JP2693817B2 - Fiber-reinforced coating material and manufacturing method thereof - Google Patents

Fiber-reinforced coating material and manufacturing method thereof

Info

Publication number
JP2693817B2
JP2693817B2 JP1095335A JP9533589A JP2693817B2 JP 2693817 B2 JP2693817 B2 JP 2693817B2 JP 1095335 A JP1095335 A JP 1095335A JP 9533589 A JP9533589 A JP 9533589A JP 2693817 B2 JP2693817 B2 JP 2693817B2
Authority
JP
Japan
Prior art keywords
resin
fiber
mixed
coating material
silica sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1095335A
Other languages
Japanese (ja)
Other versions
JPH02275739A (en
Inventor
正典 松山
順一 藤田
幹 青山
好正 林
晴果 小川
徹 奥井
和敏 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Osaka Gas Co Ltd
Original Assignee
Obayashi Corp
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Osaka Gas Co Ltd filed Critical Obayashi Corp
Priority to JP1095335A priority Critical patent/JP2693817B2/en
Publication of JPH02275739A publication Critical patent/JPH02275739A/en
Application granted granted Critical
Publication of JP2693817B2 publication Critical patent/JP2693817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Floor Finish (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 本発明は、繊維補強塗布材及びその製造方法に関し、
特にレジンモルタル又はレジンコンクリート等を主材と
する繊維補強塗布材及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a fiber-reinforced coating material and a method for producing the same,
In particular, the present invention relates to a fiber reinforced coating material mainly composed of resin mortar or resin concrete and a method for producing the same.

《従来の技術》 従来、耐薬品性に優れ、しかも超速硬化性で、かつ低
温施工が可能であることから、メタクリル樹脂系のレジ
ンモルタルやレジンコンクリートが工場床や道路舗装等
の緊急補修材料として用いられている。但し、下地の乾
燥が不充分であったりすると、施工後に剥離を生じ、繰
返し衝撃荷重を受けた場合等において、破断する危険が
ある。このため、塗床厚を厚くして衝撃強度を高める工
夫が採られている。
<Conventional technology> Conventionally, methacrylic resin-based resin mortar and resin concrete have been used as emergency repair materials for factory floors, road pavements, etc. because of their excellent chemical resistance, ultra-fast curing, and low-temperature workability. Has been. However, if the base is not sufficiently dried, peeling may occur after construction, and there is a risk of breakage when subjected to repeated impact loads. For this reason, measures have been taken to increase the impact strength by increasing the coating floor thickness.

しかし、一度に厚塗りすると、樹脂の硬化に伴なう発
熱と収縮量が大きくなり、ひび割れを生じる問題があ
る。
However, if it is applied thickly at one time, there is a problem that heat generation and shrinkage amount accompanying the curing of the resin increase and cracking occurs.

一方、最近になって、レンガやタイル等の目地材、反
応槽の断熱や防蝕のためのライニング素材等として用い
られている樹脂モルタルに、ガラス繊維やシリカ繊維の
チョップドストランドを混入して補強する技術が提案さ
れている(特開昭59−122529号)。
On the other hand, these days, chopped strands of glass fiber or silica fiber are mixed and reinforced in joint materials such as bricks and tiles, resin mortar used as a lining material for heat insulation and corrosion protection of reaction tanks, etc. A technique has been proposed (Japanese Patent Laid-Open No. 59-122529).

また、難燃性,防音・防水性,保温性等に優れた壁材
として、セメントにガラス繊維を混入したものと、セメ
ントに木剪片や木毛等の木質片を混入したものとを二層
一体化したものも提案されている(実開昭62−136321
号)。
In addition, there are two types of wall materials that have excellent flame retardancy, soundproofing, waterproofing, and heat retention: cement mixed with glass fiber and cement mixed with wood chips such as wood shreds and wool. Layer-integrated ones have also been proposed (Shokaisho 62-136321).
issue).

《発明が解決しようとする課題》 そこで、前述のレジンモルタルやレジンコンクリート
等に、前述のガラス繊維,シリカ繊維あるいは木質片等
を混入して、レジンモルタルやレジンコンクリート等の
特性を生かしつつ、衝撃強度及び耐ひび割れ性を向上さ
せ、これを前述の緊急補修材に限らず、例えば、塗床材
料として使用することが考えられる。
<< Problems to be Solved by the Invention >> Therefore, the resin mortar and resin concrete described above are mixed with the glass fiber, silica fiber, or wood chips described above to make the best use of the characteristics of the resin mortar or resin concrete, and to give an impact. It is conceivable to improve the strength and crack resistance and use this as not only the above-mentioned emergency repair material but also, for example, a coating floor material.

しかし、目地材や反応槽のライニング素材、あるいは
壁材等に使用されている繊維の種類や性状あるいは配合
割合が、そのまま床材として適用できるものではない。
However, the type, properties, or mixing ratio of the fibers used in the joint material, the lining material of the reaction tank, or the wall material cannot be directly applied as the floor material.

そして周知の通り、工場床,道路,その他一般のビル
や家屋の床は、常時大荷重を受け、また繰返し衝撃荷重
を受ける。このような荷重に対し、繊維の種類や性状に
よっては容易に破断し、また配合割合によっては容易に
剥離したり、ひび割れを生じる。
As is well known, factory floors, roads, and floors of other general buildings and houses are constantly subjected to large loads and also subjected to repeated impact loads. Under such a load, it is easily broken depending on the type and properties of the fiber, and easily peeled off or cracked depending on the mixing ratio.

更に、道路舗装等に際しては超速硬化性や低温施工性
が必須であり、このような特性のレジンモルタルやレジ
ンコンクリート等に対してなじみ性があり、しかもこの
ような特性をそのまま生かし得る繊維の種類,性状,配
合割合でなければならない。
Furthermore, in the case of road pavement, etc., super fast hardening and low-temperature workability are essential, and it is compatible with resin mortar and resin concrete having such characteristics, and a type of fiber that can make full use of such characteristics. , Properties and blending ratio.

本発明は、以上の諸点に鑑みてなされたもので、その
目的とするところは、耐薬品性,超速硬化性,低温施工
性に優れると共に、繰返し衝撃荷重に強く、かつ硬化の
際の発熱及び収縮量の小さい繊維補強塗布材及びその製
造方法を提案するにある。
The present invention has been made in view of the above points, and its object is to have excellent chemical resistance, super-fast curing property, and low-temperature workability, tolerant of repeated impact load, and to generate heat during curing and A fiber-reinforced coating material having a small shrinkage amount and a method for producing the same are proposed.

《課題を解決するための手段》 上記目的を達成するために、本発明の繊維補強塗布材
は、粒径が0.3mm以下の分散材としての硅砂と繊維長が1
0mm以下の炭素繊維とを分散混合したものを、樹脂にモ
ルタル若しくはコンクリートを混合してなる混合物、又
は樹脂単独物のいずれかに混合してなり、前記炭素繊維
の配合が、前記硅砂に対し1wt%以上で且つ前記樹脂に
対し10wt%以下であることを特徴とするものである。
<< Means for Solving the Problems >> In order to achieve the above object, the fiber-reinforced coating material of the present invention has a particle diameter of 0.3 mm or less and silica sand as a dispersion material and a fiber length of 1
A mixture of 0 mm or less of carbon fibers dispersed and mixed, which is a mixture of a resin and mortar or concrete, or a resin alone, wherein the carbon fiber content is 1 wt% with respect to the silica sand. % Or more and 10 wt% or less with respect to the resin.

また、本願他の発明である繊維補強塗布材の製造方法
は、粒径が0.3mm以下の分散材としての硅砂と繊維長が1
0mm以下の炭素繊維とを、水を加えずに第1段階として
分散混合した後、この分散混合物を、樹脂にモルタル若
しくはコンクリートと混合してなる混合物、又は樹脂単
独物に第2段階として混合することを特徴とするもので
ある。
Further, the method for producing a fiber-reinforced coating material according to another invention of the present application, the particle diameter is 0.3 mm or less silica sand as a dispersion material and the fiber length is 1
After the carbon fiber of 0 mm or less is dispersed and mixed as a first step without adding water, the dispersion mixture is mixed with a resin and mortar or concrete, or a resin alone is mixed as a second step. It is characterized by that.

《作用》 本発明に係る繊維補強塗布材においては、炭素繊維
が、レジンモルタルやレジンコンクリートの硬化の際の
発熱量及び収縮量を低減させる作用をなす。
<< Action >> In the fiber-reinforced coating material according to the present invention, the carbon fiber acts to reduce the amount of heat generation and the amount of shrinkage during curing of the resin mortar or resin concrete.

これは、メタクリル樹脂の線収縮率は0.2%であるの
に対して、炭素繊維の線収縮率は0.01%と小さいため、
樹脂硬化発熱に伴う収縮を拘束する効果が生じるためで
ある。
This is because the linear shrinkage of methacrylic resin is 0.2%, whereas the linear shrinkage of carbon fiber is as small as 0.01%.
This is because the effect of restraining the shrinkage due to the heat generated by the resin curing occurs.

また、炭素繊維は、低温靱性に優れる他、可撓性や延
性があるため、本発明に係る繊維補強塗布材の曲げ・圧
縮強度,最大伸びを増加させ、変形能や耐繰返し衝撃荷
重性を増大させる作用を有する。
Further, since carbon fiber has excellent low-temperature toughness, and also has flexibility and ductility, it increases the bending / compressive strength and maximum elongation of the fiber-reinforced coating material according to the present invention, and improves the deformability and the resistance to repeated impact load. Has an increasing effect.

しかも、炭素繊維は耐久性があり、かつ酸やアルカリ
に強いため、本発明に係る繊維補強塗布材の耐薬品性及
び耐久性を著しく向上させる作用をなす。
Moreover, since carbon fibers are durable and resistant to acids and alkalis, they act to remarkably improve the chemical resistance and durability of the fiber-reinforced coating material according to the present invention.

但し、炭素繊維は繊維直径が非常に細く(直径13μ
m)、表面積が非常に大きいため、これを多量に配合す
ると樹脂量が不足し硬化不良の原因ともなる。また、炭
素繊維と、硅砂との比重差が大きすぎると、炭素繊維の
分散性が低下するため、硅砂に対し1wt%以上とし、且
つ樹脂に対し10wt%以下とする。
However, the carbon fiber has a very small fiber diameter (diameter 13 μ
m), since the surface area is very large, if a large amount of this is blended, the amount of resin will be insufficient, and this will cause poor curing. If the difference in specific gravity between the carbon fiber and silica sand is too large, the dispersibility of the carbon fiber decreases, so the content should be 1 wt% or more relative to the silica sand and 10 wt% or less relative to the resin.

また、炭素繊維の繊維長が余り長過ぎると、塗工作業
中コテ離れが悪くなり、施工性が著しく低下するため、
10mm以下の繊維長のものを使用する。
Further, if the fiber length of the carbon fiber is too long, the trowel separation during coating operation becomes poor and the workability is significantly reduced,
Use fibers with a fiber length of 10 mm or less.

さらには、分散材として粒径0.3mm以下の硅砂を混合
するので、炭素繊維を容易に分散させることができると
ともに、硅砂はモルタルに良好に付着するため好適な骨
材となり、レジンモルタルの硬化後には、床材等の塗布
材として十分な強度を得ることができる。
Furthermore, since silica sand having a particle size of 0.3 mm or less is mixed as a dispersant, carbon fibers can be easily dispersed, and silica sand is a suitable aggregate because it adheres well to mortar, and after curing the resin mortar. Can obtain sufficient strength as a coating material such as a floor material.

また、本発明に係る繊維補強塗布材の製造方法におい
て、第1段階として、分散材としての硅砂と上記配合量
の炭素繊維とを予め水を加えないいわゆる乾式により分
散混合し、次いで第2段階としてこの分散混合物をレジ
ンモルタル若しくはレジンコンクリートの、樹脂にモル
タル若しくはコンクリートを混合してなる混合物、又は
樹脂単独物に混合することにより、分散混合物が塊状に
ならず粉状を維持させることができる。
Further, in the method for producing a fiber-reinforced coating material according to the present invention, as a first step, silica sand as a dispersant and carbon fibers having the above blending amount are dispersed and mixed by a so-called dry method in which water is not added in advance, and then a second step. As this dispersion mixture is mixed with resin mortar or resin concrete, a mixture of a resin and mortar or concrete, or a resin alone, the dispersion mixture can be maintained in a powdery state without forming lumps.

すなわち、第1段階において、硅砂と炭素繊維とを混
合する際に水を加える湿式とした場合、炭素繊維同士の
関係は、炭素繊維と硅砂との関係よりも接触面積が大き
くなるため、水による表面張力によって相互に吸着しや
すくなる傾向がある。
That is, in the first step, when the wet method is used in which water is added when silica sand and carbon fibers are mixed, the relationship between the carbon fibers is larger than the relationship between the carbon fibers and silica sand, so that the contact with water The surface tensions tend to facilitate mutual adsorption.

詳しくは、炭素繊維同士の関係では、炭素繊維が糸状
であるためこれらが相互に接触する場合はその接触部の
形状が線状となる。これに対し、炭素繊維と硅砂との関
係では、これらの接触部の形状が点状となるため、接触
面積が炭素繊維同士の関係よりも著しく小さくなる。し
たがって、水を加えないいわゆる湿式においては、炭素
繊維同士の付着性が炭素繊維と硅砂との付着性よりも高
くなり、分散材である硅砂を混合しても炭素繊維同士が
吸着してしまい、いわゆるファイバーボールが発生しや
すくなるという傾向がある。
Specifically, regarding the relationship between the carbon fibers, since the carbon fibers are filamentous, when they contact each other, the contact portion has a linear shape. On the other hand, in the relationship between the carbon fibers and the silica sand, the shape of the contact portion between these is a dot shape, and thus the contact area is significantly smaller than the relationship between the carbon fibers. Therefore, in a so-called wet method in which water is not added, the adhesion between the carbon fibers becomes higher than the adhesion between the carbon fibers and silica sand, and the carbon fibers are adsorbed even if silica sand that is a dispersant is mixed, So-called fiber balls tend to be generated.

これに対し、本願発明のように水を加えない乾式とし
た場合は、炭素繊維同士の付着性が高くなるのを抑える
ことができ、分散材による分散効果を確保して効果的に
炭素繊維をほぐすことができる。
On the other hand, in the case of the dry method in which water is not added as in the present invention, it is possible to suppress the increase in the adhesiveness between the carbon fibers, and to secure the dispersion effect of the dispersant to effectively increase the carbon fibers. Can be loosened.

その結果、第2段階において容易に繊維長10mm以下の
炭素短繊維が均一にレジンモルタル又はレジンコンクリ
ート中に配合されることとなる。しかも、この二段階の
各混合操作時の動力は極く僅かで充分であり、かつ混合
時間も少なくて良い。
As a result, in the second step, short carbon fibers having a fiber length of 10 mm or less can be easily and uniformly mixed into the resin mortar or resin concrete. Moreover, the power for each of these two-stage mixing operations is extremely small and sufficient, and the mixing time may be short.

すなわち、本発明の繊維補強塗布材及びその製造方法
によれば、炭素繊維と硅砂とを分散混合する際、炭素繊
維と硅砂とを均一に且つ容易に混合することができ、こ
れら炭素繊維と硅砂を第1段階として混合したものを、
樹脂にモルタル若しくはコンクリートを混合してなる混
合物又は樹脂の単独物(以下、「樹脂マトリックス」と
もいう。)に更に第2段階として混合する際に、該樹脂
マトリックス等に均一に分散させることができる。従っ
て、これらの二段階の混合時にあっては、各混合操作の
動力は極めて僅かで充分であり、且つ混合時間も少なく
てすむ。
That is, according to the fiber-reinforced coating material and the method for producing the same of the present invention, when the carbon fiber and silica sand are dispersed and mixed, the carbon fiber and silica sand can be uniformly and easily mixed, and the carbon fiber and silica sand can be mixed. Was mixed as the first stage,
When a resin is mixed with mortar or concrete or a resin alone (hereinafter, also referred to as "resin matrix") is further mixed as a second step, it can be uniformly dispersed in the resin matrix or the like. . Therefore, at the time of these two stages of mixing, the power of each mixing operation is extremely small and sufficient, and the mixing time is short.

また、塗工作業にあっては、コテ離れが良好となり施
工性を向上させることができる。
Further, in the coating work, the trowel separation becomes good and the workability can be improved.

さらに、繊維補強塗布材の硬化後にあっては、分散材
としての硅砂は樹脂及びモルタルと良好に付着する好適
な骨材となり、また、塗布材の最大伸びを増加させ、変
形能や耐繰り返し衝撃荷重を増大させ、その結果当該床
材の強度の向上を図ることができる。
Furthermore, after the fiber-reinforced coating material is hardened, silica sand as a dispersant becomes a suitable aggregate that adheres well to the resin and mortar, and it also increases the maximum elongation of the coating material, deformability and repeated impact resistance. The load can be increased, and as a result, the strength of the floor material can be improved.

以上の本発明に係る繊維補強塗布材及びその製造方法
において、樹脂としては、メタクリル樹脂,エポキシ樹
脂,ポリウレタン樹脂,ポリエステル樹脂,ビニールエ
ステル樹脂等が使用される。
In the fiber reinforcement coating material and the method for producing the same according to the present invention described above, as the resin, methacrylic resin, epoxy resin, polyurethane resin, polyester resin, vinyl ester resin or the like is used.

《実施例》 この発明の繊維補強塗布材の実施例を以下に詳細に説
明する。この繊維補強塗布材は、粒径が0.3mm以下の分
散材としての硅砂と繊維長が10mm以下の炭素繊維とを分
散混合したものを、樹脂にモルタル若しくはコンクリー
トを混合してなる混合物、又は樹脂単独物のいずれかす
なわち樹脂マトリックスに混合してなり、かかる炭素繊
維の配合は、硅砂に対し1wt%以上で且つ樹脂に対し10w
t%以下とされるものである。
<Example> An example of the fiber-reinforced coating material of the present invention will be described in detail below. This fiber-reinforced coating material is a mixture of silica sand as a dispersant having a particle diameter of 0.3 mm or less and a carbon fiber having a fiber length of 10 mm or less dispersedly mixed, a mixture of a resin and mortar or concrete, or a resin. It is made by mixing either of the individual substances, that is, the resin matrix, and the carbon fiber content is 1 wt% or more with respect to silica sand and 10 w with respect to the resin.
It should be t% or less.

この繊維補強塗布材は、本実施例では、市販のメタク
リル樹脂系塗床材[三菱レイヨン(株)製商品名アクリ
トーンフロアー]の骨材(砂)の一部を、本発明に係る
8号硅砂(粒径0.3mm以下)に繊維長3mmの炭素短繊維を
3wt%均質分散させた炭素短繊維乾式混合粉体と置換
し、市販のハンドミキサーで混合することにより繊維補
強塗布材を製造する。
In this example, the fiber-reinforced coating material was obtained by using a part of the aggregate (sand) of a commercially available methacrylic resin-based flooring material [trade name Acrytone Floor manufactured by Mitsubishi Rayon Co., Ltd.] Carbon short fibers with a fiber length of 3 mm are added to silica sand (particle diameter 0.3 mm or less).
A fiber-reinforced coating material is manufactured by substituting the dry mixed powder of short carbon fibers homogeneously dispersed at 3 wt% and mixing with a commercially available hand mixer.

この商品名アクリトーンフロアーは、樹脂に骨材等を
配合してなるいわゆるレジンコンクリートであって、周
知のようにその成分は、樹脂としてMMA(メタクリル酸
メチルモノマー)、骨材として砂、硬化剤としてBPO
(過酸化ベンゾイル)等の複合開始材が含まれている。
This product name, Acritone Floor, is a so-called resin concrete that is made by mixing resin and aggregates. As is well known, its components are MMA (methyl methacrylate monomer) as resin, sand as aggregate and curing agent. As BPO
A composite initiator such as (benzoyl peroxide) is included.

したがって、このような成分のアクリトーンフロアー
の骨材の一部を炭素短繊維乾式混合粉体で置換して得ら
れる本実施例の繊維補強塗布材は、炭素繊維と分散材と
しての8号硅砂の他に、樹脂としてMMAを、骨材として
砂を含むとともに、硬化剤としてBPOを含むこととな
り、その配合割合は第1表に示すとおりである。
Therefore, the fiber-reinforced coating material of this example obtained by substituting a part of the aggregate of the acritone floor having such a component with the carbon short fiber dry mixed powder is carbon fiber and No. 8 silica sand as the dispersion material. In addition to MMA as a resin, sand as an aggregate, and BPO as a curing agent, the mixing ratio is as shown in Table 1.

なお、このように配合された繊維補強塗布材の成形体
は、本実施例では、市販の鋼製型枠(4×4×16cm)に
流し込み成形され、室温(20±3℃)で24時間養生した
後脱型することにより製造される。そして、この成形体
の曲げ・圧縮強度の測定は、精密万能試験機[(株)島
津製作所製のオートグラフ]を用い、試験速度0.5mm/mi
nでJISR5201に準じて行われる。
The molded product of the fiber-reinforced coating material thus blended is cast in a commercially available steel mold (4 × 4 × 16 cm) in this example, and is molded at room temperature (20 ± 3 ° C.) for 24 hours. It is manufactured by demolding after curing. The bending / compressive strength of this molded body was measured using a precision universal testing machine [Autograph manufactured by Shimadzu Corporation] at a test speed of 0.5 mm / mi.
n is performed according to JIS R5201.

また、上記成形体の養生(硬化)中に、上記の成形体
中に熱電対を埋め込み、デジタル歪測定器[東京測器
(株)製商品名TDS−301]により、硬化時の発熱量を測
定した。
Further, during curing (curing) of the molded body, a thermocouple was embedded in the molded body, and a calorific value at the time of curing was measured by a digital strain meter [Tokyo Sokki Co., Ltd., trade name TDS-301]. It was measured.

さらに、歪ゲージ(検長30mm)を、上記の脱型後の成
形体に貼り付け、上記の曲げ試験の際の発生歪を上記の
デジタル歪測定器により記録した。
Further, a strain gauge (measurement length 30 mm) was attached to the above-mentioned molded body after demolding, and the strain generated during the above bending test was recorded by the above digital strain measuring instrument.

これらの結果を第2表に示す。なお、第2表は、炭素
繊維及び8号硅砂を混入しないものをNo.1とし、本発明
の繊維補強塗布材にかかる成形体をNo.2〜4とした。ま
た、表中の値は各成形体10個についての平均値である。
Table 2 shows the results. In Table 2, those in which carbon fiber and No. 8 silica were not mixed were designated as No. 1, and the molded bodies relating to the fiber-reinforced coating material of the present invention were designated as No. 2 to 4. The values in the table are average values for 10 molded articles.

第2表から明らかなように、炭素短繊維を混入しない
No.1と、炭素短繊維を硅砂に対し1wt%以上で且つ樹脂
に対し10wt%以下で配合したNo.2〜4とを比較してみる
と、炭素短繊維の混入量が多くなるに伴って発熱量及び
収縮量が低減し、曲げ・圧縮強度及び最大伸びは増大
し、逆に弾性係数は減少した。
As is clear from Table 2, short carbon fibers are not mixed.
Comparing No. 1 with No. 2 to 4 in which short carbon fibers were mixed in silica sand in an amount of 1 wt% or more and resin in an amount of 10 wt% or less, the amount of short carbon fibers mixed increased. As a result, the amount of heat generation and shrinkage decreased, the bending / compression strength and maximum elongation increased, and conversely the elastic modulus decreased.

なお、本実施例では、樹脂マトリックスとして、樹脂
に骨材を混入したレジンコンクリートを用い、これに炭
素繊維及び分散材を配合したが、本発明はこれに限定さ
れず、樹脂マトリックスとして樹脂の他に例えば普通ポ
ルトランドセメント等のセメント分を含むいわゆるポリ
マーモルタルに炭素繊維等を配合してもよい。
In this example, resin concrete in which aggregate was mixed with resin was used as the resin matrix, and the carbon fiber and the dispersant were mixed therein. However, the present invention is not limited to this, and other resin may be used as the resin matrix. For example, carbon fiber or the like may be mixed with so-called polymer mortar containing a cement component such as ordinary Portland cement.

次に、配合、炭素繊維の繊維長又は製造手順を変えて
成形した比較用成形体と、本実施例において製造された
No.2〜4成形体とについてそれぞれ比較した比較例を以
下に説明する。
Next, a comparative molded body molded by changing the compounding, the fiber length of the carbon fiber or the manufacturing procedure, and manufactured in this example.
Comparative examples for comparing No. 2 to 4 molded bodies will be described below.

比較例1 炭素短繊維が樹脂に対し10.5wt%となるように炭素短
繊維乾式混合粉体の置換量とする以外は、No.2〜4成形
体と全く同様にして比較用成形体を製造したが、24時間
の養生では完全に硬化しておらず、炭素短繊維の配合割
合の上限は、樹脂に対し10wt%であることが判明した。
Comparative Example 1 A comparative molded body was manufactured in exactly the same manner as the molded bodies of Nos. 2 to 4 except that the amount of the short carbon fiber dry mixed powder was replaced so that the carbon short fiber was 10.5 wt% with respect to the resin. However, it was not completely cured after curing for 24 hours, and it was found that the upper limit of the blending ratio of short carbon fibers was 10 wt% with respect to the resin.

比較例2 繊維長10.5mmの炭素短繊維を用いる以外は、No.2〜4
成形体と全く同様にして比較用成形体を製造したが、型
枠への連続注入操作時に混合物の切れが悪く、各型枠へ
適量づつ注入することが極めて困難であった。
Comparative Example 2 Nos. 2 to 4 except that carbon short fibers having a fiber length of 10.5 mm were used.
A comparative molded product was produced in exactly the same manner as the molded product, but it was extremely difficult to pour an appropriate amount into each mold due to poor cutting of the mixture during the continuous pouring operation into the mold.

そこで、ハンドミキサーから取り出した混合物をコテ
で塗装してみたところ、コテ離れが悪く、施工性が良好
でないことが判明した。
Then, when the mixture taken out from the hand mixer was painted with a trowel, it was found that the trowel separation was poor and the workability was not good.

従って、炭素繊維の繊維長は10mmが上限であることが
明らかとなった。
Therefore, it became clear that the upper limit of the fiber length of carbon fiber is 10 mm.

比較例3 この比較例3では、配合割合をNo.2〜4成形体と同様
とし、混合する手順を変えて比較用成形体を製造した。
すなわち、炭素短繊維をメタクリル樹脂系塗床材に混合
した後に分散材である8号硅砂を混合し、前記実施例と
同じ市販のハンドミキサーで混合して調整して比較用成
形体を作った。
Comparative Example 3 In Comparative Example 3, the compounding ratio was the same as that of the No. 2 to 4 molded bodies, and the mixing procedure was changed to manufacture the comparative molded body.
That is, short carbon fibers were mixed with a methacrylic resin-based flooring material, and then No. 8 silica sand, which was a dispersant, was mixed and mixed with the same commercially available hand mixer as in the above-mentioned Examples to prepare a comparative molded body. .

そして、この比較用成形体10個ずつについて実施例と
同様の物性を調べたところ、10個の各々が大幅に異なっ
たデータを示し、上記の混合物が均質になっていないこ
とが明らかとなった。
Then, when the physical properties similar to those of the examples were examined for each of the 10 comparative molded bodies, each of the 10 molded bodies showed significantly different data, and it became clear that the above mixture was not homogeneous. .

《発明の効果》 以上詳述したように、本発明によれば、次のような効
果を奏することができる。
<< Effects of the Invention >> As described in detail above, according to the present invention, the following effects can be achieved.

(1)炭素短繊維の作用により、薄塗りでも耐繰返し衝
撃荷重性に優れた繊維補強塗布材を提供することができ
る。
(1) Due to the action of short carbon fibers, it is possible to provide a fiber-reinforced coating material that is excellent in repeated impact load resistance even with thin coating.

(2)厚塗りであっても、発生熱量及び収縮量が小さい
ため、ひび割れが生じない。
(2) Even with thick coating, since the amount of heat generated and the amount of shrinkage are small, cracking does not occur.

(3)曲げ・圧縮強度、及び最大伸びが増加し、これに
より変形能が増大するのみならず、耐薬品性,耐久性も
著しく向上し、工場床,道路舗装、その他の一般の塗布
材として極めて好適である。
(3) Bending / compressive strength and maximum elongation are increased, which not only enhances deformability but also significantly improves chemical resistance and durability, making it suitable for factory floors, road pavements, and other general coating materials. Very suitable.

(4)施工性が良好で、かつ超速硬化性を有し、加えて
低温施工性も有り、床材等の塗布材として極めて優れて
いる。すなわち、炭素繊維と分散材としての硅砂とを混
合する際には、炭素繊維と硅砂とを均一に且つ容易に分
散混合することができ、これらの分散混合物を、樹脂に
モルタル若しくはコンクリートを混合してなる混合物、
又は樹脂の単独物のいずれかすなわち樹脂マトリックス
に更に第2段階として混合する際に、樹脂等に均一に分
散させることができる。従って、これらの二段階の混合
時にあっては、各混合操作の動力は極めて僅かで充分で
あり、且つ混合時間も少なくてすむ。
(4) It has excellent workability, has super-fast curing property, and has low-temperature workability, and is extremely excellent as a coating material such as a floor material. That is, when the carbon fibers and silica sand as the dispersant are mixed, the carbon fibers and silica sand can be uniformly and easily dispersed and mixed, and the dispersion mixture thereof is mixed with mortar or concrete in a resin. A mixture of
Alternatively, it can be uniformly dispersed in the resin or the like when further mixed with either the resin alone, that is, the resin matrix in the second step. Therefore, at the time of these two stages of mixing, the power of each mixing operation is extremely small and sufficient, and the mixing time is short.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 順一 大阪府大阪市中央区平野町4丁目1番2 号 大阪瓦斯株式会社内 (72)発明者 青山 幹 東京都清瀬市下清戸4丁目640番地 株 式会社大林組技術研究所内 (72)発明者 林 好正 東京都清瀬市下清戸4丁目640番地 株 式会社大林組技術研究所内 (72)発明者 小川 晴果 東京都清瀬市下清戸4丁目640番地 株 式会社大林組技術研究所内 (72)発明者 奥井 徹 大阪府大阪市中央区北浜東4番33号 株 式会社大林組本店内 (72)発明者 堤 和敏 東京都千代田区神田司町2丁目3番地 株式会社大林組東京本社内 (56)参考文献 特開 昭64−33037(JP,A) 特開 昭63−17245(JP,A) 特開 昭63−138098(JP,A) 特開 平1−192752(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junichi Fujita 4-1-2 Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture Osaka Gas Co., Ltd. (72) Inventor Miki Aoyama 4-640, Shimoseido, Kiyose-shi, Tokyo Incorporated company Obayashi Institute of Technology (72) Inventor Yoshimasa Hayashi, 4-640 Shimoseido, Kiyose-shi, Tokyo Stock company Obayashi Institute of Technology (72) Inventor, Haruka Ogawa 4-640, Shimoseido, Kiyose-shi, Tokyo Obayashi Technical Research Institute (72) Inventor Toru Okui 4-33 Kitahama East, Chuo-ku, Osaka City, Osaka Prefecture Obayashi Corporation Main Store (72) Inventor Kazutoshi Tsutsumi 2-3 Kandaji-cho, Chiyoda-ku, Tokyo Co., Ltd. Obayashi Tokyo Head Office (56) Reference JP 64-33037 (JP, A) JP 63-17245 (JP, A) JP 63-138098 (JP, A) JP Flat 1-192752 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粒径が0.3mm以下の分散材としての硅砂と
繊維長が10mm以下の炭素繊維とを分散混合したものを、
樹脂にモルタル若しくはコンクリートを混合してなる混
合物、又は樹脂単独物のいずれかに混合してなり、前記
炭素繊維の配合が、前記硅砂に対し1wt%以上で且つ前
記樹脂に対し10wt%以下であることを特徴とする繊維補
強塗布材。
1. A dispersion of silica sand as a dispersant having a particle size of 0.3 mm or less and carbon fibers having a fiber length of 10 mm or less,
A mixture of resin and mortar or concrete, or a resin alone, and the carbon fiber content is 1 wt% or more with respect to the silica sand and 10 wt% or less with respect to the resin. A fiber-reinforced coating material characterized in that
【請求項2】粒径が0.3mm以下の分散材としての硅砂と
繊維長10mm以下の炭素繊維とを、水を加えずに第1段階
として分散混合した後、この分散混合物を、樹脂にモル
タル若しくはコンクリートと混合してなる混合物、又は
樹脂単独物に第2段階として混合することを特徴とする
繊維補強塗布材の製造方法。
2. Silica sand as a dispersant having a particle size of 0.3 mm or less and carbon fibers having a fiber length of 10 mm or less are dispersed and mixed as a first step without adding water, and the dispersion mixture is then mixed with a mortar resin. Alternatively, a method for producing a fiber-reinforced coating material, which comprises mixing the mixture with concrete or a resin alone as a second step.
JP1095335A 1989-04-17 1989-04-17 Fiber-reinforced coating material and manufacturing method thereof Expired - Lifetime JP2693817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1095335A JP2693817B2 (en) 1989-04-17 1989-04-17 Fiber-reinforced coating material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1095335A JP2693817B2 (en) 1989-04-17 1989-04-17 Fiber-reinforced coating material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02275739A JPH02275739A (en) 1990-11-09
JP2693817B2 true JP2693817B2 (en) 1997-12-24

Family

ID=14134842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1095335A Expired - Lifetime JP2693817B2 (en) 1989-04-17 1989-04-17 Fiber-reinforced coating material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2693817B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0213767D0 (en) * 2002-06-17 2002-07-24 Mbt Holding Ag Composition
US7441600B2 (en) * 2003-05-09 2008-10-28 Halliburton Energy Services, Inc. Cement compositions with improved mechanical properties and methods of cementing in subterranean formations
US7285167B2 (en) * 2003-10-08 2007-10-23 Ogden Technologies, Inc. Fiber reinforced concrete/cement products and method of preparation
US7341627B2 (en) 2005-02-18 2008-03-11 Ogden Technologies, Inc. Fiber reinforced concrete products and method of preparation
US7396403B1 (en) 2006-02-17 2008-07-08 Ogden Technologies, Inc. Concrete reinforced with acrylic coated carbon fibers
JP5945109B2 (en) * 2011-10-19 2016-07-05 アイカ工業株式会社 Epoxy resin coating composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317245A (en) * 1986-07-07 1988-01-25 新日本製鐵株式会社 Manufacture of prestressed fiber reinforced structural member
JPS63138098A (en) * 1986-11-28 1988-06-10 株式会社 彌冨商会 Secondary lining structure of concrete segment inner surface
JPS6433037A (en) * 1987-04-13 1989-02-02 Onoda Cement Co Ltd Method for dispersing fiber for reinforcement
JPH01192752A (en) * 1988-01-27 1989-08-02 Nippon Shokubai Kagaku Kogyo Co Ltd Production of marble-like article having excellent decorating property

Also Published As

Publication number Publication date
JPH02275739A (en) 1990-11-09

Similar Documents

Publication Publication Date Title
US3645961A (en) Impact resistant concrete admixture
Ranjbar et al. Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites
Nematollahi et al. Matrix design of strain hardening fiber reinforced engineered geopolymer composite
US4902347A (en) Polyamide fibers, microsilica and Portland cement composites and method for production
JPS62297265A (en) Carbon fiber composite high strength refractories
CN106396548A (en) Impact-resistant and corrosion-proof cement-based composite material and preparation method thereof
EP0069586A2 (en) Polymer-modified cement mortars and concretes and processes for the production thereof
Feng et al. Mechanical properties of high ductility hybrid fibres reinforced magnesium phosphate cement-based composites
JP4709677B2 (en) Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
Hannant Fibre-reinforced concrete
Gödek et al. Development of flaw tolerant fiber reinforced cementitious composites with calcined kaolin
JP2693817B2 (en) Fiber-reinforced coating material and manufacturing method thereof
JP2011084458A (en) Cement composition
Oh et al. Influence of curing conditions on mechanical and microstructural properties of ultra-high-performance strain-hardening cementitious composites with strain capacity up to 17.3%
Kan et al. Effects of thickener on macro-and meso-mechanical properties of ECC
CN106478025A (en) A kind of high ductility microlith aggregate cement based composites
Li et al. Static and dynamic behavior of extruded sheets with short fibers
KR100656965B1 (en) Cement terazo composite materials using the high strength cement grout materials
Awan et al. Use of carbon nano-fibers in cementitious mortar
KR20120076130A (en) Manufacturing method for pva fiber reinforced cememt
KR900002297B1 (en) Plastering Materials
Safiuddin et al. Absorption and Strength Properties of Short Carbon Fiber Reinforced Mortar Composite. Buildings 2021, 11, 300
KR960004383B1 (en) Process for the preparation of composite material of cement
JPH0747537A (en) Production of hydraulic inorganic composition
JP2003327462A (en) Hydraulic kneaded molding