JP2691063B2 - Solid electrolyte - Google Patents

Solid electrolyte

Info

Publication number
JP2691063B2
JP2691063B2 JP2232502A JP23250290A JP2691063B2 JP 2691063 B2 JP2691063 B2 JP 2691063B2 JP 2232502 A JP2232502 A JP 2232502A JP 23250290 A JP23250290 A JP 23250290A JP 2691063 B2 JP2691063 B2 JP 2691063B2
Authority
JP
Japan
Prior art keywords
zro
mgo
stabilized
solid electrolyte
vol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2232502A
Other languages
Japanese (ja)
Other versions
JPH04114953A (en
Inventor
洋 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2232502A priority Critical patent/JP2691063B2/en
Publication of JPH04114953A publication Critical patent/JPH04114953A/en
Application granted granted Critical
Publication of JP2691063B2 publication Critical patent/JP2691063B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解質に関し、更に詳しくはセラミック
熱電変換の固体電解質に適用されるMgO安定化β″−Al2
O3及びNa/S又はNa/カルコゲン二次電池の固体電解質に
適用されるMgO安定β″−Al2O3に関する。
TECHNICAL FIELD The present invention relates to a solid electrolyte, and more specifically to MgO-stabilized β ″ -Al 2 applied to a solid electrolyte for ceramic thermoelectric conversion.
The present invention relates to MgO stable β ″ -Al 2 O 3 applied to solid electrolytes of O 3 and Na / S or Na / chalcogen secondary batteries.

〔従来の技術〕[Conventional technology]

β″−Al2O3は焼結時に異常粒子成長を生じやすい材
料であり、異常粒子成長した粒子は機械的強度の低下の
みならず固体電解質の寿命を短かくする可能性がある。
このため異常粒子成長を抑制するために、Li−Al2O
3(ゼータアルミナ)を用いるゼータプロセス(Li2O安
定化β″−Al2O3)や高温領域を極限に狭くした炉の中
で試料を移動し極部的に焼結を行うゾーンシンタリング
法がある。この他に、β″−Al2O3の破壊靱性値を高め
る目的でMgO安定化β″−Al2O3にY2O3部分安定化ZrO2
15vol%添加した場合に粒子成長が抑制されるいう報告
{YIN SHENG,PARTHO SARKAR,PATRICK SNICOLSON等の“J
OURNAL OF MATERIALS SCIBNCE23,(1988)982−986}が
ある。
β ″ -Al 2 O 3 is a material that tends to cause abnormal particle growth during sintering, and particles having abnormal particle growth may not only reduce the mechanical strength but also shorten the life of the solid electrolyte.
Therefore, in order to suppress abnormal grain growth, Li-Al 2 O
Zone sintering where the sample is moved and sintered locally in a zeta process (Li 2 O stabilized β ″ -Al 2 O 3 ) using 3 (zeta alumina) or in a furnace where the high temperature region is extremely narrow. and 3,902,734. in addition, the -Al 2 O 3 "MgO stabilized beta for the purpose of increasing the fracture toughness of the -Al 2 O 3" β a Y 2 O 3 partially stabilized ZrO 2
Report that grain growth is suppressed when 15 vol% is added {YIN SHENG, PARTHO SARKAR, PATRICK SNICOLSON, etc.
OURNAL OF MATERIALS SCIBNCE23, (1988) 982-986}.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

β″−Al2O3は異常粒子成長を起しやすい材料であ
る。β″−Al2O3にZrO2を添加すると異常粒子が抑制さ
れるが、種々の問題がある。すなわち、β″−Al2O3
高温で不安定であるため、安定化剤としてLi2OやMgOが
用いられており、またZrO2は低温での相変態を防ぐため
にY2O3やMgOなどが添加されている。ところが、Li2O安
定化β″−Al2O3に対してY2O3,MgOで安定化した、ある
いは部分安定化したZrO2を添加すると、焼成過程でZrO2
の安定化剤が拡散する。{J.Am.Ceram.Soc.68〔7〕C
−176(1985)に報告がある。}また、MgO安定化β″−
Al2O3に対してY2O3で安定したZrO2を添加しても同様の
現象が予想される。更に、また安定化されていない(熱
安定性のない)ZrO2は相変態に伴う体積変化により焼結
体中に残留応力の発生を引き起こしたりマイクロクラッ
クを発生させ機械的性質を劣化させる。
β "-Al 2 O 3 is prone to abnormal grain growth material .Beta" abnormalities particles upon addition of ZrO 2 is suppressed -Al 2 O 3, there are various problems. That is, since β ″ -Al 2 O 3 is unstable at high temperatures, Li 2 O and MgO are used as stabilizers, and ZrO 2 is Y 2 O 3 and Y 2 O 3 to prevent phase transformation at low temperatures. MgO, etc. are added.However, when Y 2 O 3 , MgO-stabilized or partially stabilized ZrO 2 is added to Li 2 O-stabilized β ″ -Al 2 O 3 , it becomes ZrO 2
Stabilizers diffuse. {J.Am.Ceram.Soc.68 [7] C
-176 (1985). } Also, MgO stabilization β ″ −
A similar phenomenon is expected when ZrO 2 stable to Y 2 O 3 is added to Al 2 O 3 . Furthermore, unstabilized (no thermal stability) ZrO 2 causes the generation of residual stress or microcracks in the sintered body due to the volume change accompanying the phase transformation and deteriorates the mechanical properties.

本発明は上記技術水準に鑑み、異常粒子の成長も見ら
れず、かつイオン伝導度も充分高いMgO安定化β″−Al2
O3よりなる固体電解質を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention shows no growth of abnormal particles, and has a sufficiently high ionic conductivity, MgO-stabilized β ″ -Al 2
It aims to provide a solid electrolyte composed of O 3 .

〔課題を解決するための手段〕[Means for solving the problem]

本発明はNa1+XMgXAl11-XO17(但し、0.55≦x≦0.8
5)なる組成のMgO安定化β″−Al2O3に、10〜20mol%の
MgOで安定化したZrO2を1.0〜20vol%含有させてなるこ
とを特徴とする固体電解質である。
The present invention is Na 1 + X Mg X Al 11-X O 17 (provided that 0.55 ≦ x ≦ 0.8
5) MgO-stabilized β ″ -Al 2 O 3 with a composition of 10 to 20 mol%
It is a solid electrolyte characterized by containing 1.0 to 20 vol% of ZrO 2 stabilized with MgO.

すなわち、本発明はβ″−Al2O3とZrO2の安定化剤を
一致させ、ZrO2からのMgOの拡散を抑制あるいは、MgOが
拡散してもβ″−Al2O3に固溶させ他の構成材料に影響
を及ぼさないようにしたものである。
That is, in the present invention, β ″ -Al 2 O 3 and ZrO 2 are made to be the same stabilizer to suppress the diffusion of MgO from ZrO 2 , or even if MgO diffuses, it forms a solid solution in β ″ -Al 2 O 3 . In this way, it does not affect other constituent materials.

MgO安定化ZrO2のMgOの含有量は、10mol%以下では未
安定なZrO2が残留し、未安定なZrO2は結晶相変化のた
め、焼結体に亀裂が入り易く、また水分に対しても弱く
なる。更に、MgO安定化ZrO2のMgO含有量が20mol%以上
になるとMgAl2O4が生成し、このMgAl2O4はNaイオンを通
さない(絶縁物)ため固体電解質の性能を低下させる。
When the MgO content of MgO-stabilized ZrO 2 is 10 mol% or less, the unstable ZrO 2 remains, and the unstable ZrO 2 is likely to crack in the sintered body due to the change of the crystal phase, and to the moisture. But it gets weaker. Furthermore, when the MgO content of MgO-stabilized ZrO 2 becomes 20 mol% or more, MgAl 2 O 4 is produced, and this MgAl 2 O 4 does not pass Na ions (insulator), so that the performance of the solid electrolyte is deteriorated.

MgO安定化ZrO2の含有量が1.0vol%以下では、粒子成
長抑制に効果がなく、20vol%以上ではイオン伝導特性
を低下させる。Landouer{The Blectrical Resistance
of Binary Matallic Mixtures J.Apple,Phya 23:779(1
952)}によると、25vol%ZrO2を添加した場合、抵抗は
無添加試料に比較して約1.6倍の値となるとしている。
(20vol%添加の場合では約1.4倍の抵抗となる) またMgO安定化ZrO2の組成範囲をNa1+XMgXAl11-XO
17(0.55≦x≦0.85)としたのは、Mg成分が少ない場合
にいはイオン伝導性の低いβ型(β−Al2O3)が生成
し、逆にMg成分が多い場合には絶縁性のMgAl2O4が生成
するからである。
When the content of MgO-stabilized ZrO 2 is 1.0 vol% or less, there is no effect on the particle growth suppression, and when it is 20 vol% or more, the ionic conductivity is deteriorated. Landouer {The Blectrical Resistance
of Binary Matallic Mixtures J. Apple, Phya 23: 779 (1
952)}, the resistance when 25 vol% ZrO 2 is added is about 1.6 times that of the non-added sample.
(When adding 20 vol%, the resistance is about 1.4 times higher.) In addition, the composition range of MgO-stabilized ZrO 2 is Na 1 + X Mg X Al 11-X O
17 (0.55 ≤ x ≤ 0.85) means that β-type (β-Al 2 O 3 ) with low ionic conductivity is generated when the Mg component is small, and conversely, it is insulating when the Mg component is large. This is because MgAl 2 O 4 having a sex is generated.

〔作用〕[Action]

β″−Al2O3焼成時に異常粒子成長を抑制するためにZ
rO2成分を添加した。ところが、ZrO2は高温で相変態を
起すため、安定化剤を加える必要がある。同様にβ″−
Al2O3も高温での安定性を保つため安定化剤が必要であ
る。β″−Al2O3、ZrO2の安定化剤はそれぞれ、Li,Mgな
どの酸化物及びY,Ca,Yb,Mg等の酸化物があるが、高温で
の拡散を抑制するあるいは拡散しても液相を作るなどの
影響を及ぼさないために、両者の安定化剤を共にMgの酸
化物とした。
β ″ -Al 2 O 3 Z to suppress abnormal grain growth during firing
The rO 2 component was added. However, since ZrO 2 undergoes a phase transformation at high temperature, it is necessary to add a stabilizer. Similarly β ″-
Al 2 O 3 also needs a stabilizer to maintain stability at high temperatures. β ″ -Al 2 O 3 and ZrO 2 stabilizers include oxides such as Li and Mg and oxides such as Y, Ca, Yb and Mg, which suppress or diffuse diffusion at high temperature. Even so, it does not affect the formation of a liquid phase, so that both stabilizers were made of Mg oxide.

〔実施例〕〔Example〕

実施に際して用いた原料粉末は、イソプロピルアルコ
ールを用いた水ヒ処理により、MgO安定化ZrO2について
は0.8μm以下の粒子、さらにMgO安定化β″−Al2O3
ついては1.2μm以下の粒子を分級し用いた。
The raw material powder used in the implementation was treated with isopropyl alcohol to remove particles of 0.8 μm or less for MgO-stabilized ZrO 2 and 1.2 μm or less for MgO-stabilized β ″ -Al 2 O 3. Classified and used.

第1表に示す組成にそれぞれ配合した後、溶媒として
イソプロピルアルコールを用いてボールミルで20時間混
合した。混合後エバボレーターを用いて溶媒を乾燥させ
た。乾燥させた粉体は最終的に1.5ton/cm2の静水圧をか
けてペレット状に成形した。成形体はMgO安定化β″−A
l2O3粉体で包み1600℃(昇降温速度300℃/h)で10分間
保持し焼結した。
After blending each of the compositions shown in Table 1, isopropyl alcohol was used as a solvent and mixed in a ball mill for 20 hours. After mixing, the solvent was dried using an evaporator. The dried powder was finally formed into pellets by applying a hydrostatic pressure of 1.5 ton / cm 2 . Molded body is MgO stabilized β ″ -A
It was wrapped with l 2 O 3 powder and held at 1600 ° C (temperature rising / falling rate 300 ° C / h) for 10 minutes for sintering.

得られた焼結体は表面の結晶相をX線回折により調べ
た。特にZrO2の結晶相に注目し、単斜晶系、正方晶系あ
るいは立方晶体に属するか調査した。ところがX線回折
法ではMgO安定化ZrO2を1.0%未満添加した試料のZrO2
結晶相については、量が少ないため充分な情報が得られ
なかった。結晶晶を調査した試料を切断後、研磨、さら
に熱エッチングを行いその後光学顕微鏡を用いて微構造
を調べた。特に異常粒子成長した粒子の存在について調
査を行った。これらの調査の結果を第1表に併せて示
す。
The crystal phase on the surface of the obtained sintered body was examined by X-ray diffraction. In particular, we focused on the crystal phase of ZrO 2 and investigated whether it belongs to the monoclinic system, tetragonal system or cubic system. However, in the X-ray diffraction method, sufficient information could not be obtained for the crystal phase of ZrO 2 in the sample containing less than 1.0% of MgO-stabilized ZrO 2 due to its small amount. After cutting the sample whose crystal crystal was investigated, polishing, further thermal etching was performed, and then the microstructure was examined using an optical microscope. In particular, the presence of abnormally grown particles was investigated. The results of these investigations are also shown in Table 1.

その結果、Na1+XMgXAl11-XO17においてx<0.55では
β−Al2O3が生成し、x>0.85ではMgAl2O4が生成した。
またZrO2中のMgOが10mol%未満では未安定のZrO2が生成
し、20mol%を越えるとMgAl2O5の生成が見られた。ま
た、MgO安定化ZrO2の量が1.0vol%未満では、異常粒子
の成長が観察された。
As a result, in Na 1 + X Mg X Al 11-X O 17 , β-Al 2 O 3 was formed when x <0.55, and MgAl 2 O 4 was formed when x> 0.85.
The MgO in the ZrO 2 is less than 10 mol% generated by ZrO 2 unstabilized, it exceeds 20 mol% the generation of MgAl 2 O 5 was observed. Further, when the amount of MgO-stabilized ZrO 2 was less than 1.0 vol%, abnormal particle growth was observed.

〔発明の効果〕 本発明により、異常粒子成長が見られず、かつ単斜晶
のZrO2を含まずまたイオン伝導度も充分高い特性をもつ
固体電解質が提供される。
EFFECTS OF THE INVENTION The present invention provides a solid electrolyte in which abnormal particle growth is not observed, monoclinic ZrO 2 is not contained, and ionic conductivity is sufficiently high.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Na1+XMgXAl11-XO17(但し、0.55≦x≦0.8
5)なる組成のMgO安定化β″−Al2O3に、10〜20mol%の
MgOで安定化したZrO2を1.0〜20vol%含有させてなるこ
とを特徴とする固体電解質。
1. Na 1 + X Mg X Al 11-X O 17 (however, 0.55 ≦ x ≦ 0.8
5) MgO-stabilized β ″ -Al 2 O 3 with a composition of 10 to 20 mol%
A solid electrolyte comprising 1.0 to 20 vol% of ZrO 2 stabilized with MgO.
JP2232502A 1990-09-04 1990-09-04 Solid electrolyte Expired - Lifetime JP2691063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232502A JP2691063B2 (en) 1990-09-04 1990-09-04 Solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232502A JP2691063B2 (en) 1990-09-04 1990-09-04 Solid electrolyte

Publications (2)

Publication Number Publication Date
JPH04114953A JPH04114953A (en) 1992-04-15
JP2691063B2 true JP2691063B2 (en) 1997-12-17

Family

ID=16940335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232502A Expired - Lifetime JP2691063B2 (en) 1990-09-04 1990-09-04 Solid electrolyte

Country Status (1)

Country Link
JP (1) JP2691063B2 (en)

Also Published As

Publication number Publication date
JPH04114953A (en) 1992-04-15

Similar Documents

Publication Publication Date Title
Im et al. Al-incorporation into Li7La3Zr2O12 solid electrolyte keeping stabilized cubic phase for all-solid-state Li batteries
US20190348710A1 (en) Solid-state electrolytes and batteries made therefrom, and methods of making solid-state electrolytes
JP2019102460A (en) Lithium ion conductive composite material containing at least one polymer and lithium ion conductive particle, and manufacturing method of lithium ion conductive body from composite material
Tang et al. Effects of B2O3 on microstructure and ionic conductivity of Li6. 5La3Zr1. 5Nb0. 5O12 solid electrolyte
KR20170134231A (en) Oxide electrolyte sintered body and method for producing the same
EP3778488A1 (en) Ceramic powder, sintered body and battery
JP2008305804A (en) High ion-conductivity solid electrolyte material and its manufacturing method, sintered body, and solid electrolyte fuel cell
Singh et al. Recent advances in NASICON-type oxide electrolytes for solid-state sodium-ion rechargeable batteries
Enkhbayar et al. Study of codoping effects of Ta5+ and Ga3+ on garnet Li7La3Zr2O12
Singh et al. Fast ionic conduction in tetravalent metal pyrophosphate-alkali carbonate composites: New potential electrolytes for intermediate-temperature fuel cells
EP4036060A1 (en) Composite oxide powder, method for producing composite oxide powder, method for producing solid electrolyte object, and method for producing lithium ion secondary battery
Lee et al. Influence of MnO2 and Ta2O5/YSZ addition on properties of Na+-β/β"-alumina solid electrolytes prepared by a synthesizing-cum-sintering process
JP2691063B2 (en) Solid electrolyte
CN111056839A (en) Boron compound doped lithium lanthanum zirconium oxygen solid electrolyte and preparation method thereof
Singh et al. Effect of partial substitution of Sn4+ by M4+ (M= Si, Ti, and Ce) on sinterability and ionic conductivity of SnP2O7
EP0110712B1 (en) Sodium beta alumina electrolyte elements and their manufacture
TW200417517A (en) Manufacturing method to improve oxygen ion conductivity
Zhang et al. Synergetic effect of NiO and SiO2 on the sintering and properties of 8 mol% yttria-stabilized zirconia electrolytes
JP7365947B2 (en) Method for manufacturing garnet-type solid electrolyte sintered body for all-solid-state lithium-ion battery and method for manufacturing all-solid-state lithium-ion battery
Xing et al. Doped superior garnet electrolyte toward all-solid-state Li metal batteries
JP7047485B2 (en) Sulfide solid electrolyte
JP3077054B2 (en) Heat-resistant conductive ceramics
JP4443806B2 (en) Zirconia sintered body excellent in durability and pulverizer / disperser member using the same
Nikonov et al. Microhardness and fracture toughness of ZrO 2–Sc 2 O 3 solid electrolyte, doped with rare-earth and transition metals
WO2014178453A1 (en) Beta-alumina for sodium secondary battery solid electrolyte and manufacturing method therefor