that by the conventional method. The results are shown in Table 1. (Effects of the Invention) The present invention is directed to E with extremely low expression level among EBNA-related antigens.
It is a very useful invention in the field of clinical diagnostics and the like, which can be used in a system for stably supplying a large amount of BNA-related antigen and measuring EBNA antibody titer with high sensitivity and specificity.

Claims (1)

(57)【特許請求の範囲】 1.被検血清と、EBNA関連抗原遺伝子を含むDNA断片がS
V40由来の遺伝子発現制御領域および選択マーカー遺伝
子を含むベクターDNAに挿入されているEBNA関連抗原遺
伝子の発現組み換え体DNAを移入したCHO細胞とを接触さ
せて、被検血清中の抗EBNA抗体と発現したEBNA関連抗原
とを反応せしめ、該反応物を検出することを特徴とする
抗EBNA抗体の測定法。
(57) [Claims] The test serum and the DNA fragment containing the EBNA-related antigen gene are S
Expression of EBNA-related antigen gene inserted in vector DNA containing V40-derived gene expression control region and selectable marker gene Contact CHO cells transfected with recombinant DNA to express anti-EBNA antibody in test serum A method for measuring an anti-EBNA antibody, which comprises reacting the above-mentioned EBNA-related antigen with the antigen and detecting the reaction product.
JP62284334A 1987-11-12 1987-11-12 Method for measuring anti-EBNA antibody Expired - Lifetime JP2694228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62284334A JP2694228B2 (en) 1987-11-12 1987-11-12 Method for measuring anti-EBNA antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62284334A JP2694228B2 (en) 1987-11-12 1987-11-12 Method for measuring anti-EBNA antibody

Publications (2)

Publication Number Publication Date
JPH01128788A JPH01128788A (en) 1989-05-22
JP2694228B2 true JP2694228B2 (en) 1997-12-24

Family

ID=17677224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62284334A Expired - Lifetime JP2694228B2 (en) 1987-11-12 1987-11-12 Method for measuring anti-EBNA antibody

Country Status (1)

Country Link
JP (1) JP2694228B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4303315B2 (en) 1994-05-09 2009-07-29 オックスフォード バイオメディカ(ユーケー)リミテッド Non-crossing retroviral vector
US6013517A (en) * 1994-05-09 2000-01-11 Chiron Corporation Crossless retroviral vectors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2534273B1 (en) * 1982-10-07 1985-09-13 Pasteur Institut CELL LINES ORIGINATING IN SUPERIOR MAMMALS, PRODUCERS OF GROWTH HORMONE, PREFERABLY HUMAN, AND VECTORS FOR THEIR PRODUCTION
IL71691A (en) * 1984-04-27 1991-04-15 Yeda Res & Dev Production of interferon-ypsilon
JPS61249394A (en) * 1985-04-27 1986-11-06 Kanegafuchi Chem Ind Co Ltd Interferon-gamma (gamma)
JPS6152283A (en) * 1984-08-15 1986-03-14 Toray Ind Inc Expression vector
JPH0653071B2 (en) * 1985-06-11 1994-07-20 三菱化成株式会社 Expression vector and transformed cell
JPS6211096A (en) * 1985-07-08 1987-01-20 Kanegafuchi Chem Ind Co Ltd Promotor
JPS6232885A (en) * 1985-08-05 1987-02-12 Toray Ind Inc Human interleukin 2 manifestation vector and eucaryotic cell strain containing same
JPS6283889A (en) * 1985-10-05 1987-04-17 Meiji Milk Prod Co Ltd Gene expression vector of eb virus-related antigen and cell containing said vector

Also Published As

Publication number Publication date
JPH01128788A (en) 1989-05-22

Similar Documents

Publication Publication Date Title
Gerna et al. Human cytomegalovirus serum neutralizing antibodies block virus infection of endothelial/epithelial cells, but not fibroblasts, early during primary infection
Major et al. Establishment of a line of human fetal glial cells that supports JC virus multiplication.
Zhou et al. Efficient infection by a recombinant Kaposi's sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis
Pallesen et al. Activation of Epstein-Barr virus replication in Hodgkin and Reed-Sternberg cells
Desai et al. Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid
Li et al. The Epstein-Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells
Duus et al. Wild-type Kaposi's sarcoma-associated herpesvirus isolated from the oropharynx of immune-competent individuals has tropism for cultured oral epithelial cells
Sommer et al. Mutational analysis of the repeated open reading frames, ORFs 63 and 70 and ORFs 64 and 69, of varicella-zoster virus
Nixdorf et al. Effects of truncation of the carboxy terminus of pseudorabies virus glycoprotein B on infectivity
Banerjee et al. Therapeutic gene delivery in human B-lymphoblastoid cells by engineered non-transforming infectious Epstein–Barr virus
Kropff et al. Glycoprotein N of human cytomegalovirus protects the virus from neutralizing antibodies
Mach* et al. Human cytomegalovirus: recent aspects from molecular biology
US5824466A (en) Purified polypeptide of human papillomavirus type 49 (HPV49) type 50 (HVP50), and type 55 (HPV55)
Li et al. Identification and characterization of Kaposi’s sarcoma-associated herpesvirus K8. 1 virion glycoprotein
WO1989007143A1 (en) Recombinant cmv neutralizing proteins
Auerbach et al. Characterization of the guinea pig CMV gH/gL/GP129/GP131/GP133 complex in infection and spread
US5045447A (en) Method of producing antibodies to HPV
Chuke et al. Construction and characterization of hybrid polyomavirus genomes
Lundstig et al. Serological diagnosis of human polyomavirus infection
Muller et al. Isolation of large T antigen-producing mouse cell lines capable of supporting replication of polyomavirus-plasmid recombinants
Chou et al. Rapid quantitation of cytomegalovirus and assay of neutralizing antibody by using monoclonal antibody to the major immediate-early viral protein
Yue et al. Antibody responses to rhesus cytomegalovirus glycoprotein B in naturally infected rhesus macaques
Milne et al. Human cytomegalovirus glycoprotein H/glycoprotein L complex modulates fusion-from-without
CN110951778B (en) CDV-3 strain infectious cDNA clone of canine distemper virus, construction method and application thereof
Finnen et al. Truncation of the human adenovirus type 5 L4 33-kDa protein: evidence for an essential role of the carboxy-terminus in the viral infectious cycle