JP2688209B2 - Pressure swing adsorption device - Google Patents

Pressure swing adsorption device

Info

Publication number
JP2688209B2
JP2688209B2 JP63100883A JP10088388A JP2688209B2 JP 2688209 B2 JP2688209 B2 JP 2688209B2 JP 63100883 A JP63100883 A JP 63100883A JP 10088388 A JP10088388 A JP 10088388A JP 2688209 B2 JP2688209 B2 JP 2688209B2
Authority
JP
Japan
Prior art keywords
adsorption
gas
temperature
adsorbent
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63100883A
Other languages
Japanese (ja)
Other versions
JPH01270922A (en
Inventor
紀久雄 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP63100883A priority Critical patent/JP2688209B2/en
Publication of JPH01270922A publication Critical patent/JPH01270922A/en
Application granted granted Critical
Publication of JP2688209B2 publication Critical patent/JP2688209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧力スイング式吸着装置に関し、もつと詳
しくは、たとえば空気中のN2,O2を分離してN2,O2を発生
するために、また空気からH2O,CO2を除去して空気を精
製するために、さらにまたH2精製およびCO回収などのガ
ス分離のために、実施することができる圧力スイング式
吸着装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure swing adsorption device, and more particularly, for separating N 2 , O 2 in air to generate N 2 , O 2. The present invention also relates to a pressure swing adsorption device that can be used for purifying air by removing H 2 O, CO 2 from air, and also for gas separation such as H 2 purification and CO recovery.

従来の技術 典型的な先行技術は、第4図に示されている。2つの
吸着塔1,2内には吸着剤3,4が充填されており、一方の吸
着塔1で吸着を行うために原料ガスを圧縮機5から開閉
弁V1aを経て、吸着入口6から圧送される。吸着された
精製ガスは、吸着出口7から逆止弁V2aを経て管路8か
ら供給される。この管路8の精製ガスの一部は、再生ガ
スとして逆止弁V2bを経て脱着工程を行うべき吸着塔2
に導かれ、開閉弁V1bからパージガスとして排出され
る。このとき開閉弁V3a,V3bは、閉じられている。
Prior Art A typical prior art is shown in FIG. The two adsorption towers 1 and 2 are filled with adsorbents 3 and 4, and in order to perform adsorption in one of the adsorption towers 1, the raw material gas is pressure-fed from the compressor 5 through the on-off valve V1a and the adsorption inlet 6. To be done. The purified gas thus adsorbed is supplied from the adsorption outlet 7 through the check valve V2a and the conduit 8. A part of the purified gas in this pipeline 8 is used as a regeneration gas through the check valve V2b to perform the desorption process on the adsorption tower 2
And is discharged as purge gas from the on-off valve V1b. At this time, the open / close valves V3a and V3b are closed.

吸着塔1において吸着工程が完了し、吸着塔2におい
て脱着工程が完了すると、開閉弁V1a,V1bが閉じられ
て、代わりに開閉弁V3a,V3bが開かれ、逆閉弁V4a,V4bを
経てガスが流れ、吸着塔1で脱着が行なわれ、吸着塔2
で吸着工程が行なわれる。
When the adsorption process is completed in the adsorption tower 1 and the desorption process is completed in the adsorption tower 2, the on-off valves V1a, V1b are closed, the on-off valves V3a, V3b are opened instead, and the gas is passed through the check valves V4a, V4b. Flow, and desorption is performed in the adsorption tower 1 and the adsorption tower 2
The adsorption step is carried out.

このような構成では、たとえば吸着工程を行つている
吸着塔1において、吸着剤が吸着熱を発生し、この吸着
剤および精製ガスの温度が上昇する。脱着工程を行つて
いる吸着塔2では、吸着剤4は脱着熱を吸収し、吸着剤
4およびパージガスの温度が低下する。吸着塔1,2にお
いて吸着工程と脱着工程とを交互に繰返すことによつ
て、吸着工程で精製ガス温度を上昇させてエネルギが取
去られることになるので、吸着剤の温度が低下してゆ
く。脱着工程では吸着剤の温度は高い方が好ましいにも
拘わらず、吸着剤の温度が低下することによつて脱着工
程での脱着効率が悪くなり、したがつてその分、多量の
吸着剤を充填するか、または再生ガス流量を増加させる
必要が生じる。
In such a configuration, for example, in the adsorption tower 1 performing the adsorption step, the adsorbent generates heat of adsorption, and the temperatures of the adsorbent and the purified gas rise. In the adsorption tower 2 performing the desorption process, the adsorbent 4 absorbs the heat of desorption, and the temperatures of the adsorbent 4 and the purge gas are lowered. By repeating the adsorption process and the desorption process in the adsorption towers 1 and 2 alternately, the temperature of the adsorbent decreases as the purified gas temperature rises and energy is removed in the adsorption process. . Although it is preferable that the temperature of the adsorbent is higher in the desorption process, the desorption efficiency in the desorption process deteriorates due to the decrease in the temperature of the adsorbent, and accordingly, a large amount of the adsorbent is filled accordingly. Or the regeneration gas flow rate needs to be increased.

小形の圧力スイング式吸着装置では、吸着剤は外部か
らの入熱によつて温度低下が緩和されるので、上述の問
題点はそれほど重要ではないけれども、容量の大きな圧
力スイング式吸着装置では、その吸着塔の径が大きくな
り、外部から入熱が期待できなくなり、上述の問題の解
決は重要である。
In a small-sized pressure swing adsorption device, since the temperature drop of the adsorbent is mitigated by heat input from the outside, the above-mentioned problems are not so important, but in a pressure swing adsorption device with a large capacity, Since the diameter of the adsorption tower becomes large and heat input cannot be expected from the outside, it is important to solve the above problems.

或る先行技術では、脱着工程を行つている吸着塔2に
供給する再生ガスを、電気ヒータで加熱している。この
ような先行技術では、電気ヒータのためのエネルギを必
要とし、不経済である。
In a certain prior art, the regeneration gas supplied to the adsorption tower 2 undergoing the desorption process is heated by an electric heater. Such prior art requires energy for the electric heater and is uneconomical.

他の先行技術(たとえば特開昭57−99316)では、圧
縮機5で圧縮されて昇温された原料ガスと、再生ガスと
を熱交換して、再生ガスを加温している。このような先
行技術では、圧縮機5からの原料ガスの温度と、再生ガ
スの温度との差が小さいので、大きな熱交換器を必要と
する。
In another prior art (for example, Japanese Laid-Open Patent Publication No. 57-99316), the raw gas compressed by the compressor 5 and heated to heat the regenerated gas to heat the regenerated gas. In such a prior art, since the difference between the temperature of the raw material gas from the compressor 5 and the temperature of the regenerated gas is small, a large heat exchanger is required.

さらに他の先行技術(たとえば特開昭55−61915)で
は、吸着剤3,4に、熱容量の大きい蓄熱剤を混合し、あ
るいは吸着剤3,4の吸着時における下流側の部分3a,4a側
に蓄熱剤を充填する。この蓄熱剤によつて、吸着工程で
の吸着熱を蓄熱し、脱着工程での温度低下を緩和する。
このような先行技術では、吸着塔が大きくなるという問
題がある。またこの先行技術では、蓄熱剤による効果が
少ない。
In still another prior art (for example, JP-A-55-61915), the adsorbents 3 and 4 are mixed with a heat storage agent having a large heat capacity, or the adsorbents 3 and 4 are adsorbed on the downstream side 3a and 4a side. Fill with heat storage agent. With this heat storage agent, the heat of adsorption in the adsorption step is stored, and the temperature drop in the desorption step is alleviated.
In such a prior art, there is a problem that the adsorption tower becomes large. Further, in this prior art, the effect of the heat storage agent is small.

さらに他の先行技術(特開昭48−59082、特開昭57−2
4615、特開昭58−193718など)では、吸着塔1,2内に熱
交換器を組込み、吸着剤と原料ガスなどとの熱交換を行
なつて吸着剤の温度の低下を防ぐ。このような先行技術
では構造が複雑になり、実用化が困難である。
Still other prior arts (JP-A-48-59082, JP-A-57-2)
4615, JP-A-58-193718, etc.), a heat exchanger is incorporated in the adsorption towers 1 and 2 to exchange heat between the adsorbent and the raw material gas to prevent the temperature of the adsorbent from decreasing. Such a prior art has a complicated structure and is difficult to put into practical use.

本件発明者は、圧力スイング式吸着装置についてさら
に次のように究明した。第5図は、吸着工程を行つてい
る吸着塔1における吸着ガス量の吸着剤におけるガスの
流れ方向の分布を示す。ガス吸着は、吸着塔1内の吸着
剤3においてそのガスの流れ方向に沿つて均一に行なわ
れるのではなく、吸着入口6において飽和吸着ガス量と
なり、吸着部W1において大半のガスが吸着され、吸着下
流部W2では、ほとんど吸着作用は行われない。
The present inventor further clarified the pressure swing adsorption device as follows. FIG. 5 shows the distribution of the amount of adsorbed gas in the adsorbent in the adsorbent in the adsorbent in the adsorption column 1 in the advancing direction of the gas. The gas adsorption is not performed uniformly in the adsorbent 3 in the adsorption tower 1 along the flow direction of the gas, but becomes a saturated adsorption gas amount at the adsorption inlet 6, and most of the gas is adsorbed at the adsorption unit W1, In the adsorption downstream portion W2, almost no adsorption action is performed.

したがつて吸着塔1における吸脱着熱の分布は第6図
に示されるようになる。吸着部W1では吸着による発熱が
大きく、また脱着による温度低下が著しい。したがつて
吸着塔1に関して吸着工程と脱着工程を複数回繰返す
と、吸着工程における温度分布は第7図のラインl1で示
されるようになり、脱着工程では、その温度分布がライ
ンl2で示されるようになる。こうして吸着部W1付近で
は、吸着入口6に供給される原料ガスの温度よりも低い
温度分布となる。
Therefore, the distribution of heat of adsorption / desorption in the adsorption tower 1 is as shown in FIG. At the adsorption part W1, the heat generated by adsorption is large, and the temperature drop due to desorption is significant. Therefore, when the adsorption step and the desorption step are repeated a plurality of times for the adsorption tower 1, the temperature distribution in the adsorption step becomes as shown by the line l1 in FIG. 7, and in the desorption step, the temperature distribution is shown by the line l2. Like Thus, in the vicinity of the adsorption section W1, the temperature distribution becomes lower than the temperature of the raw material gas supplied to the adsorption inlet 6.

したがつてこのような問題点を解決するために、前述
の先行技術に関して述べたように電気ヒータを用いて再
生ガスを加熱して脱着を行おうとすれば、第8図に示さ
れように、常温再生ガスのラインl2を温度T1だけ加熱す
ることによつてラインl3で示すように加熱された再生ガ
スによる吸着剤の温度分布が生じる。ラインl4は吸着工
程における吸着剤の温度分布を示す。吸着部W1と吸着下
流部W2との高さの割合は、たとえばW1/W2=1/4である。
Therefore, in order to solve such a problem, if the regeneration gas is heated and desorbed by using the electric heater as described in the above-mentioned prior art, as shown in FIG. By heating the room temperature regeneration gas line 12 by the temperature T1, the temperature distribution of the adsorbent due to the heated regeneration gas is generated as shown by the line l3. Line 14 shows the temperature distribution of the adsorbent in the adsorption step. The height ratio between the adsorption portion W1 and the adsorption downstream portion W2 is, for example, W1 / W2 = 1/4.

発明が解決しようとする課題 再生ガスを電気ヒータで加熱して脱着工程を行う場
合、再生ガスの熱エネルギの大半は、吸着下流部W2にお
いて吸着剤の昇温に消費されてしまい、利用効率が悪
く、吸着部W1における吸着剤の温度を上昇するために
は、多量の熱エネルギを必要とする。
When carrying out the desorption process by heating the regeneration gas with an electric heater, most of the thermal energy of the regeneration gas is consumed for raising the temperature of the adsorbent in the adsorption downstream portion W2, and the utilization efficiency is reduced. Unfortunately, a large amount of heat energy is required to raise the temperature of the adsorbent in the adsorption section W1.

しかもまたこの加熱された再生ガスによつて吸着下流
部W2の吸着剤の温度が上昇することによつて吸着工程に
おける吸着ガスの平衡分圧が高くなる。したがつて精製
精度が悪くなる。
Moreover, since the temperature of the adsorbent in the adsorption downstream portion W2 rises due to the heated regeneration gas, the equilibrium partial pressure of the adsorption gas in the adsorption step increases. Therefore, the precision of the purification becomes poor.

本発明の目的は、脱着効率を向上し、省エネルギ化お
よび小形化を図ることができるようにした圧力スイング
式吸着装置を提供することである。
An object of the present invention is to provide a pressure swing type adsorption device capable of improving desorption efficiency, energy saving and downsizing.

課題を解決するための手段 本発明は、ガス成分を選択的に除去する吸着剤が充填
された複数の吸着塔を、交互に加圧吸着工程と、減圧脱
着工程とに反復繰返す圧力スイング式吸着装置におい
て、 吸着塔の脱着時に、精製ガスの一部を、サーマルセパ
レータに導き、サーマルセパレータからの低温ガスに外
熱を吸収させて吸着塔の吸着時の出口から送入し、サー
マルセパレータから高温ガスを吸着塔の途中位置に送入
することを特徴とする圧力スイング式吸着装置である。
Means for Solving the Problems The present invention is a pressure swing adsorption in which a plurality of adsorption columns filled with an adsorbent for selectively removing gas components are repeatedly repeated alternately in a pressure adsorption step and a decompression desorption step. In the equipment, when desorbing the adsorption tower, a part of the purified gas is introduced to the thermal separator, and the low temperature gas from the thermal separator absorbs external heat and is sent from the adsorption tower outlet at the time of adsorption, and the high temperature from the thermal separator. The pressure swing adsorption device is characterized in that the gas is fed into an intermediate position of the adsorption tower.

作 用 本発明に従えば、脱着時に、精製ガスの一部をサーマ
ルセパレータに導き、精製ガスの保有する圧力エネルギ
によつて低温ガスと高温ガスとに分離し、低温ガスを外
熱、たとえば大気によつて加熱し、吸着時の出口側から
送入するとともに、高温ガスを吸着剤のガス流れ方向途
中位置から送入して、吸着入口寄りの吸着剤を加熱す
る。これによつて吸着入口寄りの吸着剤の温度低下を抑
制して脱着でき、脱着効率を向上することができる。ま
た吸着出口寄りの吸着剤の温度がむやみに上昇すること
を抑制し、吸着工程における吸着ガスの分圧を低くする
ことができる。さらに精製ガスの保有する圧力エネルギ
を有効に利用できる。これによつて小形の装置で、エネ
ルギの使用を少なくして精製ガスの精製精度の向上が期
待できる。
Operation According to the present invention, at the time of desorption, a part of the purified gas is guided to the thermal separator and separated into a low temperature gas and a high temperature gas by the pressure energy of the purified gas, and the low temperature gas is heated by external heat such as atmospheric air. To heat the adsorbent near the adsorption inlet by feeding the high temperature gas from an intermediate position in the gas flow direction of the adsorbent while heating the adsorbent from the outlet side during adsorption. As a result, the temperature of the adsorbent near the adsorption inlet can be suppressed from being desorbed and the desorption efficiency can be improved. Further, it is possible to suppress the temperature of the adsorbent near the adsorption outlet from unnecessarily rising, and to reduce the partial pressure of the adsorbed gas in the adsorption step. Further, the pressure energy possessed by the purified gas can be effectively used. As a result, in a small-sized device, it is expected that the energy consumption will be reduced and the refinement accuracy of the refined gas will be improved.

実施例 第1図は、本発明の一実施例の全体の系統図である。
2つの吸着塔11,12内には、たとえば活性アルミナなど
の吸着剤13,14が充填されている。原料ガスは圧縮機15
において圧縮され、電磁開閉弁V1aを経て吸着工程を行
うべき吸着塔11の吸着入口16に圧送される。吸着が完了
した精製ガスは、吸着出口17から逆止弁V2aを経て管路
8に排出される。この管路8の精製ガスの一部は、脱着
工程を行うべき吸着塔12へ管路19を介して再生ガスとし
て導かれる。管路19を経て再生ガスは、サーマルセパレ
ータ20に導かれる。サーマルセパレータ20で再生ガス
は、高温ガスと低温ガスとに分けられ、この高温ガスは
管路21から逆止弁V5bを経て、ノズル22から吸着塔12の
中間位置に供給される。吸着塔12からのガスは吸着塔12
の吸着入口23から排出され、電磁開閉弁V1bを経て管路2
4からパージガスとして排出される。サーマルセパレー
タ20からの低温ガスは、管路25から外熱吸収器として働
く熱交換器26を経て、管路27から逆止弁V2bを経て吸着
塔12の吸着出口28から吸着塔12に供給される。こうして
吸着塔11において吸着工程が行なわれ、吸着塔12におい
て脱着工程が行われているとき、電磁開閉弁V3a,V3bは
閉じられたままであり、逆閉弁V4a,V4b,V5aにはガスが
流れない状態になつている。
Embodiment FIG. 1 is an overall system diagram of an embodiment of the present invention.
The two adsorption towers 11 and 12 are filled with adsorbents 13 and 14, such as activated alumina. Compressed material gas 15
In the adsorption tower 16 of the adsorption tower 11 in which the adsorption step is to be carried out, through the electromagnetic on-off valve V1a. The purified gas that has been adsorbed is discharged from the adsorption outlet 17 to the pipe 8 through the check valve V2a. A part of the purified gas in the pipe 8 is introduced as a regenerated gas into the adsorption tower 12 in which the desorption process is to be performed, via the pipe 19. The regeneration gas is guided to the thermal separator 20 via the pipe 19. The regenerated gas is divided into a high temperature gas and a low temperature gas by the thermal separator 20, and this high temperature gas is supplied from the pipe 21 through the check valve V5b to the intermediate position of the adsorption tower 12 from the nozzle 22. The gas from the adsorption tower 12 is the adsorption tower 12
It is discharged from the adsorption inlet 23 of the
It is discharged from 4 as purge gas. The low-temperature gas from the thermal separator 20 is supplied to the adsorption tower 12 from the adsorption outlet 28 of the adsorption tower 12 via the pipe 25, the heat exchanger 26 acting as an external heat absorber, and the conduit 27 via the check valve V2b. It Thus, when the adsorption process is performed in the adsorption tower 11 and the desorption process is performed in the adsorption tower 12, the electromagnetic opening / closing valves V3a, V3b remain closed, and the gas flows through the check valves V4a, V4b, V5a. There is no state.

逆止弁V2aは第2図(1)に再び示されており、この
具体的な構成は、第2図(2)のように電磁開閉弁29と
逆閉弁30との組合わせによつて実現される。残余の逆止
弁V2b,v4a,v4b,v5a,v5bもまた同様な構成を有する。
The check valve V2a is shown again in FIG. 2 (1), and its specific configuration is based on the combination of the electromagnetic on-off valve 29 and the check valve 30 as shown in FIG. 2 (2). Will be realized. The remaining check valves V2b, v4a, v4b, v5a, v5b also have a similar configuration.

サーマルセパレータ20は、細長いいわゆるボルテツク
スチユーブなどの管路内に加圧されたガスを送入し、ガ
スの保有する圧力エネルギでガスを旋回させて、その管
路内の中央部のガスが断熱膨張によつて低温ガスとな
り、周辺部のガスが断熱圧縮によつて高温ガスとなる。
こうして中温度の加圧されたガスを低温ガスと高温ガス
とに分離して供給することができる。低温ガスは、前述
のように熱交換器26において外熱を吸収し、さらに、管
路25,27は外熱吸収のために熱伝導率の良好な材料、た
とえば金属などから成り、外気露出している。サーマル
セパレータ20からの高温ガスを導く管路21は、放熱を防
ぐために、保温材が被覆された構成を有する。
The thermal separator 20 feeds a pressurized gas into a pipeline such as an elongated so-called vortex tube, swirls the gas with pressure energy held by the gas, and heats the gas in the central portion of the pipeline. The expansion causes a low-temperature gas, and the peripheral gas becomes a high-temperature gas by adiabatic compression.
In this way, the medium temperature pressurized gas can be separated and supplied into the low temperature gas and the high temperature gas. The low-temperature gas absorbs external heat in the heat exchanger 26 as described above, and the pipelines 25 and 27 are made of a material having a good thermal conductivity for absorbing external heat, such as metal, and are exposed to the external air. ing. The conduit 21 that guides the high-temperature gas from the thermal separator 20 has a structure covered with a heat insulating material in order to prevent heat radiation.

吸着塔11における吸着工程が完了し、かつ吸着塔12に
おける脱着工程が完了すると、電磁開閉弁V1a,V1bが閉
じられ、これに代わって電磁開閉弁V3a,V3bが開かれて
圧縮機15からの原料ガスは電磁開閉弁V3aから吸着塔12
を経て精製され、この精製されたガスは逆止弁V4aを経
て管路8に排出される。精製ガスの一部は再生ガスとし
てサーマルセパレータ20に導かれ、その高温ガスは管路
21から逆止弁V5aを経て吸着塔11のノズル31に供給され
る。また低温ガスは、管路25から熱交換器26および管路
27を経て、さらに逆止弁V4bを経て吸着塔11に供給され
る。パージガスは、電磁開閉弁V3bから管路24を経て排
出される。このようにして吸着塔11,12の加圧吸着工程
と減圧脱着工程とが反復して繰返される。
When the adsorption process in the adsorption tower 11 is completed, and the desorption process in the adsorption tower 12 is completed, the electromagnetic on-off valves V1a, V1b are closed, and instead of this, the electromagnetic on-off valves V3a, V3b are opened and the compressor 15 The raw material gas is transferred from the solenoid valve V3a to the adsorption tower 12
After being purified, the purified gas is discharged to the conduit 8 via the check valve V4a. A part of the purified gas is guided to the thermal separator 20 as a regenerated gas, and the high-temperature gas is piped.
It is supplied from 21 through the check valve V5a to the nozzle 31 of the adsorption tower 11. Further, the low temperature gas is supplied from the pipe 25 to the heat exchanger 26 and the pipe.
After passing through 27, it is further supplied to the adsorption tower 11 through the check valve V4b. The purge gas is discharged from the electromagnetic opening / closing valve V3b through the pipe line 24. In this way, the pressure adsorption process and the decompression desorption process of the adsorption towers 11 and 12 are repeated.

熱交換器26は外熱を効率よく吸熱させるために、蛇管
あるいはフイン付きチユーブなどによつて実現されても
よい。
The heat exchanger 26 may be realized by a flexible pipe, a tube with fins or the like in order to efficiently absorb the external heat.

第3図は、吸着工程および脱着工程が反復して繰返さ
れる吸着塔11,12における吸着剤13,14の高さ方向、すな
わちガスの流れ方向の温度分布を示す。ラインl4は、吸
着工程における吸着剤13,14の温度分布を示し、ラインl
5は、脱着工程における吸着剤13,14の温度分布を示す。
吸着剤13,14のガスの流れ方向の途中位置、すなわち第
3図の参照符32で示される位置には、再生ガスが供給さ
れるノズル22,31が前述のように配置される。
FIG. 3 shows the temperature distribution in the height direction of the adsorbents 13 and 14 in the adsorption towers 11 and 12 in which the adsorption step and the desorption step are repeated repeatedly, that is, the gas flow direction. Line l4 shows the temperature distribution of the adsorbents 13 and 14 in the adsorption process, and the line l4
5 shows the temperature distribution of the adsorbents 13 and 14 in the desorption process.
The nozzles 22 and 31 to which the regeneration gas is supplied are arranged as described above at the midpoints in the gas flow direction of the adsorbents 13 and 14, that is, at the positions indicated by reference numeral 32 in FIG.

したがつてサーマルセパレータ20からの低温ガスに、
熱交換器26によつて外熱を吸収させ、たとえば常温程度
の再生ガスを脱着工程となつている吸着塔12の吸着出口
28から供給する。前の吸着工程において、吸着部W11に
おける吸着によつて昇温された被精製ガスによつて、吸
着下流部W12の吸着剤は昇温されており、前記再生ガス
は、吸着下流部W12の吸着剤によつて昇温される。吸着
下流部W12の吸着剤は、あたかも蓄熱層として用いられ
る。吸着部W11では、吸着下流部W12で昇温された再生ガ
スと、ノズル22から送入される高温の再生ガスとが混合
され、この混合ガスによつて吸着部W11における脱着が
行なわれ、この混合ガスが有している熱エネルギによつ
て吸着部W11における温度低下を防止し、脱着効率の低
下を抑制することができる。吸着部W11と吸着下流部W12
との各高さを同一の参照符で示すと、W11/W12=1/2程度
である。
Therefore, in the low temperature gas from the thermal separator 20,
External heat is absorbed by the heat exchanger 26, and the adsorption outlet of the adsorption tower 12 in which the regeneration gas at, for example, room temperature is in the desorption process
Supplied from 28. In the previous adsorption step, the adsorbent in the adsorption downstream portion W12 is heated by the gas to be purified that has been heated by the adsorption in the adsorption portion W11, and the regenerated gas is adsorbed in the adsorption downstream portion W12. The temperature is raised by the agent. The adsorbent in the adsorption downstream portion W12 is used as if it were a heat storage layer. In the adsorption unit W11, the regeneration gas heated in the adsorption downstream unit W12 and the high temperature regeneration gas fed from the nozzle 22 are mixed, and desorption in the adsorption unit W11 is performed by this mixed gas. The heat energy of the mixed gas can prevent the temperature of the adsorption unit W11 from lowering and suppress the reduction of desorption efficiency. Adsorption part W11 and adsorption downstream part W12
When the heights of and are indicated by the same reference symbols, W11 / W12 = about 1/2.

このような実施例によれば、脱着工程を行う吸着塔12
において、吸着部W11の温度の低下が少なく、したがつ
て脱着効率が向上され、再生ガスを常温のままで使って
加熱を行わない場合に比べて、再生ガスの必要量を60〜
80%程度にまで削減することができる。あるいは吸着剤
14の充填量を90%程度にまで削減することができる。こ
の結果精製ガスの原料ガスに対する収率は5〜15%程度
上昇することができる。
According to such an embodiment, the adsorption tower 12 performing the desorption process
In the above, the temperature of the adsorbing section W11 does not decrease so much, the desorption efficiency is improved, and the required amount of the regenerated gas is 60 to 60% compared to the case where the regenerated gas is used at room temperature without heating.
It can be reduced to around 80%. Or adsorbent
The filling amount of 14 can be reduced to about 90%. As a result, the yield of the purified gas with respect to the raw material gas can be increased by about 5 to 15%.

またサーマルセパレータを用いることによつて、再生
ガスを加熱するために必要なエネルギを、すべて省くこ
とができる。これによつて吸着下流部W12の吸着剤の温
度を低減することができ、この結果、吸着工程における
吸着ガスの平衡分圧は低くなり、精製ガスの精製精度を
向上することが可能になる。
Further, by using the thermal separator, it is possible to save all the energy required to heat the regeneration gas. As a result, the temperature of the adsorbent in the adsorption downstream portion W12 can be reduced, and as a result, the equilibrium partial pressure of the adsorbed gas in the adsorption step is lowered, and the purification accuracy of the purified gas can be improved.

本件発明者の実験結果を示す。第1図に示される実施
例において精製ガスの精製能力10m3/Hであつて、脱H2O,
脱CO2を行う空気精製用の圧力スイング式吸着装置にお
いて、吸着剤13,14として活性アルミナを用い、吸着圧
力は6.5kg/cm2Gであり、吸着塔11,12の吸着工程および
脱着工程のサイクルタイムを20分とするとき、常温精製
ガスを吸着塔11,12の吸着出口17,28に送入する。参考の
ための方式(第4図に示される先行技術に従う方式)
と、第1図に示される本発明に従う方式との各実験結果
を第1表に示す。
The experimental result of the present inventors is shown. In the embodiment shown in FIG. 1, the purification capacity of the purified gas was 10 m 3 / H, and the removal of H 2 O,
In a pressure swing adsorption device for air purification that performs CO 2 removal, activated alumina is used as the adsorbents 13 and 14, the adsorption pressure is 6.5 kg / cm 2 G, and the adsorption and desorption steps of the adsorption towers 11 and 12 are performed. When the cycle time is set to 20 minutes, the room temperature purified gas is sent to the adsorption outlets 17 and 28 of the adsorption towers 11 and 12. Reference method (method according to the prior art shown in FIG. 4)
Table 1 shows the results of each experiment with the method according to the present invention shown in FIG.

このことによつて脱着効率が本発明によれば向上され
ることが分かる。
This shows that the desorption efficiency is improved according to the present invention.

発明の効果 以上のように本発明によれば、脱着時に再生ガスとし
て精製ガスの一部を用い、これをサーマルセパレータに
よつて高温ガスと低温ガスとに分け、低温ガスを吸着時
の出口から、高温ガスを吸着剤のガス流れ方向途中位置
から送入するので、脱着効率を向上し、省エネルギ化を
図り、しかも吸着効率のよい小形の圧力スイング式の吸
着装置が実現できる。
As described above, according to the present invention, a part of the purified gas is used as the regenerated gas during desorption, and is divided into the high temperature gas and the low temperature gas by the thermal separator, and the low temperature gas is discharged from the outlet at the time of adsorption. Since the high temperature gas is fed from a midway position in the gas flow direction of the adsorbent, it is possible to improve the desorption efficiency, save energy, and realize a small-sized pressure swing adsorption device with good adsorption efficiency.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の全体の系統図、第2図は逆
止弁V2aの具体的な構成を示す図、第3図は吸着塔11,12
に充填されている吸着剤13,14の高さ方向すなわちガス
の流れ方向に沿う温度分布を示す図、第4図は先行技術
の系統図、第5図は吸着塔1,2の吸着ガス量を示す図、
第6図は吸着塔1,2の吸着熱および脱着熱を示す図、第
7図は常温程度の再生ガスを用いて脱着を行うときの状
態を示す吸着剤3,4の温度分布を示す図、第8図は再生
ガスを加熱したときにおける吸着剤の温度分布を示す図
である。 11,12……吸着塔、13,14……吸着剤、15……圧縮機、20
……サーマルセパレータ、22,31……ノズル、26……熱
交換器、V1a,V1b,V3a,V3b……電磁開閉弁、V2a,V2b,V4
a,V4b,V5a,V5b……逆止弁
FIG. 1 is an overall system diagram of an embodiment of the present invention, FIG. 2 is a diagram showing a specific configuration of a check valve V2a, and FIG. 3 is an adsorption tower 11,12.
Which shows the temperature distribution along the height direction of the adsorbents 13 and 14 filled in the column, that is, the gas flow direction, FIG. 4 is a system diagram of the prior art, and FIG. 5 is the amount of adsorbed gas in the adsorption towers 1 and 2. Showing the figure,
FIG. 6 is a diagram showing the heat of adsorption and desorption of the adsorption towers 1 and 2, and FIG. 7 is a diagram showing the temperature distribution of the adsorbents 3 and 4 showing the state when desorption is performed using a regenerated gas at about room temperature. FIG. 8 is a diagram showing the temperature distribution of the adsorbent when the regeneration gas is heated. 11,12 …… Adsorption tower, 13,14 …… Adsorbent, 15 …… Compressor, 20
...... Thermal separator, 22,31 ...... Nozzle, 26 ...... Heat exchanger, V1a, V1b, V3a, V3b …… Solenoid on-off valve, V2a, V2b, V4
a, V4b, V5a, V5b ... Check valve

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガス成分を選択的に除去する吸着剤が充填
された複数の吸着塔を、交互に加圧吸着工程と、減圧脱
着工程とに反復繰返す圧力スイング式吸着装置におい
て、 吸着塔の脱着時に、精製ガスの一部を、サーマルセパレ
ータに導き、サーマルセパレータからの低温ガスに外熱
を吸収させて吸着塔の吸着時の出口から送入し、サーマ
ルセパレータからの高温ガスを吸着塔の途中位置に送入
することを特徴とする圧力スイング式吸着装置。
1. A pressure swing adsorption apparatus in which a plurality of adsorption towers filled with an adsorbent for selectively removing gas components are repeatedly repeated alternately in a pressure adsorption step and a decompression desorption step. At the time of desorption, a part of the purified gas is introduced to the thermal separator, the low temperature gas from the thermal separator absorbs external heat and is sent from the adsorption tower outlet at the time of adsorption, and the high temperature gas from the thermal separator is transferred to the adsorption tower. A pressure swing type adsorption device characterized in that it is fed to an intermediate position.
JP63100883A 1988-04-22 1988-04-22 Pressure swing adsorption device Expired - Fee Related JP2688209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63100883A JP2688209B2 (en) 1988-04-22 1988-04-22 Pressure swing adsorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63100883A JP2688209B2 (en) 1988-04-22 1988-04-22 Pressure swing adsorption device

Publications (2)

Publication Number Publication Date
JPH01270922A JPH01270922A (en) 1989-10-30
JP2688209B2 true JP2688209B2 (en) 1997-12-08

Family

ID=14285728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63100883A Expired - Fee Related JP2688209B2 (en) 1988-04-22 1988-04-22 Pressure swing adsorption device

Country Status (1)

Country Link
JP (1) JP2688209B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222522A (en) * 1985-03-29 1986-10-03 Hitachi Ltd Method for regenerating adsorbing tower of air separation apparatus

Also Published As

Publication number Publication date
JPH01270922A (en) 1989-10-30

Similar Documents

Publication Publication Date Title
EP0847792A2 (en) Process and device for purifying gas using pressure swing adsorption
KR930010571B1 (en) Purifying combustible gases containing carbon monoxide
EP0736319B1 (en) Pressure swing adsorption heat recovery
JP2003175311A (en) Thermal swing adsorption method and adsorption unit and apparatus therefor
JP5427412B2 (en) Ozone gas concentration method and apparatus
JP2688209B2 (en) Pressure swing adsorption device
EP0765681A2 (en) Pressure swing adsorption air prepurifier
EP0925820A2 (en) Pressure swing adsorption air prepurifier
CN108557787A (en) A kind of recycling crude argon method of purification again
CN210303031U (en) Multi-bed temperature swing adsorption gas purification system
JPS60153919A (en) Adsorption and regeneration of adsorbing tower
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
JP2005103335A (en) Thermal desorption type oxygen concentrating apparatus
JPH01270923A (en) Thermal swing-type adsorption apparatus
JP3300896B2 (en) How to remove trace oxygen
JPH10263352A (en) Pressure variation adsorption tower and adsorption separation device and pressure variation adsorption separation
WO2023095683A1 (en) Carbon dioxide recovering system and carbon dioxide recovering method
JPH07251023A (en) Method for separating gas and apparatus therefor
JPH08301603A (en) Oxygen concentrating apparatus
JPH06254395A (en) Method for regenerating adsorbent in pressure swing adsorption for recovering co2
JP2616900B2 (en) How to make the temperature distribution of the adsorbent uniform
JP3405565B2 (en) Gas separation method
JP2002079031A (en) Pressure swing adsorbing apparatus for manufacturing highly concentrated oxygen
JPH0429712A (en) Gas concentrating apparatus
JPH1015331A (en) Heat regeneration type pressure swing adsorbing apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees