JP2691256B2 - Pump parallel operation control method - Google Patents

Pump parallel operation control method

Info

Publication number
JP2691256B2
JP2691256B2 JP3106845A JP10684591A JP2691256B2 JP 2691256 B2 JP2691256 B2 JP 2691256B2 JP 3106845 A JP3106845 A JP 3106845A JP 10684591 A JP10684591 A JP 10684591A JP 2691256 B2 JP2691256 B2 JP 2691256B2
Authority
JP
Japan
Prior art keywords
pump
generator
internal combustion
combustion engine
pumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3106845A
Other languages
Japanese (ja)
Other versions
JPH04312395A (en
Inventor
定和 山田
高明 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Toyota Motor East Japan Inc
Original Assignee
Takuma KK
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK, Kanto Auto Works Ltd filed Critical Takuma KK
Priority to JP3106845A priority Critical patent/JP2691256B2/en
Publication of JPH04312395A publication Critical patent/JPH04312395A/en
Application granted granted Critical
Publication of JP2691256B2 publication Critical patent/JP2691256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Multiple Motors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ポンプの並列運転制御
方法の改良に係り、複数台のポンプと内燃機関と発電機
とを有機的に連結することにより、複数台のポンプの回
転数をほぼ同速度に一斉に制御できるようにしたポンプ
の並列運転制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for controlling parallel operation of pumps, and by organically connecting a plurality of pumps, an internal combustion engine and a generator, the rotational speeds of the plurality of pumps can be controlled. The present invention relates to a parallel operation control method for pumps that can be controlled at substantially the same speed all at once.

【0002】[0002]

【従来の技術】大型の塗装設備や噴水設備等では、並列
運転をする複数台のポンプの等速制御が屡々必要とな
る。この様な場合、通常は図2に示す如く、インバータ
速度制御装置Aを用いてポンプの駆動用モータMへの入
力周波数Fを調整し、これによって各ポンプPの回転数
を一斉に所望の回転数に制御するようにしている。しか
し、図2の様なインバータ速度制御装置を使用するシス
テムでは、インバータ速度制御装置自体が高価なために
ポンプ設備費の大幅な低減が図れないと云う難点があ
る。また、電源Cには通常電力会社から供給される電力
が使用されるため、ポンプ設備のランニングコストが割
り高になると云う難点がある。更に、温水等が必要な場
合にはボイラー等を別途に設備する必要があり、設備費
が嵩んでくるという難点がある。
2. Description of the Related Art Large-scale painting equipment, fountain equipment and the like often require constant speed control of a plurality of pumps operating in parallel. In such a case, normally, as shown in FIG. 2, the input frequency F to the drive motor M of the pump is adjusted by using the inverter speed control device A, whereby the rotation speed of each pump P is simultaneously changed to a desired rotation speed. I try to control the number. However, in the system using the inverter speed control device as shown in FIG. 2, the inverter speed control device itself is expensive, so that the pump equipment cost cannot be significantly reduced. Further, since the power source C normally uses the electric power supplied from the electric power company, the running cost of the pump facility is relatively high. Further, when hot water or the like is required, it is necessary to separately install a boiler or the like, which causes a problem that the equipment cost increases.

【0003】[0003]

【発明が解決しようとする課題】本発明は、従前のイン
バータ速度制御装置を用いたポンプ並列運転制御方法に
於ける上述の如き問題、即ちインバータ速度制御装置
が高価なためにポンプ設備費の引き下げが困難なこと、
買電を動力源とするため、ランニングコストが割り高
になること等の問題を解決せんとするものであり、内燃
機関と交流発電機と複数台のポンプとを有機的に連結す
ることにより、安定したポンプの並列運転制御方法が出
来ると共に、ポンプ設備費やランニングコストの大幅な
削減を可能としたポンプの並列運転制御方法を提供する
ものである。
SUMMARY OF THE INVENTION The present invention has the above-mentioned problem in the conventional pump parallel operation control method using an inverter speed control device, that is, the cost of the pump equipment is reduced because the inverter speed control device is expensive. Is difficult,
Since power purchase is used as a power source, it is intended to solve problems such as running cost being relatively high.By organically connecting an internal combustion engine, an AC generator and a plurality of pumps, A stable parallel operation control method for pumps and a parallel operation control method for pumps capable of significantly reducing pump equipment costs and running costs are provided.

【0004】[0004]

【課題を解決するための手段】本発明は、内燃機関Eと
交流発電機Gと複数台のポンプPの中の一台とを同軸に
連結して、前記内燃機関Eにより交流発電機Gと共に、
複数の他のポンプPに夫々ポンプ駆動用モータMを直結
して、交流発電機Gの発生電力を各ポンプ駆動用モータ
Mへ給電し、前記内燃機関Eの回転数を変えて交流発電
機Gの回転子の回転数を変えることにより、発生電力の
周波数を変えて当該発生電力により駆動される複数台の
ポンプ駆動用モータMの回転数を所望の回転数に制御す
ことを発明の基本構成とするものである。
According to the present invention, an internal combustion engine E, an AC generator G and one of a plurality of pumps P are coaxially connected to each other so that the internal combustion engine E and the AC generator G together. ,
A pump driving motor M is directly connected to each of a plurality of other pumps P, power generated by an AC generator G is supplied to each pump driving motor M, and the rotational speed of the internal combustion engine E is changed to generate AC power.
By changing the rotation speed of the rotor of the machine G, the frequency of the generated power is changed to control the rotation speed of the plurality of pump driving motors M driven by the generated power to a desired rotation speed.
It is an basic configuration of the invention that that.

【0005】[0005]

【作用】内燃機関Eの作動により、一台のポンプPと交
流発電機Gとが所定の回転数で回転される。また、交流
発電機Gの発生電力は他の複数のポンプの各ポンプ駆動
用モータMへ供給され、これによって各ポンプ駆動用モ
ータMが交流発電機Gとほぼ同回転数で回転される。内
燃機関Eの回転数を変化させると、交流発電機Gの発生
電力の周波数が変わり、これによって各ポンプ駆動用モ
ータMの回転数が前記内燃機関Eの回転数と比例して変
化する。このようにして、内燃機関Eの回転数を調整す
ることにより、複数台のポンプPの回転数が一斉に同回
転数に制御される。また、内燃機関自体の排熱及び排ガ
ス内の熱は、冷却水1によって回収され、温水が得られ
る。
By the operation of the internal combustion engine E, one pump P and the AC generator G are rotated at a predetermined rotation speed. Further, the electric power generated by the AC generator G is supplied to the pump driving motors M of the other plurality of pumps, whereby each pump driving motor M is rotated at substantially the same speed as the AC generator G. When the rotation speed of the internal combustion engine E is changed, the frequency of the electric power generated by the AC generator G is changed, so that the rotation speed of each pump driving motor M is changed in proportion to the rotation speed of the internal combustion engine E. In this way, by adjusting the rotation speed of the internal combustion engine E, the rotation speeds of the plurality of pumps P are controlled to the same rotation speed all at once. The exhaust heat of the internal combustion engine itself and the heat in the exhaust gas are recovered by the cooling water 1 to obtain hot water.

【0006】[0006]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。図1は本発明を採用したポンプ設備の全体系統図
であり、図に於いてEは内燃機関、Gは三相交流発電
機、Mはポンプ駆動用発電機、Pはポンプ、Hは排ガス
熱交換器、Wは冷却水である。前記内燃機関Eには、所
謂シリンダジャケットEbを設けたディゼルエンジンが
使用されており、前記シリンダジャケットEb内へは冷
却水Wが流通されている。また、当該内燃機関Eは後述
する三相交流発電機Gと複数のポンプPの中の一台とに
同軸に連結されている。即ち、内燃機関Eの駆動軸Ea
は三相交流発電機Gの回転子軸Gaの一端へ直結され、
更に、当該回転子軸Gaの他端は一台のポンプPの駆動
軸Paへ直結されており、内燃機関Eにより三相交流発
電機Gと一台のポンプPが同速で回転駆動される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an overall system diagram of a pump facility adopting the present invention. In the figure, E is an internal combustion engine, G is a three-phase AC generator, M is a pump driving generator, P is a pump, and H is exhaust gas heat. The exchanger, W is cooling water. As the internal combustion engine E, a so-called cylinder jacket Eb is used as a diesel engine, and cooling water W is circulated in the cylinder jacket Eb. Further, the internal combustion engine E is coaxially connected to a three-phase AC generator G described later and one of the plurality of pumps P. That is, the drive shaft Ea of the internal combustion engine E
Is directly connected to one end of the rotor shaft Ga of the three-phase AC generator G,
Further, the other end of the rotor shaft Ga is directly connected to the drive shaft Pa of one pump P, and the three-phase AC generator G and one pump P are rotationally driven by the internal combustion engine E at the same speed. .

【0007】尚、本実施例に於いては、前記内燃機関E
として出力50〜200PS、回転数1000〜200
0RPMの可変速のディーゼルエンジンが使用されてお
り、その発生動力は一台のポンプPと三相交流発電機G
の回転駆動等に消費される。
In this embodiment, the internal combustion engine E
Output 50 ~ 200PS, rotation speed 1000 ~ 200
A 0 RPM variable speed diesel engine is used, and the generated power is one pump P and three-phase AC generator G.
It is consumed to drive the rotation of the.

【0008】前記内燃機関Eの排ガス1は排ガス熱交換
器H内へ排出されており、ここでシリンダジャケットE
b内を流通して来た冷却水Wと熱交換される。これによ
り、内燃機関本体及び排ガスからの熱回収が行われ、温
水が得られる。
The exhaust gas 1 of the internal combustion engine E is discharged into the exhaust gas heat exchanger H, where the cylinder jacket E
Heat is exchanged with the cooling water W flowing through the inside of b. As a result, heat is recovered from the internal combustion engine body and exhaust gas, and hot water is obtained.

【0009】前記三相交流発電機Gは、他の複数台のポ
ンプの各ポンプ駆動用モータMへ夫々電力を供給するも
のであり、本実施例では3台のモータMへ電力を供給し
得る容量を備えている。また、当該三相交流発電機Gの
発生電力の周波数は、内燃機関Eの回転数を変えること
により適宜の周波数に変化する。尚、本実施例では4極
の交流発電機が使用されており、内燃機関Eの回転数が
定格(1800RPM)の時には60Hzの三相交流
が、また内燃機関Eの回転数が1000RPMの場合に
は33Hzの三相交流電力が夫々発電される。また、当
該交流発電機Gの発生電力は界磁電流等を調整すること
により、一定電圧値に保持されることは勿論である。
The three-phase AC generator G supplies electric power to the respective pump drive motors M of the other plural pumps, and in the present embodiment, can supply electric power to the three motors M. It has a capacity. Further, the frequency of the electric power generated by the three-phase AC generator G changes to an appropriate frequency by changing the rotation speed of the internal combustion engine E. In the present embodiment, a four-pole AC generator is used. When the rotation speed of the internal combustion engine E is rated (1800 RPM), 60 Hz three-phase AC is generated, and when the rotation speed of the internal combustion engine E is 1000 RPM. Generates 33 Hz three-phase AC power. Further, it goes without saying that the power generated by the AC generator G is kept at a constant voltage value by adjusting the field current and the like.

【0010】前記各ポンプ駆動用電動機Mは、夫々ポン
プPの各駆動軸Paへ直結されており、本実施例ではポ
ンプ駆動用モータMとして、同容量の4極の三相誘導電
動機が3台使用されている。その結果、内燃機関Eの回
転数が1800RPMの時、発電機Gの発生電力の周波
数は60Hzとなり、各ポンフ駆動用モータMの回転数
は約1750RPM(滑りS≒0.3)程度となる。
Each of the pump driving electric motors M is directly connected to each driving shaft Pa of the pump P. In this embodiment, three pump driving motors M having four poles and three-phase induction motors of the same capacity are used. It is used. As a result, when the rotation speed of the internal combustion engine E is 1800 RPM, the frequency of the electric power generated by the generator G is 60 Hz, and the rotation speed of each pump driving motor M is about 1750 RPM (slip S≈0.3).

【0011】尚、本実施例では、ポンプ駆動用モータM
として三相誘導電動機を使用しているため、内燃機関E
より駆動される一台のポンプPと各ポンプ駆動用モータ
Mにより駆動される複数の他のポンプPとの間に若干の
回転数差が生ずるが、実用上特に問題となることは無
い。また、ポンプ駆動用モータMとして同期電動機を使
用した場合には、前記回転数差が零になることは勿論で
ある。
In this embodiment, the pump driving motor M is used.
As a three-phase induction motor is used as
Although there is a slight difference in the number of rotations between one pump P that is driven more and a plurality of other pumps P that are driven by the pump driving motors M, there is no particular problem in practical use. Further, when a synchronous motor is used as the pump driving motor M, it goes without saying that the rotational speed difference becomes zero.

【0012】前記ポンプPには同容量・同形式のポンプ
が使用されており、吸入ライン2からの水が所定の圧力
に加圧され、吐出ライン3を通して所定の個所へ供給さ
れて行く。尚、本実施例では、4台のポンプPから加圧
水を塗装ブースへ送ることにより所謂塗料雰塵遮蔽用の
水膜を形成しており、各ポンプPから夫々単独に吐出ラ
イン3を引き出すようにしているが、共通の吐出管(図
示省略)へ連結しても良いことは勿論である。また、本
実施例では各ポンプP及び各モータMの容量を夫々同一
としているが、ポンプ及びモータMの間に容量差があっ
ても良いことは勿論である。
As the pump P, a pump having the same capacity and the same type is used, and the water from the suction line 2 is pressurized to a predetermined pressure and supplied to a predetermined location through the discharge line 3. In this embodiment, the water film for so-called paint atmosphere shielding is formed by sending pressurized water from the four pumps P to the coating booth, and the discharge line 3 is independently drawn from each pump P. However, it goes without saying that they may be connected to a common discharge pipe (not shown). Further, in the present embodiment, the capacities of the pumps P and the motors M are the same, but it goes without saying that there may be a capacity difference between the pumps and the motors M.

【0013】次に、本発明によるポンプの並列運転制御
方法について説明をする。先ず、内燃機関Eを作動さ
せ、その回転数を所定の回転数(例えば1800RP
M)に調整する。前記内燃機関Eの作動により、必要な
場合には増速機や減速機等の変速機Sを介して発電機G
及び一台のポンプPが所定の回転数で回転駆動される。
発電機Gが駆動されると、その励磁電流の調整等により
所定周波数・所定電圧の交流電力が発電され、各ポンプ
駆動用モータMへ給電される。その結果、各ポンプ駆動
用モータMは発電機Gとほぼ等しい速度で回転され、こ
れによって他の複数のポンプPが発電機Gとほぼ同速度
で回転駆動される。
Next, a parallel operation control method for pumps according to the present invention will be described. First, the internal combustion engine E is operated and its rotation speed is set to a predetermined rotation speed (for example, 1800 RP).
Adjust to M). By the operation of the internal combustion engine E, a generator G is transmitted through a transmission S such as a speed increaser or a speed reducer when necessary.
And one pump P is rotationally driven at a predetermined rotation speed.
When the generator G is driven, AC power of a predetermined frequency and a predetermined voltage is generated by adjusting the exciting current and the like, and is supplied to each pump driving motor M. As a result, each pump driving motor M is rotated at a speed substantially equal to that of the generator G, whereby the other plurality of pumps P are rotationally driven at substantially the same speed as the generator G.

【0014】また、内燃機関Eの回転数を調整してその
回転速度を低下(例えば1000PPMにまで低下)さ
せると、発電機Gの発生電力の周波数が低下(例えば6
0Hzから33Hzに低下)し、これによりポンプ駆動
用モータMの回転数が低下(例えば約1750RPMか
ら970RPM)する。この様にして、複数のポンプP
の回転数が内燃機関Eの回転数を調整することにより、
一斉に発電機Gの回転数とほぼ同回転数に制御されるこ
とになる。
When the rotational speed of the internal combustion engine E is adjusted to reduce its rotational speed (for example, to 1000 PPM), the frequency of the electric power generated by the generator G decreases (for example, 6).
0 Hz to 33 Hz), which causes the rotation speed of the pump drive motor M to decrease (for example, from about 1750 RPM to 970 RPM). In this way, a plurality of pumps P
By adjusting the rotation speed of the internal combustion engine E,
The rotation speed of the generator G is controlled to be almost the same as that of the generator G all at once.

【0015】また、内燃機関E本体及び燃焼排ガス1の
排熱は冷却水Wによって回収され、温水が得られる。
The exhaust heat of the internal combustion engine E and the combustion exhaust gas 1 is recovered by the cooling water W to obtain hot water.

【0016】[0016]

【発明の効果】本発明に於いては、内燃機関Eの回転数
を調整することにより、高価なインバータ速度制御装置
を使用することなしに、複数台のポンプの回転数を一斉
に所望の回転数に制御することができ、従前のインバー
タ速度制御装置を使用するポンプ設備に比較して設備費
の引き下げが可能となる。また、内燃機関Eの発生動力
をポンプ設備の駆動エネルギーとしているため、従前の
所謂買電をエネルギー源とする場合に比較してポンプ設
備のランニングコストを引き下げることが出来ると共
に、排熱の回収によりエネルギーの利用率が大幅に向上
する。更に、交流発電機Gの容量は、一台のポンプPの
容量分を差し引きした容量でよく、発電機容量の削減が
可能となる。本発明は上述の通り、優れた実用的効用を
奏するものである。
According to the present invention, by adjusting the rotation speed of the internal combustion engine E, the rotation speeds of a plurality of pumps can be simultaneously changed to a desired rotation speed without using an expensive inverter speed control device. Therefore, the equipment cost can be reduced as compared with the conventional pump equipment using the inverter speed control device. Further, since the power generated by the internal combustion engine E is used as the drive energy of the pump equipment, the running cost of the pump equipment can be reduced and the exhaust heat can be recovered as compared with the case where the so-called power purchase is used as the energy source. The energy utilization rate is greatly improved. Further, the capacity of the AC generator G may be the capacity obtained by subtracting the capacity of one pump P, and the generator capacity can be reduced. As described above, the present invention has excellent practical utility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るポンプの並列運転制御方法に採用
したポンプ設備の全体系統図である。
FIG. 1 is an overall system diagram of pump equipment used in a parallel operation control method for pumps according to the present invention.

【図2】従前のポンプの並列運転制御方法を示す全体系
統図である。
FIG. 2 is an overall system diagram showing a conventional parallel operation control method for pumps.

【符号の説明】[Explanation of symbols]

Eは内燃機関、Eaは駆動軸、Ebはシリンダジャケッ
ト、Hは排ガス熱交換器、Gは交流発電機、Gaは回転
子軸、Mはポンプ駆動用モータ、Maはモータ駆動軸、
Pはポンプ、Paはポンプ駆動軸、Wは冷却水、1は排
ガス、2は吸水ライン、3は吐出ライン。
E is an internal combustion engine, Ea is a drive shaft, Eb is a cylinder jacket, H is an exhaust gas heat exchanger, G is an AC generator, Ga is a rotor shaft, M is a pump drive motor, Ma is a motor drive shaft,
P is a pump, Pa is a pump drive shaft, W is cooling water, 1 is exhaust gas, 2 is a water absorption line, and 3 is a discharge line.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内燃機関(E)と交流発電機(G)と複
数台のポンプ(P)の中の一台とを同軸に連結して、前
記内燃機関(E)により交流発電機(G)と一台のポン
プ(P)とを同軸回転駆動すると共に、複数の他のポン
プ(P)に夫々ポンプ駆動用モータ(M)を直結して交
流発電機(G)の発生電力を各ポンプ駆動用モータ
(M)へ給電し、前記内燃機関(E)の回転数を変えて
交流発電機(G)の回転子の回転数を変えることによ
り、発生電力の周波数を変えて当該発生電力により駆動
される複数台のポンプ駆動用モータ(M)の回転数を
望の回転数に制御することを特徴とするポンプの並列運
転制御方法
1. An internal combustion engine (E), an alternating current generator (G) and one of a plurality of pumps (P) are coaxially connected to each other, and the internal combustion engine (E) is used to generate an alternating current generator (G). ) And one pump (P) are coaxially rotationally driven, and the pump driving motors (M) are directly connected to the plurality of other pumps (P) to generate electric power of the AC generator (G). By supplying power to the drive motor (M) and changing the rotation speed of the internal combustion engine (E)
By changing the rotation speed of the rotor of the AC generator (G)
Ri, driven by the generated electric power by changing the frequency of the power generated
A plurality of Tokoro the rotational speed of the pump driving motor (M) to be
Parallel operation control method for pumps characterized by controlling to a desired rotation speed
【請求項2】 内燃機関(E)にシリンダジャケット
(Eb)を設けると共に内燃機関(E)からの排気ガス
(1)を排ガス熱交換器(H)へ導入し、前記シリンダ
ジャケット(Eb)を流通せしめた冷却水(W)を排ガ
ス熱交換器(H)内に於いて排気ガス(1)により加熱
することを特徴とする請求項1に記載のポンプの並列運
転制御方法
2. The internal combustion engine (E) is provided with a cylinder jacket (Eb), and the exhaust gas (1) from the internal combustion engine (E) is introduced into the exhaust gas heat exchanger (H), and the cylinder jacket (Eb) is opened. The parallel operation control method for pumps according to claim 1, wherein the circulating cooling water (W) is heated by the exhaust gas (1) in the exhaust gas heat exchanger (H).
【請求項3】 変速機(S)を介設して交流発電機
(G)とポンプ(P)を駆動すると共に、ポンプ駆動用
モータ(M)を交流発電機(G)と同極数の誘導電動機
とした請求項(1)又は請求項(2)に記載のポンプの
並列運転制御方法
3. An AC generator (G) and a pump (P) are driven through a transmission (S), and a pump driving motor (M) has the same number of poles as the AC generator (G). A parallel operation control method for a pump according to claim (1) or (2), which is an induction motor.
JP3106845A 1991-04-10 1991-04-10 Pump parallel operation control method Expired - Fee Related JP2691256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3106845A JP2691256B2 (en) 1991-04-10 1991-04-10 Pump parallel operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3106845A JP2691256B2 (en) 1991-04-10 1991-04-10 Pump parallel operation control method

Publications (2)

Publication Number Publication Date
JPH04312395A JPH04312395A (en) 1992-11-04
JP2691256B2 true JP2691256B2 (en) 1997-12-17

Family

ID=14443993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3106845A Expired - Fee Related JP2691256B2 (en) 1991-04-10 1991-04-10 Pump parallel operation control method

Country Status (1)

Country Link
JP (1) JP2691256B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410632B (en) * 2006-03-30 2013-02-13 油研工业株式会社 Hydraulic supply device and method for controlling hydraulic actuator device using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232115A (en) * 1994-02-22 1995-09-05 Fujikawa Kikai Kk Fountain system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE109232T1 (en) * 1990-12-14 1994-08-15 Voegele Ag J FINISHER.
JP3048101U (en) * 1997-01-20 1998-05-06 伊藤 幸男 Wall structure for buildings with pictures and patterns

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410632B (en) * 2006-03-30 2013-02-13 油研工业株式会社 Hydraulic supply device and method for controlling hydraulic actuator device using the same

Also Published As

Publication number Publication date
JPH04312395A (en) 1992-11-04

Similar Documents

Publication Publication Date Title
CN1076140C (en) Electrical system for turbin/alternator on common shaft
CN101031719B (en) Transmission chain for wind power equipment and method for controlling rotation speed or torque
US6724099B2 (en) Method and apparatus for starting up a turboset
CN107565871A (en) Control for generator is arranged
RU2564401C2 (en) Power supply for airborne vehicle
WO1990004883A1 (en) Gas turbine generator
CN108054967A (en) Diesel generating system and its control method based on brushless dual-feed motor
JP2691256B2 (en) Pump parallel operation control method
JP2013118763A (en) Power generation system and operation control method
CN106549621A (en) A kind of inductive motor control system and its control method of electronic pole-changing
CN206323324U (en) A kind of inductive motor control system of electronic pole-changing
RU2213409C2 (en) Method for controlling off-line induction generator
JPH06341325A (en) Exhaust gas energy recovering device
CN108233794B (en) Quick stopping method for load conversion inverter driving electro-magnetic synchronous motor
JP3680329B2 (en) Method for controlling power generator
CN206650442U (en) A kind of off-network activation system of ship Shaft-Generator
EA010412B1 (en) The three-phase ac speed adjustable motor
Henderson Variable speed electric drives-characteristics and applications
CN106877400A (en) The off-network activation system and method for a kind of ship Shaft-Generator
JP2005218225A (en) Method and apparatus for driving motor
JPH11187698A (en) Generation system
JPH10210794A (en) Engine generator
JP2004505586A (en) Energy conversion system and operating method thereof
JPH0538054A (en) Phase modifier
JPH0426388A (en) Power source apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees