JP2688182B2 - Novel differentiation-inducing aid used for cancer differentiation therapy and chemoprevention method - Google Patents

Novel differentiation-inducing aid used for cancer differentiation therapy and chemoprevention method

Info

Publication number
JP2688182B2
JP2688182B2 JP5021595A JP5021595A JP2688182B2 JP 2688182 B2 JP2688182 B2 JP 2688182B2 JP 5021595 A JP5021595 A JP 5021595A JP 5021595 A JP5021595 A JP 5021595A JP 2688182 B2 JP2688182 B2 JP 2688182B2
Authority
JP
Japan
Prior art keywords
differentiation
cancer
cells
inducing
therapy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5021595A
Other languages
Japanese (ja)
Other versions
JPH08245376A (en
Inventor
郭盛助
李昭宏
Original Assignee
郭 盛助
李 昭宏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郭 盛助, 李 昭宏 filed Critical 郭 盛助
Priority to JP5021595A priority Critical patent/JP2688182B2/en
Publication of JPH08245376A publication Critical patent/JPH08245376A/en
Application granted granted Critical
Publication of JP2688182B2 publication Critical patent/JP2688182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、癌の分化療法と化学予
防法に関わり、特に、癌細胞の異常なメチル化酵素に作
用する新規分化誘導補助剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cancer differentiation therapy and chemoprevention method, and more particularly to a novel differentiation-inducing auxiliary agent that acts on an abnormal methylation enzyme of cancer cells.

【0002】[0002]

【従来の技術】ここで使われる略語は: AdoHcy: s−アデノシルホモシステイン AdoMet: s−アデノシルメチオニン Met: メチオニンアデノシルトランスフェラーゼ MT: メチルトランスフェラーゼ NBT: ニトロブルーテトラゾリウム RA: レチノイン酸 SAHH: s−アデノシルホモシステインヒドラーゼ である。 [癌の分化療法]ターゲット癌細胞に分化誘導剤の受容
体が多数存在し、それに応答すれば、効果的かつ副作用
の少ない分化療法は理想的な癌の治療法と思われる。例
えば、毛様細胞性白血病に対するインターフェロン(参
考文献1)及び急性前骨髄球性白血病に対するレチノイ
ン酸(参考文献2,3)の治療効果は認められている。
しかし、分化療法はまだ開発の段階にあり、その応用も
限られているので、解決すべきな問題が多い。インター
フェロンの効く癌が少なく、レチノイン酸療法の軽減期
が短いということは、現状である。その上に、分化療法
の機構は完全に解明されていない。 [メチル基転移酵素が細胞の分裂と分化に担う役割]細
胞分化機能に関わる遺伝子の発現は分化過程にとって肝
要である。幹細胞に於いて、これらの遺伝子は抑制され
ている状態にある。DNA分子のメチル化は、いくらか
の遺伝子抑制機構に重要な役割を演じると報告されつつ
ある(参考文献4−6)。このメチル化は、DNA分子
のシトシン残基に作用し、5mCに変換するので、DN
A分子にあるCG配列のみを変化を起こすことになる。
この変化から回復するには、細胞を二回分裂させ、DN
A複製による除メチル化が必要であるため、遺伝子の発
現に影響を受けることになる。
Abbreviations used here are: AdoHcy: s-adenosylhomocysteine AdoMet: s-adenosylmethionine Met: methionine adenosyltransferase MT: methyltransferase NBT: nitroblue tetrazolium RA: retinoic acid SAHH: s- Adenosyl homocysteine hydrolase. [Differentiation therapy for cancer] If a large number of differentiation inducer receptors are present in the target cancer cells and responds to them, it is considered that differentiation therapy that is effective and has few side effects is an ideal cancer therapy. For example, the therapeutic effects of interferon (Reference 1) for hairy cell leukemia and retinoic acid (References 2, 3) for acute promyelocytic leukemia have been recognized.
However, since differentiation therapy is still in the development stage and its application is limited, there are many problems to be solved. The current situation is that interferon is effective in few cancers and the palliative period of retinoic acid therapy is short. Moreover, the mechanism of differentiation therapy is not completely understood. [Role of methyltransferases in cell division and differentiation] Expression of genes involved in cell differentiation function is essential for the differentiation process. In stem cells, these genes are in a repressed state. Methylation of DNA molecules is being reported to play an important role in some gene repression mechanisms (references 4-6). This methylation acts on cytosine residues in the DNA molecule and converts it into 5 mC, so DN
Only the CG sequence in the A molecule will be changed.
To recover from this change, cells should be split twice and DN
Since demethylation by A replication is required, it will be affected by gene expression.

【0003】生体内メチル化反応の中にもDNAのメチ
ル化は、遺伝子発現に影響を与えるため、細胞の増殖と
分化過程に関わっており、最も重要なものである。しか
しながら、rRNAのメチル化もそれに関与している。
大部分のrRNAメチル化反応は、2'-o-リボースに作
用し、リボソームの生合成過程に於いて、rRNA配列
を保護する重役に立つ(参考文献10)。rRNAは、
まず、大きな45S先駆体を合成し、それは核内で二つ
のサブユーニットに分けられる。すべてのメチル化した
ヌクレオチドはrRNA配列に収められ、それにより、
細胞の分解酵素の作用を避けることができる。そこで、
リボソームの生合成は、rRNA先駆体のメチル化に大
きく依存することである。
Among the in-vivo methylation reactions, DNA methylation is the most important one because it affects gene expression and is therefore involved in cell growth and differentiation processes. However, methylation of rRNA is also involved in it.
Most rRNA methylation reactions act on 2'-o-ribose and play a crucial role in protecting the rRNA sequence during ribosome biosynthesis (reference 10). rRNA is
First, we synthesize a large 45S precursor, which is divided into two subunits in the nucleus. All methylated nucleotides are housed in the rRNA sequence, thereby
The action of cell degrading enzymes can be avoided. Therefore,
Ribosome biosynthesis is largely dependent on methylation of rRNA precursors.

【0004】染色体の複製にはDNAの合成に使われる
タンパク質が要求されるので、、S期に入る前に、リボ
ソームを造って置くことは必要である。増殖刺激された
細胞のリボソーム生産をrRNA生産抑制剤のアクチノ
マイシンDの投与(参考文献11)、または、温度感受
性変異株に不適温度シフトを与えること(参考文献1
2)により選択的に抑制したら、DNA合成が中断さ
れ、細胞サイクルがG1期に止まることになる。これら
の実験から、細胞増殖には、リボソームの生産が不可欠
であると分かった。 [悪性増殖における異常なメチル化酵素の関わり]核酸
のメチル化反応が遺伝子発現やリボソーム生産に多く関
わっていることは、そのメチル化酵素の役割の重要性を
示唆している。メチル化酵素は、MATーMT−SAH
Hの三の酵素からなる複合体である。様々なMTが存在
しているが、それぞれは、特異性の非常に高い酵素で、
異なった機能を持つ。しかし、同一のMATとSAHH
と結合することで、これらの酵素は、共通な発現調節機
構を持つ一つのファミリになる。メチル化酵素は一般的
にある活性化物質によって調節され、ステロイドホルモ
ンターゲット組織においてのステロイドがそれである
(参考文献13)。この活性化物質が存在しなければ、
三の酵素からなる複合体が崩し、それぞれの酵素は、す
ぐ内生タンパク質分解酵素により破壊される。この酵素
複合体は、安定であり、メチル化酵素の作用単位になる
と思われる。正常のメチル化酵素は、完全に外来の活性
化物質に依存すると言われている。ステロイドホルモン
ターゲット細胞以外の細胞は、増殖刺激によりメチル化
酵素活性化物質が産生される。
Since the proteins used for DNA synthesis are required for chromosome replication, it is necessary to construct and place ribosomes before entering the S phase. Administration of actinomycin D, an inhibitor of rRNA production, to the production of ribosomes in cells stimulated to grow (reference document 11), or to give a temperature-sensitive mutant strain an inappropriate temperature shift (reference document 1).
When selectively suppressed by 2), DNA synthesis is interrupted and the cell cycle is stopped in the G1 phase. From these experiments, it was found that ribosome production is essential for cell proliferation. [Involvement of abnormal methylation enzyme in malignant growth] The fact that the methylation reaction of nucleic acid is often involved in gene expression and ribosome production suggests the importance of the role of the methylation enzyme. The methylating enzyme is MAT-MT-SAH
It is a complex composed of three H enzymes. There are various MTs, but each is an enzyme with extremely high specificity,
Has different functions. However, the same MAT and SAHH
When combined with these enzymes, these enzymes form a family with a common expression regulation mechanism. Methylases are generally regulated by certain activators, which are steroids in steroid hormone target tissues (13). If this activator is not present,
The complex consisting of the three enzymes collapses, and each enzyme is immediately destroyed by the endogenous proteolytic enzyme. This enzyme complex is stable and appears to be the unit of action of methylating enzymes. Normal methylating enzymes are said to depend entirely on exogenous activators. Cells other than the steroid hormone target cells produce a methylating enzyme activator by stimulation of growth.

【0005】癌細胞におけるメチル化酵素は異常であ
り、その酵素に癌特有なタンパク因子がそれとトー型結
合をしている。これらの異常的酵素は、廖らによって発
見され(参考文献14−16)、かれらは、癌細胞のメ
チル化酵素アイソザイムが速度論的に異常であると指摘
した。surーLという正常なアイソザイムのKm値
は、MATLとSAHHLに対して、それぞれが3μMメ
チオニンと0.35μMアデノシンである。それに対
し、sur−LTという癌細胞メチル化酵素のアイソザ
イムのKm値は、20μMメチオニン(MATLTに対す
る)と2.2μMアデノシン(SAHHLTに対する)で
ある。この異常である癌細胞のMATアイソザイムの存
在は、SurfrinとLombarini(参考文献17)及びKapple
rら(参考文献18)によって確かめた。この癌タンパ
ク因子は、酵素の活性と速度論的性質を強めるのみでな
く、それの安定性と制御に変化をもたらす。この因子
は、メチル化酵素の活性化物質のような作用を持ち、癌
細胞のメチル化酵素の活性を保ちながら安定化させるこ
とができる。癌細胞は、外来の活性化物質を依存せず
に、この内生タンパク因子を産生することにより充分な
メチル化機能を得、細胞増殖に必要とする機能性RNA
の産生と悪性フェノタイプの維持DNAメチル化パター
ンの複製を確保することができる。そこで、不正なメチ
ル化酵素は、癌の当面する最も重要な課題である。
The methylating enzyme in cancer cells is abnormal, and a protein factor peculiar to cancer has a toe-type bond with the enzyme. These abnormal enzymes were discovered by Hi et al. (Refs. 14-16) and they pointed out that the methylating enzyme isozymes in cancer cells are kinetic abnormal. Km values for normal isozymes referred sur over L, to the MAT L and SAHH L, respectively are 3μM methionine and 0.35μM adenosine. In contrast, the Km values of sur-LT, a cancer cell methylating enzyme isozyme, are 20 μM methionine (for MAT LT ) and 2.2 μM adenosine (for SAHH LT ). The presence of MAT isozymes in this abnormal cancer cell was reported by Surfrin and Lombarini (Reference 17) and Kapple.
r et al. (reference 18). This oncoprotein factor not only enhances the activity and kinetic properties of the enzyme, but also alters its stability and regulation. This factor acts like an activator of a methylating enzyme and can stabilize the cancer cell while maintaining the activity of the methylating enzyme. Cancer cells obtain a sufficient methylation function by producing this endogenous protein factor without depending on an exogenous activator, and a functional RNA required for cell growth.
Production and maintenance of malignant phenotypes can ensure replication of DNA methylation patterns. Inappropriate methyltransferases are therefore the most important challenges facing cancer.

【0006】この変わった癌のMATLTは、ラット肝癌
細胞の初代培養とその移植細胞(参考文献15)に存在
し(参考文献15)、ヒトからの黒色腫瘍、肉腫、リン
パ腫及び結腸、肺臓、胸、肝、卵巣、子宮と鼻炎頭に起
こる腺癌の胸腺欠損ヌードマウスへの異種移植した細胞
にも発見された(参考文献19)。外科手術によって得
られた癌組織細胞とHL−60白血病培養細胞も同じ様
な異常現象が観察された。癌組織にあるMATLTレベル
が高く、異種移植したヒト癌細胞の増殖率と異常酵素の
レベルの間にもよい相関が得られた(参考文献19)。
この異常な酵素は、再生している肝、瀕死組織、骨髄と
小腸粘膜等の増殖率の高い細胞に発見されていないの
で、癌細胞に特有な異常現象である。この癌特有の異常
メチル化現象を治療法に利用することができる。癌特有
のタンパク因子と結合することにより、メチル化酵素が
調節因子に対する応答は異常になる。我々研究結果は、
癌RNAメチル化酵素がオリゴヌクレチドとDNA挿入
剤などの抑制作用子によく応答するのに、ATPとポリ
リン酸塩(参考文献10,20)などの刺激作用子にあ
まり応答しないと指摘した。正常なメチル化酵素は、そ
の正反対になるので、癌のこの異常な現象はその治療の
ターゲットになることが明かである。 [異常なメチル化酵素は、癌の分化療法における選択的
なターゲットになる]以上に述べたように、メチル化酵
素の異常で癌細胞が分化過程に入ることができないの
は、癌の基本的現象である。これらの異常酵素を除けれ
ば、癌細胞を分化過程に導入できると予想される。我々
の初歩的な研究成果もこの仮定を支えている。確かに、
ノビコッフ腹水肝癌細胞にある異常酵素を除去したら
(参考文献16)、巨大分子の合成が後に阻害され、細
胞の増殖も停止した(参考文献21)。ポリ(I)
(C)は、細胞に入ることができないので、間接に作用
すると思われる。ポリ(I)(C)は、インターフェロ
ンのようなオリゴイソアデニレート合成酵素を誘導する
と示されている(参考文献22)。この誘導された酵素
の産物のオリゴイソアデニレートはトリヌクレオチドで
あり、それは、異常のメチル化酵素を除去する阻害性作
用子である。我々は、その前にも、癌のrRNAメチル
化酵素がオリゴヌクレオチド(特にトリヌクレオチド)
の阻害作用に敏感であると報告した(参考文献10)。
オリゴヌクレオチドは、分化中の細胞の産物であり、複
合オリゴペブチドと有機酸類などの天然物質も似た機能
を持つ(参考文献23,24)。これらの天然物質は、
選択的な抗腫瘍効果を持ち、Burzynskiにより、アンチ
ネオプラストンと命名された(参考文献25)。これら
のアンチネオプラストンは、低分子量代謝産物であり、
生体では、腎臓の再吸収作用を受け、一部分が排泄され
ずに血行に戻ることができる。生体内のアンチネオプラ
ストンは、そこで、あるレベル以上に保持され、癌か現
象を抑える役に立つ。廖らは、この自然な化学ディフェ
ンス機構を化学監視と呼んでいる(参考文献26)。
This unusual cancer MAT LT is present in primary cultures of rat hepatoma cells and transplanted cells thereof (reference document 15) (reference document 15), and melanoma, sarcoma, lymphoma and colon, lung from human, Adenocarcinomas of the breast, liver, ovary, uterus and rhinitis head were also found in xenografted cells in athymic nude mice (reference 19). The same abnormal phenomenon was observed in the cancer tissue cells obtained by surgery and the HL-60 leukemia cultured cells. The level of MAT LT in cancer tissues was high, and a good correlation was also obtained between the growth rate of xenografted human cancer cells and the level of abnormal enzymes (Reference 19).
This abnormal enzyme is not found in regenerating liver, dying tissue, bone marrow, and small intestinal mucosa cells with a high proliferation rate, and is an abnormal phenomenon peculiar to cancer cells. This cancer-specific aberrant methylation phenomenon can be used for a therapeutic method. By binding to a cancer-specific protein factor, the methylation enzyme has an abnormal response to the regulatory factor. Our research results are
It was pointed out that cancer RNA methylating enzyme responds well to suppressors such as oligonucletide and DNA intercalating agent, but does not respond much to stimulators such as ATP and polyphosphate (references 10 and 20). It is clear that this abnormal phenomenon of cancer is a target for its treatment, as normal methylases are the opposite. [Aberrant Methyl Enzymes Become Selective Targets in Cancer Differentiation Therapy] As described above, it is a basic cause of cancer that cancer cells cannot enter into the differentiation process due to an abnormality in methylation enzymes. It is a phenomenon. If these abnormal enzymes are removed, it is expected that cancer cells can be introduced into the differentiation process. Our rudimentary research results also support this assumption. surely,
When the abnormal enzyme present in the Novicoff's ascites hepatoma cells was removed (reference document 16), the synthesis of macromolecules was later inhibited and cell proliferation was also stopped (reference document 21). Poly (I)
(C) seems to act indirectly because it cannot enter cells. Poly (I) (C) has been shown to induce oligoisoadenylate synthases such as interferon (reference 22). The product of this derived enzyme, oligoisoadenylate, is a trinucleotide, which is an inhibitory agent that removes the aberrant methylating enzyme. Prior to that, we discovered that cancer rRNA methylases had oligonucleotides (especially trinucleotides).
It was reported that it was sensitive to the inhibitory effect of the drug (reference document 10).
Oligonucleotides are products of differentiating cells, and complex oligopeptide and natural substances such as organic acids have similar functions (References 23 and 24). These natural substances are
It has a selective antitumor effect and was named antineoplaston by Burzynski (reference 25). These antineoplastons are low molecular weight metabolites,
In the living body, it is reabsorbed by the kidneys and can return to the blood circulation without being partially excreted. Antineoplastons in the body are then held there above a certain level and help control cancers or phenomena. Takashi et al. Call this natural chemical defense mechanism chemical monitoring (reference document 26).

【0007】精製されたアンチネオプラストンの有効成
分は、HL−60細胞の末期分化を誘導し(参考文献2
3)、HBL−100細胞のコロニー形成を阻害する
(参考文献24)高い活性を持つ。これらの有効成分
は、色素複合ペプチドや有機酸類である。化学性質はま
ったく異なっているが、生物的活性は似ている。精製さ
れたMATアイソザイムにテストした結果、これらの有
効成分は、異常な癌化アイソザイムを阻害し、それを正
常にする活性を示している。アンチネオプラストンの有
効成分は、MATLTの癌特有タンパク因子を阻害し、そ
れがメチル化酵素に与える影響を抑えることになる。こ
の抗癌機構は、DNAとrRNA先駆体の除メチル化に
作用し、異常のメチル化酵素を修飾することである(参
考文献9)。その結果、癌細胞は分化されることにな
り、正常な細胞には、このタンパク因子を持たないた
め、影響されない。
The purified active ingredient of antineoplaston induces terminal differentiation of HL-60 cells (reference document 2).
3), it has high activity of inhibiting colony formation of HBL-100 cells (reference document 24). These active ingredients are dye-conjugated peptides and organic acids. The chemical properties are quite different, but the biological activities are similar. When tested on purified MAT isozymes, these active ingredients show activity in inhibiting and normalizing abnormal aberrant cancer isozymes. The active ingredient of antineoplaston inhibits the cancer-specific protein factor of MAT LT and suppresses its effect on the methyltransferase. This anti-cancer mechanism is to act on the demethylation of DNA and rRNA precursors and modify the abnormal methylating enzyme (reference document 9). As a result, the cancer cells are differentiated, and normal cells are not affected because they do not have this protein factor.

【0008】酵素的には、末期分化を引き起こすため、
異常なメチル化酵素を正常化することは決定的である。
細胞内AdoMetとAdoHcyのプールサーズを調
べた結果は以上の結論を強く支えている。De La Rosaら
(参考文献27)は、癌細胞内のAdoMetプールサ
ーズが割と大きくなると指摘したが、それは、癌のMA
TアイソザイムのKm値が高いことからである。千葉ら
(参考文献27)もHL−60細胞が末期分化したら、
AdoMetとAdoHcyのプールサイズが縮む報告
をしたが、それは、癌のメチル化酵素が正常化し、それ
の高Km値が低くなる証拠である。様々な視点からも、
癌細胞が末期分化に行かない原因はメチル化酵素の異常
であると示唆されている。 [自然的化学監視と癌化現象]免疫システムの存在下で
ヒトがやはり病気を引き起こることと同様に、癌の発生
を抑えるアンチネオプラストンが人体に存在するのに、
ヒトも癌になる。その原因は、監視システムが崩れるこ
とである。我々の研究結果から、癌の患者が、低分子量
物質の排泄が過剰であるため、化学監視システムを維持
することができなくなると指摘したが(参考文献26,
29)、それは、低分子量の内生アンチネオプラストン
が排出された結果からである。癌細胞の増殖は、内生ア
ンチネオプラストンの損失をさらに強めることであり、
その結果、癌の末期患者には、この化学監視システムが
ほとんど存在しないことになる。そこで、メチル化酵素
の異常の外には、この化学監視システムの破壊が癌のも
う一つの重要な病因となる。この両者とも抑える治療法
は、成功率の高い方法になりそうであり、実際には、尿
から精製されたアンチネオプラストンが非常に有効的な
抗癌剤と指摘された(参考文献23,29)。異常な酵
素を正常化にしながら、ペプチドの過剰な排泄を抑える
このアンチネオプラストン療法の効果は明かである(参
考文献30)。
Enzymatically, it causes terminal differentiation,
It is crucial to normalize aberrant methyltransferases.
The results of examination of intracellular pools of AdoMet and AdoHcy strongly support the above conclusions. De La Rosa et al. (Ref. 27) pointed out that the AdoMet pool thirds in cancer cells are relatively large, which is due to the fact that cancer MA
This is because the Km value of T isozyme is high. Chiba et al. (Reference document 27) also reported that if HL-60 cells were terminally differentiated,
We have reported that the pool size of AdoMet and AdoHcy shrinks, which is evidence that the cancer methylating enzyme is normalized and its high Km value becomes low. From various perspectives,
It is suggested that the cause of cancer cells not going to terminal stage differentiation is an abnormality of methylase. [Natural Chemical Surveillance and Canceration Phenomena] Anti-neoplaston, which suppresses the development of cancer, exists in the human body in the same way that humans cause disease in the presence of the immune system.
Humans also get cancer. The cause is that the surveillance system collapses. Our findings indicate that cancer patients may be unable to maintain a chemical surveillance system due to excessive excretion of low molecular weight substances (Ref. 26,
29), which results from the excretion of low molecular weight endogenous antineoplastons. The growth of cancer cells is to further enhance the loss of endogenous antineoplastons,
As a result, this chemical surveillance system is almost absent in end-stage cancer patients. So, besides the methylation enzyme abnormalities, disruption of this chemical surveillance system is another important etiology of cancer. A treatment method that suppresses both of these is likely to be a method with a high success rate, and in fact, antineoplastone purified from urine was pointed out to be a very effective anticancer agent (References 23 and 29). The effect of this antineoplaston therapy, which suppresses excessive excretion of peptides while normalizing abnormal enzymes, is clear (Reference 30).

【0009】癌の患者が大量の低分子量代謝物質を排出
する可能な原因は、炎症である。炎症によりマクロファ
ージがカケクチンを遊離し、このカケクチンは、代謝物
を多量に排出する悪液質、脂質移動等の異化増加及び食
欲不振等の原因となる(参考文献31−33)。急性炎
症の発症期が短いので、癌との関係が薄いが、慢性炎症
が癌にの寄与が大きいと思われる。例えば、エイズとB
型肝炎患者の発癌率が高いである。癌細胞は、異常な遺
伝子の発現をするために慢性炎症の元になる。癌細胞が
増殖する度に悪液質が酷くなる。悪液質をコントロール
できれば、癌の治療に有益であるが、それは、伝統的な
癌の治療法に完全に無視されている。我々は、細胞毒性
剤がペプチドの過剰的排泄を引き起こすことを報告した
が(参考文献26)、そのことは、細胞毒性剤が化学監
視システムを破壊すると示唆している。この製剤を長期
間投与したら、細胞の抵抗力は完全に失ってしまい。も
し、細胞毒性剤療法に耐える癌細胞が残したら、この細
胞の増殖がコントロールできなくなる。つまり、細胞毒
性剤療法は、癌細胞を完全に殺すことを目的とするが、
そのこと自身が非常に難しいである。それに対し、アン
チネオプラストン療法は、化学監視システムを迅速的に
再生し、自然なディフェンス機構で体を守ることであ
る。すべての癌細胞を殺すことは、必要としないであ
る。
A possible cause for cancer patients to excrete large amounts of low molecular weight metabolites is inflammation. Due to inflammation, macrophages release cactectin, which causes cachexia that excretes a large amount of metabolites, increased catabolism such as lipid migration, and anorexia (references 31-33). Since the onset of acute inflammation is short, it has little relationship with cancer, but chronic inflammation seems to have a large contribution to cancer. For example, AIDS and B
The carcinogenic rate of hepatitis C patients is high. Cancer cells contribute to chronic inflammation due to abnormal gene expression. Every time a cancer cell grows, cachexia becomes worse. Controlling cachexia is beneficial in treating cancer, but it is completely ignored by traditional cancer therapies. We reported that cytotoxic agents cause excessive excretion of peptides (ref. 26), suggesting that cytotoxic agents disrupt the chemical surveillance system. When this formulation is administered for a long period of time, the cell resistance is completely lost. If cancer cells survive the cytotoxic drug therapy, the growth of these cells becomes uncontrolled. In other words, cytotoxic drug therapy aims to kill cancer cells completely,
That itself is very difficult. Antineoplaston therapy, on the other hand, is the rapid regeneration of chemical surveillance systems to protect the body with a natural defense mechanism. Killing all cancer cells is not necessary.

【0010】アンチネオプラストン製剤のある成分であ
るフェニルアセチルグルタミンは、癌患者によくみられ
るペプチドの過剰排出を回復することができる。この化
合物は、培養癌細胞に作用しないが、初期的癌の治療
(参考文献26)と化学的癌化の予防(参考文献34−
36)に効果的である。この癌の治療と予防効果は、化
学監視システムの回復と保護からであると思われる。生
体より培養細胞の方が人為的な癌化を起こし易いこと
は、生体の化学監視システムをまず破壊しないといけな
いことである。プロトンオイルなどの発炎剤が癌化現象
のプロモーターになるが、フェニルアセチルグルタミン
などの薬は、化学監視システムを保護し、その癌化現象
の予防薬になる。つまり、正確的な化学監視システムの
使用により、癌の治療や予防には、有益である。 [分化療法における分化誘導補助剤の役割]分化誘導剤
は、直接(アンチネオプラストンなど)や間接的(レチ
ノイン酸、インターフェロン及びpoly(I)(C)(ポリイノ
シン酸:シチジル酸))に、異常なメチル化酵素を正常
にすることができる(参考文献9,16,39)。間接
的誘導剤は、受容体の存在に完全に依存するので、その
応用が限られている。最近、廖らは、分化誘導の活性が
ないが、誘導剤の活性を大きく強める一連の化合物を報
告した(参考文献40)。それらの化合物は、分化誘導
補助剤と呼ばれ、その大部分は、メチル化酵素複合体の
組成酵素の阻害剤である。例えば、MATの競争的阻害
剤である。酪酸は、MAT競争的阻害剤の中でも分化誘
導補助剤としての効果が最もよい化合物であり、フェニ
ル酢酸もその活性を持つ(参考文献40)。これに属す
る分化誘導阻害剤は、割と毒性が弱い(参考文献41−
43)。治療の視点からみれば、これらの化合物は、特
に、間接的な分化誘導剤の治療範囲を広げることで有用
であり、化合物自身が廉価であることは、患者の経済的
負担を軽減できることになる。いくつかの特別なケース
においては、分化誘導補助剤のみも効果がみられる。脳
は、血液─脳関門により遮蔽されるので、脳の内生アン
チネオプラストンは、他のコンパートメントより流失さ
れにくい。そのために、脳の癌症、特に、星状細胞腫に
とっては、分化誘導剤のみ投与するだけで効果が現れ
る。すべての細胞毒性剤は星状細胞腫に効かないので、
フェニル酢酸は、唯一の治療薬である。そこで、分化誘
導補助剤は、早期的癌症の治療や癌の予防に有用である
と思われる。
Phenylacetylglutamine, a component of antineoplaston formulations, can restore the overexcretion of peptides commonly found in cancer patients. Although this compound does not act on cultured cancer cells, it treats early cancer (reference document 26) and prevents chemical canceration (reference document 34-).
36) is effective. The curative and preventive effects of this cancer appear to be due to the restoration and protection of the chemical surveillance system. The fact that cultured cells are more likely to cause artificial canceration than living organisms means that the chemical monitoring system of living organisms must be destroyed first. Inflammatory agents such as proton oil act as promoters of the carcinogenic phenomenon, while drugs such as phenylacetylglutamine protect the chemical surveillance system and prevent the carcinogenic phenomenon. That is, the use of an accurate chemical monitoring system is useful for treating or preventing cancer. [Role of differentiation-inducing adjuvant in differentiation therapy] Differentiation-inducing agents are directly (antineoplaston, etc.) or indirect (retinoic acid, interferon and poly (I) (C) (polyinosinic acid: cytidylic acid)) Various methylating enzymes can be normalized (references 9, 16, 39). Indirect inducers have limited applications because they rely entirely on the presence of the receptor. Recently, Taku et al. Reported a series of compounds that have no differentiation-inducing activity, but greatly enhance the activity of inducers (Reference 40). These compounds are called differentiation-inducing auxiliary agents, and most of them are inhibitors of the constituent enzymes of the methylase complex. For example, competitive inhibitors of MAT. Butyric acid is a compound that has the best effect as a differentiation-inducing auxiliary agent among MAT competitive inhibitors, and phenylacetic acid also has that activity (Reference 40). Differentiation induction inhibitors belonging to this group have relatively low toxicity (Reference 41-
43). From a therapeutic point of view, these compounds are particularly useful in expanding the therapeutic range of indirect differentiation inducers, and the low cost of the compounds themselves can reduce the financial burden on patients. . In some special cases, the differentiation-inducing adjunct alone is also effective. Since the brain is shielded by the blood-brain barrier, endogenous antineoplastons in the brain are less likely to be washed away than in other compartments. Therefore, for brain cancer, especially for astrocytoma, the effect appears only by administering the differentiation inducer. Not all cytotoxic agents work on astrocytomas, so
Phenylacetic acid is the only therapeutic agent. Therefore, the differentiation-inducing auxiliary agent is considered to be useful for treating early-stage cancer diseases and preventing cancer.

【0011】[0011]

【課題を解決するための手段】本発明は、癌の分化療法
と化学予防に貢献できる分化誘導補助剤を示し、それに
対するシステム的な研究を行った。我々は、効果のある
分化誘導補助剤を選出しながら、それを化学的に修飾す
ることにより、もっとよい効果と有用性を持つ化合物を
合成する努力をした。優れた分化誘導補助剤になる化合
物は、メチルとエチルフェニルアセトアミド、フェニル
酢酸エチルエステル、2,4ージクロロフェニル酢酸と
インドール酢酸があり、MATの競争的阻害剤として
は、メチルとエチルフェニルアセトアミド、フェニル酢
酸エチルエステル、2,4ージクロロフェニル酢酸とイ
ンドール酢酸がある。
The present invention shows a differentiation-inducing auxiliary agent that can contribute to cancer differentiation therapy and chemoprevention, and systematically researched it. We sought to synthesize compounds with better efficacy and utility by chemically modifying them while selecting effective differentiation-inducing adjuvants. Compounds that are excellent differentiation-inducing aids are methyl and ethylphenylacetamide, phenylacetic acid ethyl ester, 2,4-dichlorophenylacetic acid and indoleacetic acid. Methyl and ethylphenylacetamide and phenyl are competitive inhibitors of MAT. There are ethyl acetate, 2,4-dichlorophenylacetic acid and indoleacetic acid.

【0012】本発明は、癌、特に脳癌と前立腺癌に対す
る分化療法と予防に有効な製薬組成を提供し、それは、
メチルとエチルフェニルアセトアミド、フェニル酢酸エ
チルエステル、2,4ージクロロフェニル酢酸とインド
ール酢酸から選ばれる単一組成や混合組成の製薬組成で
ある。この製薬組成は、経口的、非経口的や局所的な投
与に適する剤形を有する。
The present invention provides a pharmaceutical composition effective in the differentiation therapy and prevention of cancer, particularly brain cancer and prostate cancer, which comprises:
The pharmaceutical composition has a single composition or a mixed composition selected from methyl and ethyl phenylacetamide, phenylacetic acid ethyl ester, 2,4-dichlorophenylacetic acid and indoleacetic acid. This pharmaceutical composition has a dosage form suitable for oral, parenteral or topical administration.

【0013】この製薬組成は、さらに癌の分化療法に使
われる分化誘導剤を有効成分として添加することもあ
る。
In this pharmaceutical composition, a differentiation inducer used for cancer differentiation therapy may be added as an active ingredient.

【0014】[0014]

【実施例】分化誘導補助剤と呼ばれても、単なる分化誘
導剤の効果を補助するのみでなく、癌の分化療法に於い
ては不可欠な存在である。分化誘導剤のみの結果と比べ
れば、それの添加によって誘発された細胞の分化は完全
的である(参考文献40)。我々の研究結果から、誘導
剤のみであれば、NBT+細胞は85%より多いことは
稀であり、未誘導の細胞が少ないが、常に存在してい
る。この未誘導の細胞の存在は、RA療法の短い緩解期
の原因となる(参考文献44)。分化過程は、完全なD
NA除メチル化を含む二回の分裂過程を経過することを
要するので、長い過程である(参考文献45−47)。
その過程に、細胞が傷害を受け、DNA合成を完了でき
ないとしたら、細胞は、DNA修復して癌化状態に戻る
こともある。その場合、症状が再び現れる。癌細胞に
は、特有なタンパク因子がメチル化酵素の複合体構造を
維持し、それを安定化するため、メチル化酵素のレベル
が高い。一旦、このタンパク因子の効果が分化誘導剤に
よって誘発されたアンチネオプラストンやその類似物に
より阻害したら、メチル化酵素複合体構造が崩れ、組成
酵素が遊離される。いくつかの遊離状態のメチルトラン
スフェラーゼは、ヌクレアーゼの作用を持ち(つまり、
ラテントヌクレアーゼのこと)、細胞に傷害を与え(参
考文献10)、分化過程を停止させる。分化誘導補助剤
は、ラテントヌクレアーゼからの傷害を制御し、分化過
程を完成させる効果を持つ。つまり、分化誘導補助剤
は、分化過程を促進し、症状の再発を抑えるので、分化
療法には、なくてはならないものである。 1.フェニル酢酸誘導物の合成 フェニル酢酸は、星状細胞腫の治療薬(参考文献30,
43)で、分化誘導補助剤であることがすでに報告され
ている(参考文献40)。しかしながら、薬自体が不快
な臭いを持ち、補助剤としての最低濃度が数mMも及ば
すことで、満足できるものではない。その活性と臭いを
改善することに着眼し、われわれは、次のような誘導体
を発見・合成した。 1ー1.N−置換フェニルアセトアミドの合成 ここでのN−置換フェニルアセトアミド類は、すでに参
考文献51にリストされているが、スキーム1にわれわ
れがそれを合成する方法を示している
[Examples] Even if it is called a differentiation-inducing aid, it not only assists the effect of the differentiation-inducing agent, but is indispensable in the differentiation therapy of cancer. The differentiation of the cells induced by the addition of the differentiation-inducing agent is complete as compared with the result of the differentiation-inducing agent alone (reference document 40). From the results of our study, it is rare that the number of NBT + cells is higher than 85% with the inducing agent alone, and there are few uninduced cells, but they are always present. The presence of this uninduced cell causes a short remission phase of RA therapy (ref. 44). The differentiation process is complete D
It is a long process because it requires two mitotic processes including NA demethylation to take place (references 45-47).
In the process, if the cells are damaged and DNA synthesis cannot be completed, the cells may return to a cancerous state by repairing DNA. In that case, the symptoms reappear. In cancer cells, a unique protein factor maintains a complex structure of methylase and stabilizes it, so that the level of methylase is high. Once the effect of this protein factor is inhibited by antineoplaston or its analogues induced by the differentiation inducer, the methylase complex structure collapses and the constituent enzymes are released. Some free methyltransferases act as nucleases (ie,
Latent nuclease), damages cells (Reference 10), and stops the differentiation process. The differentiation-inducing auxiliary agent has the effect of controlling damage from the latent nuclease and completing the differentiation process. That is, since the differentiation-inducing auxiliary agent promotes the differentiation process and suppresses the recurrence of symptoms, it is essential for differentiation therapy. 1. Synthesis of Phenylacetic Acid Derivatives Phenylacetic acid is a therapeutic agent for astrocytomas (Ref. 30,
43), it has already been reported that it is a differentiation induction auxiliary agent (reference document 40). However, the drug itself has an unpleasant odor, and the minimum concentration as an auxiliary agent reaches several mM, which is not satisfactory. Focusing on improving its activity and odor, we discovered and synthesized the following derivatives. 1-1. Synthesis of N-Substituted Phenylacetamide The N-substituted phenylacetamides here are already listed in reference 51, but Scheme 1 shows how we synthesize it.

【0015】[0015]

【化1】 Embedded image

【0016】ここで、Rは低級アルキル基である。 スキーム1 塩化フェニルアセチルをメチルアミンまたはエチルアミ
ンとベンジン溶液で反応させた後、生成物をカラムクロ
マトグラフィと再結晶法により生成した。 実例Iー1ー1:フェニルアセトアミド(3ー1) 15g(0.1モル)の塩化フェニルアセチルを100
mlのベンジンに溶かし、20−30℃で攪拌しながら
アモニアガスをそのベンジン溶液に導入した。反応後、
濾過で得られた固体を集め、水で洗浄した後、乾燥させ
た。濾液を分液漏斗に水で洗浄し、無水硫酸マグネジウ
ムで乾燥した後、減圧濃縮した。濃縮して得られた残留
物と乾燥した固体を合わせてシリカゲルカラムクロマト
グラフィにかけ、クロロフルムで溶出した。溶出物をク
ロロフルムで再結晶し、11gの化合物3−1の白色結
晶を得た(収率80%)。 mp.: 153-155℃。FIR(KBr)νmax: 3300, 3120(NH), 1670
(C=O)cm-1; 1H-NMR(CDCl 3): 3.58(s,2H,-CH), 5.60(br,
2H,-NH2), 7.24-7.30(m,5H,-C6H5); MS, m/z: 135(M+);
元素分析値: C8H9NO, 計算値: C:71.09, H: 6.71, N:
10.36, 実際値: C: 71.15, H: 6.93, N: 10.26。 実例I−1−2:N−メチルフェニルアセトアミド(3
−2) 15g(0.1モル)の塩化フェニルアセチルを100
mlのベンジンに溶かし、20−30℃で攪拌しながら
メチルアミンをそのベンジン溶液に導入した。化合物3
−1の同じ手順で精製し、N−メチルフェニルアセトア
ミドの淡い黄色の結晶を得た(12g、収率80%)。 mp.: 56-59℃。FIR(KBr)νmax: 3340(NH), 1630(C=O)cm
-1; 1H-NMR(CDCl3)d: 2.75(s,3H,-CH3), 3.59(s,2H,-CH
2 ), 5.59(br,1H,- NH ), 7.28-7.31(m,5H,-C6H5); MS,
m/z: 149(M+); 元素分析値: C9H11NO, 計算値: C:70.0
4, H: 8.08, N: 10.21, 実際値: C: 70.18, H: 8.05,
N: 10.07。 実例I−1−3:Nーエチルフェニルアセトアミド(3
−3) 15g(0.1モル)の塩化フェニルアセチルを100
mlのベンジンに溶かし、20−30℃で攪拌しながら
25gのエチルアミン(0.5モル)をそのベンジン溶
液に導入した。反応生成物を水で洗浄し、無水硫酸マグ
ネジウムで乾燥した後、減圧濃縮した。残留物を化合物
3−1の同じ手順でカラムクロマトグラフィで精製し、
N−エチルフェニルアセトアミドの黄色結晶を得た(1
4g、収率85%)。 mp.: 72-74℃。FIR(KBr)νmax: 3360(NH), 1630(C=O)cm
-1; 1H-NMR(CDCl3)d: 1.02(t,3H,-CH3), 3.25(m,2H,-N-
CH2 ), 3.50(s,2H,-CH2-CO-), 7.20-7.33(m,5H,-C 6H5);
MS, m/z: 163(M+); 元素分析値: C10H13NO, 計算値:
C:73.59, H: 8.03,N: 8.58, 実際値: C: 73.67, H: 8.0
0, N: 8.41。 I−2.アルキルフェニル酢酸エステルの合成 フェニル酢酸のエステル誘導物は、参考文献の52、5
3に示されているが、本発明では、スキーム2に示した
方法で合成した。
Here, R is a lower alkyl group. Scheme 1 Phenylacetyl chloride is replaced with methylamine or ethylamine.
After the reaction with benzene with benzene solution, the product was subjected to column chromatography.
It was generated by matography and recrystallization method. Example I-1-1: Phenylacetamide (3-1) 15 g (0.1 mol) of phenylacetyl chloride was added to 100%.
Dissolve in ml of benzine and stir at 20-30 ° C.
Amonia gas was introduced into the benzine solution. After the reaction
The solid obtained by filtration is collected, washed with water and dried.
Was. Wash the filtrate in a separatory funnel with water and dry with anhydrous magnesium sulfate.
It was dried under vacuum and concentrated under reduced pressure. Residue obtained by concentration
Silica gel column chromatography
Chromatograph and elute with chloroflume. Remove the eluate
Recrystallize with roloflum to give 11 g of compound 3-1 as white crystals.
Crystals were obtained (yield 80%). mp .: 153-155 ° C. FIR (KBr) νmax: 3300, 3120 (NH), 1670
(C = O) cm-1;1H-NMR (CDCl Three): 3.58 (s, 2H, -CH), 5.60 (br,
2H, -NHTwo), 7.24-7.30 (m, 5H, -C6HFive); MS, m / z: 135 (M +);
 Elemental analysis value: C8H9NO, Calculated: C: 71.09, H: 6.71, N:
10.36, Actual: C: 71.15, H: 6.93, N: 10.26. Example I-1-2: N-methylphenylacetamide (3
-2) Add 15 g (0.1 mol) of phenylacetyl chloride to 100
Dissolve in ml of benzine and stir at 20-30 ° C.
Methylamine was introduced into the benzine solution. Compound 3
Purify by the same procedure of -1, and use N-methylphenylacetoacetate
Light yellow crystals of amide were obtained (12 g, yield 80%). mp .: 56-59 ° C. FIR (KBr) νmax: 3340 (NH), 1630 (C = O) cm
-1;1H-NMR (CDClThree) d: 2.75 (s, 3H, -CHThree), 3.59 (s, 2H, -CH
Two ), 5.59 (br, 1H,-NH), 7.28-7.31 (m, 5H, -C6HFive); MS,
 m / z: 149 (M+); Elemental analysis value: C9H11NO, calculated: C: 70.0
4, H: 8.08, N: 10.21, Actual value: C: 70.18, H: 8.05,
N: 10.07. Example I-1-3: N-ethylphenylacetamide (3
-3) Add 15 g (0.1 mol) of phenylacetyl chloride to 100
Dissolve in ml of benzine and stir at 20-30 ° C.
25 g of ethylamine (0.5 mol) was dissolved in benzine
It was introduced into the liquid. The reaction product is washed with water, and anhydrous sulfuric acid is added.
After drying with nedium, it was concentrated under reduced pressure. Compound residue
Purify by column chromatography by the same procedure of 3-1.
Yellow crystals of N-ethylphenylacetamide were obtained (1
4 g, yield 85%). mp .: 72-74 ° C. FIR (KBr) νmax: 3360 (NH), 1630 (C = O) cm
-1;1H-NMR (CDClThree) d: 1.02 (t, 3H, -CHThree), 3.25 (m, 2H, -N-
CHTwo ), 3.50 (s, 2H, -CHTwo-CO-), 7.20-7.33 (m, 5H, -C 6HFive);
 MS, m / z: 163 (M+); Elemental analysis value: CTenH13NO, calculated:
C: 73.59, H: 8.03, N: 8.58, Actual value: C: 73.67, H: 8.0
0, N: 8.41. I-2. Synthesis of Alkyl Phenyl Acetate Esters of phenylacetic acid are described in References 52, 5
3 is shown in Scheme 2 in the present invention.
Synthesized by the method.

【0017】[0017]

【化2】 Embedded image

【0018】ここで、Rは低級アルキルである。 スキーム2 ルイス酸の存在下で、フェニル酢酸はアルコールと反応
してエステル化された。 実例I−2−1:メチルフェニル酢酸エステル(5−
1) 13g(0.1モル)のフェニル酢酸を500mlの無
水メタノールに溶かし、塩化水素ガスを導入しながら3
時間還流した。減圧濃縮して得られたエステル残留物を
ベンジンに溶かし、水と10%の水酸化ナトリウム水溶
液で順次洗浄した。有機層を無水硫酸マグネジウムで乾
燥して減圧濃縮した。残留物をシルカゲルカラムクロマ
トグラフィにかけ、クロロフルムで溶出した。減圧濃縮
して精製されたメチルフェニル酢酸エステルの黄色液体
を得た(6g、収率40%)。 bp.: 218℃。IR(KBr)νmax: 1700(C=O)cm-1; 1H-NMR(CDC
l3)d: 3.62(s,2H,-CH2),3.70(s,3H,-CH3), 7.30-7.32
(m,5H,-C6H5); MS, m/z: 150(M+)。 実例I−2−2:エメチルフェニル酢酸エステル(5−
2) 13g(0.1モル)のフェニル酢酸を500mlの無
水エタノールに溶かし、実例I−2−2の同様な手順で
反応・精製してエチルフェニル酢酸エステルの黄色液体
を得た(6.5g、収率40%)。 bp.: 227℃。IR(KBr)νmax: 1700(C=O)cm-1; 1H-NMR(CDC
l3)d: 1.24(s,3H,-CH3),3.61(s,2H,-CH2-CO-), 4.15(s,
2H,-OCH2-), 7.29-7.32(m,5H,-C6H5); MS, m/z:164
(M+)。 I−3.2,4ージクロロフェニル酢酸とインドールー
3ー酢酸等の我々がいままで発見されたそれ以外の分化
誘導補助剤は、シグマ化学から購入した。
Where R is lower alkyl. Scheme 2 Phenylacetic acid was esterified by reacting with alcohol in the presence of Lewis acid. Example I-2-1: Methylphenylacetic acid ester (5-
1) 13 g (0.1 mol) of phenylacetic acid was dissolved in 500 ml of anhydrous methanol, and while introducing hydrogen chloride gas, 3
Refluxed for hours. The ester residue obtained by concentration under reduced pressure was dissolved in benzine, and washed successively with water and a 10% aqueous sodium hydroxide solution. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was subjected to silica gel column chromatography, eluting with chloroflume. A yellow liquid of methylphenylacetic acid ester purified by concentration under reduced pressure was obtained (6 g, yield 40%). bp .: 218 ° C. IR (KBr) νmax: 1700 (C = O) cm -1 ; 1 H-NMR (CDC
l 3 ) d: 3.62 (s, 2H, -CH 2 ), 3.70 (s, 3H, -CH 3 ), 7.30-7.32
(m, 5H, -C 6 H 5); MS, m / z: 150 (M +). Example I-2-2: Emethylphenylacetic acid ester (5-
2) 13 g (0.1 mol) of phenylacetic acid was dissolved in 500 ml of absolute ethanol and reacted and purified by the same procedure as Example I-2-2 to obtain a yellow liquid of ethylphenylacetic acid ester (6.5 g). , Yield 40%). bp .: 227 ° C. IR (KBr) νmax: 1700 (C = O) cm -1 ; 1 H-NMR (CDC
l 3 ) d: 1.24 (s, 3H, -CH 3 ), 3.61 (s, 2H, -CH 2 -CO-), 4.15 (s,
2H, -OCH 2- ), 7.29-7.32 (m, 5H, -C 6 H 5 ); MS, m / z: 164
(M + ). I-3.2,4-dichlorophenylacetic acid, indole-3-acetic acid, and other other differentiation-inducing aids we have found so far were purchased from Sigma Chemistry.

【0019】実験に使われたオールトランスーレチノイ
ン酸、フェニル酢酸、塩化フェニルアセチル、酪酸とヘ
キサン酸など化合物は、メルク社から購入した。 II.分化誘導補助剤の活性測定 廖らが開発した手順(参考文献40)で分化誘導補助剤
の活性を測定した。この方法は、HL−60細胞の誘導
分化をNBT検定法で測定することに基づいた。HL−
60細胞を1.5x105細胞/mlの出発濃度で次代
培養した。RA濃度が0から0.125μMになる五つ
のフラスコからなるセットを数セット用意し、それぞれ
のフラスコに10mlの培養液を入れた。RAはメタノ
ール溶液としていれたので、HL−60細胞の増殖と分
化に影響を与えないため、メタノール濃度を2%を超え
ないようにした。その中の一つのセットをコントロール
にし、他のセットには、分化誘導補助剤を添加し、その
影響を観察した。96時間後、細胞の数を数え、参考文
献40の方法でNBT検定法を行った。誘導剤も補助剤
も添加しないコントロールのNBT+細胞は、いずれも
4%以下であり、分化補助剤のみ添加した組でのNBT
+細胞は、常に10%以下であった。実験値は、コント
ロール値を引いた値にした。ED50は、NBT+細胞が
50%になる誘導剤の有効濃度であり、それは、補助剤
の存在下または非存在下で、誘導剤の濃度に対するNB
T+細胞の割合のプロットから得られた値である。図1
に示したように、RAのED50は0.12μMである
が、1μMと2μMの補助剤としてのヨウ化エチジウム
の存在下でのED50は、それぞれ0.056μMと0.
03μMになった。補助剤の消減指標は、補助剤の存在
下で得られたED50を非存在下で得られたもので割った
値である。その値が低いほど補助剤としての効果が優れ
ると思われる。
Compounds such as all-trans-retinoic acid, phenylacetic acid, phenylacetyl chloride, butyric acid and hexanoic acid used in the experiments were purchased from Merck. II. Measurement of activity of differentiation-inducing auxiliary agent The activity of the differentiation-inducing auxiliary agent was measured by the procedure developed by Hi et al. (Reference 40). This method was based on measuring the induced differentiation of HL-60 cells with the NBT assay. HL-
60 cells were subcultured at a starting concentration of 1.5 × 10 5 cells / ml. Several sets of five flasks having RA concentrations of 0 to 0.125 μM were prepared, and 10 ml of the culture solution was added to each flask. Since RA was added as a methanol solution, it did not affect the growth and differentiation of HL-60 cells, so the methanol concentration was kept below 2%. One set among them was used as a control, and a differentiation induction auxiliary agent was added to the other set, and its effect was observed. After 96 hours, the number of cells was counted and NBT assay was performed by the method of Reference 40. Control NBT + cells to which neither an inducer nor an adjuvant was added were 4% or less in all, and NBT in a group to which only the differentiation aid was added
+ Cells were always below 10%. The experimental value was the value obtained by subtracting the control value. The ED 50 is the effective concentration of the inducer that results in 50% NBT + cells, which is the NB vs. the concentration of inducer in the presence or absence of adjuvant.
It is the value obtained from the plot of the percentage of T + cells. FIG.
As shown in, ED 50 of RA is a 0.12, ED 50 in the presence of iodide ethidium as 1μM and 2μM adjuvants, respectively 0.056μM and 0.
It became 03 μM. The extinction index of an adjuvant is the ED 50 obtained in the presence of the adjuvant divided by that obtained in the absence. The lower the value, the better the effect as an adjuvant.

【0020】分化誘導補助剤の生物活性は、その化学構
造と深く関係する。図2に示したように、酪酸がMAT
競争的阻害剤の内に最も有効な補助剤であることに対
し、酢酸はまったく活性を持たない。酢酸にフェニル基
を導入したら活性を高くなる趨勢を持つ。酪酸と比べ、
ヘキサン酸の活性は遥かに劣る。生体外での活性が高い
酪酸は、不快な臭いを持ち、体内で素早く代謝されがち
であるため、治療薬として不向きである。フェニル酢酸
の生体代謝が遅いが活性が高くないし、不快な臭いをす
る欠点を持つ。一連のシステム的考察により、以下の化
合物が優れた分化誘導補助剤として選出された。 II−1.N−メチルフェニルアセトアミド N−メチルフェニルアセトアミドをメタノールに溶か
し、活性を測定した。図3のように、消減指標が0.5
になるのに必要とした濃度は、0.65mMである。そ
れに対し、フェニル酢酸は4mMも要することである。
2mM以下でHL−60細胞の増殖に影響がみられず、
不快な臭いも持たないである。唯一の欠点は、水に溶け
ないであり、そのために非経口投与の製剤に向かない
が、経口投与の製剤としては最適である。 II−2.エチルフェニルアセトアミド 化学と生物学的性質がメチルフェニルアセトアミドと非
常に類似しているが、活性はやや低いである。図4に示
したように、消減指標が0.5での濃度は0.87mM
である。 II−3.エチルフェニル酢酸エステル 香気を持つ黄色な液体であり、メタノールに溶かして補
助剤としての活性を測定した。図5に示したように、活
性の高い化合物である。活性がフェニル酢酸よりも10
倍も上回り、消減指標が0.5に達するには、0.4m
Mの濃度が要する。酸性状態で加水分解されやすいた
め、ソフトゲル剤としての経口投与には、さらにエンテ
リックコーティングする必要がある。 II−4.2,4ージクロロフェニル酢酸 香気を持つ無色結晶である。ナトリウム塩として活性測
定を行った。図6に示したように、消減指標が0.5に
達する濃度は0.3mM であり、活性が高い。クロロ
置換誘導物であるため、臨床に使われるには、その毒性
を検討する必要がある。しかし、末期癌症患者における
短期治療に適する薬であると判断される。 II−5.インドール酢酸 図7のように、フェノル基をインドール基で置換するこ
とにより、活性が強められ、消減指標が0.5に達する
ことに要求される濃度は、0.25mMだけになる。活
性の非常に高い補助剤自身は、優れた誘導剤になること
が多い。図8に示したように、0.5mM以上で誘導剤
としての活性を持つことは意外ではない。
The biological activity of the differentiation-inducing auxiliary agent is closely related to its chemical structure. As shown in Fig. 2, butyric acid is MAT
In contrast to being the most effective of the competitive inhibitors, acetic acid has no activity. If a phenyl group is introduced into acetic acid, it tends to have higher activity. Compared to butyric acid,
Hexanoic acid is much less active. Butyric acid, which is highly active in vitro, has an unpleasant odor and is apt to be rapidly metabolized in the body, and is not suitable as a therapeutic drug. Phenylacetate has a slow bio-metabolism but is not highly active and has the drawback of giving an unpleasant odor. The following compounds were selected as excellent differentiation-inducing aids through a series of systematic considerations. II-1. N-Methylphenylacetamide N-methylphenylacetamide was dissolved in methanol and the activity was measured. As shown in Fig. 3, the extinction index is 0.5.
The concentration required to be 0.65 mM. In contrast, phenylacetic acid requires 4 mM.
No effect was observed on the growth of HL-60 cells at 2 mM or less,
Has no unpleasant odor. The only drawback is that it is insoluble in water, which makes it unsuitable for parenteral formulations, but is optimal for oral formulations. II-2. Ethylphenylacetamide Chemistry and biological properties are very similar to methylphenylacetamide, but the activity is rather low. As shown in FIG. 4, when the extinction index is 0.5, the concentration is 0.87 mM.
It is. II-3. Ethylphenylacetic acid ester A yellow liquid with an aroma, which was dissolved in methanol and its activity as an auxiliary agent was measured. As shown in FIG. 5, it is a highly active compound. 10 times more active than phenylacetic acid
To reach the extinction index of 0.5
M concentration is required. Since it is easily hydrolyzed in an acidic state, further enteric coating is required for oral administration as a soft gel agent. II-4.2,4-Dichlorophenylacetic acid It is a colorless crystal having an aroma. The activity was measured as the sodium salt. As shown in FIG. 6, the concentration at which the extinction index reaches 0.5 is 0.3 mM, indicating high activity. Since it is a chloro substitution derivative, its toxicity needs to be examined before it can be used clinically. However, it is judged to be a drug suitable for short-term treatment in patients with terminal cancer. II-5. Indole Acetic Acid By replacing the phenol group with an indole group as shown in FIG. 7, the activity is enhanced and the concentration required to reach the extinction index of 0.5 is only 0.25 mM. Very active auxiliaries themselves are often excellent inducers. As shown in FIG. 8, it is not surprising that it has an activity as an inducer at 0.5 mM or more.

【0021】[参考文献]上記で引用された参考文献は
以下の通りである。 (1) Quesada, J. R., Reuben, J., Manning, J. T., He
rsch, E. M., and Gutterman, J. Alpha interferons
for indution of remission in hairy call leukemia.
N. Engl. J. Med., 310. 15-20, 1984. (2) Huang, M.E.,Ye, Y. C.,Chen, S. R., Chai, J.
R., Lu, J. X.,Zhoa, L.,Gu, L. J., and Wang, Z. Y.,
Use of all-trans retinoic acid in the treatment o
f acute promyelocytic leukemia. Blood, 72: 567-57
2,1988. (3) Warrel, R. P. Jr., Frankel, S. R., Miller, W.
H. Jr., Sheinberg, D.A., Itri, L. M., Hellelman,
W. N., Vyas,S., Andreeff M., Tafuri, A., Jakubowsk
i, A., Gabrilove, J., Gordon, M. S. and Dmitrovsk
y, E. Differentiation therapy of acute promyelocyt
ic leukemia with tretinoin(all-trans-retinoic aci
d). N. Engl. J. Med., 324: 1385-1393, 1991. (4) Doerfler, W., DNA methylation and gene activit
y. Annu. Rev. Biochem.,52: 93- 124,1983. (5) Jones P.A., Altering gene expression with 5-az
acytidine. Cell, 40:484-486,1985. (6) Cedar,H. DNA methylation and gene activity. Ce
ll, 53;3-4,1988. (7) Christman,J.K., Price, P.,Pechman, L.. Randal
l,R.J., Correlation between hypomethylation of DNA
and expression of globin genes in Friend erythrol
eukemia cells. Biochem 31: 53-61,1977. (8) Jones, P.A., Taylor, S.M., Cellular differenti
ation, cytidine analogs and DNA methylation. Cell
20: 85-93,1980. (9) Liau, M. C., and Burzynski, S. R., Hypomethyla
tion of nucleic acids: a key to the indution of te
rminal differentiation. Intl. J. Exptl. Clin. Chem
other., 2: 187-199, 1989. (10) Liau, M. C., Hunt, M. E.,, and Hurlbert, R.
B., Role of ribosomalRNA methylases in the regulat
ion of ribosome production in mammalian cells. Bio
chem, 15: 3158-3164, 1976. (11) Epifanova, O. I.,Abuladze, M. K., and Zoniovs
ka, A. I., Effect oflow concentrations of actinomy
cin D on the initiation of DNA synthesisin rapidly
proliferating and stimulated cell cultures. Exp.
Cell Res.,92:25-30.1975. (12)Toniola, D., Weiss, H.K., and Basilio, C. A.,
Temperature sensitive mutation affecting 28S ribos
omal RNA production in mammalian cells. Proc. Aca
d. Sci. USA, 70: 1273-1277, 1973. (13) Liau, M. C., Chang, C. F., Saunders, G. P., a
nd Tsai, Y. H., S- adenosylmethionine hydrolases a
s the primary target enzymes in androgen reculatio
n of methylation complexes. Arch. Biochem. Biophy
s., 208:261-272, 1981. (14) Liau, M. C., Lin, G. W., and Hurlbert, R.B.,
Partial purificationand characterization of tumor
and liver S-adenosylmethionine synthetases. Cancer
Res., 37:427-435, 1977a. (15) Liau, M. C., Chang, C. F., and Becker, F. F.,
Alteration of S-adenosylmethionine synthetases du
ring chemical hepatocarcinogenesis and inresulting
carcinomas. Cancer Res., 39: 2113-2119. 1979. (16) Liau, M. C., and Burzynski, S. R., Altered me
thylation complex isozymes as selective targets fo
r cancer chemotherapy. Drugs Exptl. Clin.Res., 12
(Suppl.1): 61-70, 1986. (17) Sufrin, J. R., and Lombardini, J. B., Differe
nces in the active site region of tumor versus nor
mal isozymes of mammalian ATP: L-methionine S-aden
osyltransferase. Mol. Pharmacol., 22: 752-759, 198
2. (18) Kappler, F., Hai, T. T., and Hampton, A., Iso
zyme-spectific enzyme inhibtor, 10 adenosine 5 -tr
iphosphate derivatives as substrates or inhibtors
of methionine adenosyltransferases of rat normal a
nd hepatoma tissues. J. Med. Chem.,29: 318-322,198
6. (19) Liau, M. C., Chang, C. F.,and Giovanella, B.
D., Demonstration ofan altered S-adenosylmethionin
e synthetase in human malignant tumors xenografted
into athymic nude mice. J. Natl. Cancer Inst., 6
4: 1071-1075,1980. (20) Liau, M. C., Lin, G.W., Knight, C.A., and Hur
lbert, R. B., Inhibition of RNA methylation by int
ercalating agents. Cancer Res., 37: 4202-4210, 197
7b. (21) Liau, M. C., Smith, D. W., and Hurlbert, R.
B., Preferential inhibition of homopolyribonucleot
ides of the methylation of ribosomal ribonucleic a
cid and disruption of the production of ribosomes
in rat tumor. Cancer Res., 35: 2340-2349, 1975b. (22) Chapekar, M. S., and Glazer, R. I., Effects o
f fibroblast and recombinant leukocyte interferons
and double stranded RNA on ppp(2'-5')A synthesis
and cell proliferation in human colon carcinoma ce
lls in vitro.Cancer Res., 43:2683,1983. (23) Liau, M. C., Lee, S. S., and Burzynski, S.
R., Differentiation inducing components of antineo
plaston A5. Adv. Exptl. Alin. Chemother., 6/88:9-2
5, 1988. (24) Liau, M. C., and Burzynski, S. R., Separation
of active anticancer components of antineoplaston
A2, A3 and A5. Intl. J. Tiss. React., 12(Suppl.):
1-18, 1990a. (25) Burzynski, S. R., Antineoplastons:Biochemical
defense against cancer. Physiol. Chem.Phys.,8:275
-279,1976. (26) Liau, M. C., Szopa, M., Burzynski, B., and Bu
rzynski S. R., Chemosurveillance: A novel concept
of the natural defense mechanism against cancer. D
rugs Exptl. Clin. Res., 12(Suppl. 1): 71-76, 1987
b. (27) De La Rosa, J.,Geller, A. M., Legros, H. L.,
and Kotb,M., Induction of interleukin 2 production
but not methionine adenosyltransferase activity o
r S-adenosylmethionine turnover in Jukat T-cell. C
ancer Res.,52:3361-3363, 1992. (28) Chiba,P.,Wallner, L., and Kaiser, E., S-Adne
osylmethionine metabolism in HL-60 cells: effects
of cell cycle and differentiation. Biochem. Biophy
s. Acta, 971:38-45,1988. (29) Liau, M. C., Szopa, M., Burzynski, B., Burzyn
ski, S. R., Quantitative assay of plasma and urina
ry peptides as an aid for the evaluation of cancer
patients undergoing antineoplaston therapy. Drugs
Exptl. Clin Res. 12(Suppl. I):61-70, 1987a. (30) Burzynski, S. R., and Kubove, E., Initial cli
nical study with antiplaston A2 injections in canc
er patients with five years follow-up. Drugs Expt
l. Clin. Res., I3(Suppl.1):1-11,1987a. (31) Clark, P.M. S., Kricka, L. J., and Whitehea
d, T. P.,Pattern of urinary proteins and peptides
with rheumatoid arthritis investigated withthe iso
-dalt technique. Clin. Chem.,26:201,1980. (32) Borek, E., et al. Altered excretion of modifi
ed nucleosides and b-aminoisobutyric acid in subje
cts with acquired immunodeficiency syndrome or at
risk for acquired immunodeficiency syndrome. Cance
r Res.,46:2557,1986. (33) Bar-Or, D.,Greisman, S. L., Kastendieck, J.
G., Detection of appendicitis by measurement of ur
oerythrin. United States Patent 5,053,389,1991. (34) Kampalath, B. N., Liau, M. C.,Burzynski,B.and
Burzynski, S. R.M.,Chemoprevention by antineopals
tons A10 of benzo (a) pyrene-induced pulmonary neo
plasia. Drugs Exptl.Clin. Res.,13(Suppl.):51-56,19
87. (35) Kampalath, B. N., Liau, M. C.,Burzynski,B.and
Burzynski, S. R., Protective effect of antineopla
ston A10 in hepatocarcinogenensis inducedby aflato
xin B1. Intl. J. Tiss. React., 12 (Suppl.):43-50,1
990. (36) Muldoon, T. G., Copland, J. A. and Hendry, L.
B., AntineoplastonA10 activity on carcinogen-indu
ced rat mammary tumors. Intl. J. Tiss. React., 12
(Supppl.):51-56, 1990. (37) Rubin, H., and Colby, C., Early release of gr
owth inhibition in cells infected with Rous sarcom
a virus. Proc. Natl. Acad. Sci. USA, 60: 752-759,
1982. (38) Parod, S. and Brambilla, G., Relationship bet
ween mutation and transformation frequencies in ma
mmlian cells treated in vitro with chemical carcin
ogens. Mutat. Res., 47:53. 1977. (39) Liau, M. C., Lee, S. S., and Burzynski, S.
R., Modulation of cancer methylation complex isozy
mes as a decisive factor in the induction oftermin
al differentiation mediated by antineoplaston A5.
Intl. J. Tiss.React. 12(Suppl): 27-36, 1990b. (40) Liau, M. C., Liau, C.P., and Burzynski, S.
R., Potentiation of induced terminal differentiati
on by phenylacetic acid and related chemicals. Int
l. J. Exptl. Clin. Chemother. 5: 9-17, 1992. (41) Burzynski, S. R., Mohabbat, M. O., ,Lee S.S.,
Preclinical studiesin Antineoplaston AS2-1 and An
tineoplaston AS2-5.Drugs Exptl. Clin.Res.12(Suppl.
I): 11-16, 1986a. (42) Burzynski, S. R., Burzynski, B., Mohabbat, M.
O., Toxicology studies in antineoplaston AS2-1 in
jections in cancer patients. Drugs Exptl.Clin. Re
s., 12(Suppl. I): 25-36, 1986b. (43) Ram, Z., Samid, D., Walbriddge, S., Oshiro,
E. M., Viola, J.J., Tao-Cheng, J. H. Shack, S., Th
ibault, A., Myers, C.E., Oldfield E. H. Growth inh
ibition, tumor maturation, and extended survival i
n experimentalbrain tumors in rats treated with ph
enylacetate. Cancer Res., 54: 2923-2927, 1994. (44) Adamson, P.C., Boylan, B.F., Balis, F.M., Mur
fy, R.F., Godwin, K.A.Gudas, L.T.,and Poplack,D.
G., Time course of induction of metabolism of all-
trans retinotic acid and the up-regulation of cell
ular retinoic acid binding protein .Cancer Res.,5
3:472- 476,1993. (45) Yen, A., Reese, S. L. and Albright, K. L., De
pendence of HL-60 myeloid cell differentiation on
continuous and split retinoic acid exposure: preco
mmitment memory associated with altered nuclear st
ructure. J. Cell Physiol., 118:277-286, 1984. (46) Yen, A., Reese, S. L., and Albright, K. L., C
ontrol of cell differentiation during proliferatio
n. II. Mycloid differentiation and cell cycle arr
est of HL-60 promyelocytes preceded by nuclear str
uctural changes. Leuk. Res., 9: 51-71, 1985a. (47) Yen, A., Control of HL-60 myeloid differentia
tion: Evidence of uncoupled growth and differentia
tion, S-phase specificity, and two step regulatio
n. Exp. Cell Res., 156: 198-212, 1985b. (48) Burzynski, S. R., and Kubove, E., Phase I cli
ncial studies of antineoplastons A3 injections. Dr
ugs Exptl. Clin. Res., 13 (Suppl.1):13-30,1987b. (49) Burzynski, S. R., Kubove, E. and Burzynski,
B., Phase I clincialstudies of antineoplaston A5
injections. Drug Exptl. Clin. Res., 13(Suppl.1):33
-44,1987c. (50) Burzynski, S. R., Treatment of malignant brai
n tumors with antineoplastons. Adv. Exp.Clin.Chemo
ther.6/88:45-46,1988. (51) Slobodan D., Petrovic, Nada D., Stojanovic, O
stoja K., Stojanovic, Nestor L. Kobilarox, J. Ser
b. Chem. Soc., 51, 395-405, 1986. (52) Japanese patent laid-open No. 61-271250 (198
6). (53) El-Chahawi, Moustafa; Richtzenhain, Hermann,
Ger. Offen. 2,240,399(Cl. C 07c), 28 Feb 1974, App
l. P22 40 399.2, 17 Aug 1972.
[References] The references cited above are as follows. (1) Quesada, JR, Reuben, J., Manning, JT, He
rsch, EM, and Gutterman, J. Alpha interferons
for indution of remission in hairy call leukemia.
N. Engl. J. Med., 310. 15-20, 1984. (2) Huang, ME, Ye, YC, Chen, SR, Chai, J.
R., Lu, JX, Zhoa, L., Gu, LJ, and Wang, ZY,
Use of all-trans retinoic acid in the treatment o
f acute promyelocytic leukemia. Blood, 72: 567-57
2,1988. (3) Warrel, RP Jr., Frankel, SR, Miller, W.
H. Jr., Sheinberg, DA, Itri, LM, Hellelman,
WN, Vyas, S., Andreeff M., Tafuri, A., Jakubowsk
i, A., Gabrilove, J., Gordon, MS and Dmitrovsk
y, E. Differentiation therapy of acute promyelocyt
ic leukemia with tretinoin (all-trans-retinoic aci
d). N. Engl. J. Med., 324: 1385-1393, 1991. (4) Doerfler, W., DNA methylation and gene activit
y. Annu. Rev. Biochem., 52: 93- 124,1983. (5) Jones PA, Altering gene expression with 5-az
Cell, 40: 484-486,1985. (6) Cedar, H. DNA methylation and gene activity. Ce
ll, 53; 3-4,1988. (7) Christman, JK, Price, P., Pechman, L .. Randal
l, RJ, Correlation between hypomethylation of DNA
and expression of globin genes in Friend erythrol
eukemia cells.Biochem 31: 53-61,1977. (8) Jones, PA, Taylor, SM, Cellular differenti
ation, cytidine analogs and DNA methylation. Cell
20: 85-93, 1980. (9) Liau, MC, and Burzynski, SR, Hypomethyla
tion of nucleic acids: a key to the indution of te
rminal differentiation. Intl. J. Exptl. Clin. Chem
other., 2: 187-199, 1989. (10) Liau, MC, Hunt, ME ,, and Hurlbert, R.
B., Role of ribosomal RNA methylases in the regulat
ion of ribosome production in mammalian cells. Bio
chem, 15: 3158-3164, 1976. (11) Epifanova, OI, Abuladze, MK, and Zoniovs
ka, AI, Effect of low concentrations of actinomy
cin D on the initiation of DNA synthesis in rapidly
Proliferating and stimulated cell cultures. Exp.
Cell Res., 92: 25-30.1975. (12) Toniola, D., Weiss, HK, and Basilio, CA,
Temperature sensitive mutation affecting 28S ribos
omal RNA production in mammalian cells. Proc. Aca
d. Sci. USA, 70: 1273-1277, 1973. (13) Liau, MC, Chang, CF, Saunders, GP, a
nd Tsai, YH, S- adenosylmethionine hydrolases a
s the primary target enzymes in androgen reculatio
n of methylation complexes. Arch. Biochem. Biophy
s., 208: 261-272, 1981. (14) Liau, MC, Lin, GW, and Hurlbert, RB,
Partial purification and characterization of tumor
and liver S-adenosylmethionine synthetases. Cancer
Res., 37: 427-435, 1977a. (15) Liau, MC, Chang, CF, and Becker, FF,
Alteration of S-adenosylmethionine synthetases du
ring chemical hepatocarcinogenesis and inresulting
carcinomas. Cancer Res., 39: 2113-2119. 1979. (16) Liau, MC, and Burzynski, SR, Altered me
thylation complex isozymes as selective targets fo
r cancer chemotherapy. Drugs Exptl. Clin. Res., 12
(Suppl.1): 61-70, 1986. (17) Sufrin, JR, and Lombardini, JB, Differe
nces in the active site region of tumor versus nor
mal isozymes of mammalian ATP: L-methionine S-aden
osyltransferase. Mol. Pharmacol., 22: 752-759, 198
2. (18) Kappler, F., Hai, TT, and Hampton, A., Iso
zyme-spectific enzyme inhibtor, 10 adenosine 5 -tr
iphosphate derivatives as substrates or inhibtors
of methionine adenosyltransferases of rat normal a
nd hepatoma tissues. J. Med. Chem., 29: 318-322,198
6. (19) Liau, MC, Chang, CF, and Giovanella, B.
D., Demonstration ofan altered S-adenosylmethionin
e synthetase in human malignant tumors xenografted
into athymic nude mice. J. Natl. Cancer Inst., 6
4: 1071-1075,1980. (20) Liau, MC, Lin, GW, Knight, CA, and Hur
lbert, RB, Inhibition of RNA methylation by int
ercalating agents. Cancer Res., 37: 4202-4210, 197
7b. (21) Liau, MC, Smith, DW, and Hurlbert, R.
B., Preferential inhibition of homopolyribonucleot
ides of the methylation of ribosomal ribonucleic a
cid and disruption of the production of ribosomes
in rat tumor. Cancer Res., 35: 2340-2349, 1975b. (22) Chapekar, MS, and Glazer, RI, Effects o
f fibroblast and recombinant leukocyte interferons
and double stranded RNA on ppp (2'-5 ') A synthesis
and cell proliferation in human colon carcinoma ce
lls in vitro.Cancer Res., 43: 2683, 1983. (23) Liau, MC, Lee, SS, and Burzynski, S.
R., Differentiation inducing components of antineo
plaston A5. Adv. Exptl. Alin. Chemother., 6/88: 9-2
5, 1988. (24) Liau, MC, and Burzynski, SR, Separation
of active anticancer components of antineoplaston
A2, A3 and A5. Intl. J. Tiss. React., 12 (Suppl.):
1-18, 1990a. (25) Burzynski, SR, Antineoplastons: Biochemical
Defense against cancer. Physiol. Chem. Phys., 8: 275
-279,1976. (26) Liau, MC, Szopa, M., Burzynski, B., and Bu
rzynski SR, Chemosurveillance: A novel concept
of the natural defense mechanism against cancer.D
rugs Exptl. Clin. Res., 12 (Suppl. 1): 71-76, 1987
b. (27) De La Rosa, J., Geller, AM, Legros, HL,
and Kotb, M., Induction of interleukin 2 production
but not methionine adenosyltransferase activity o
r S-adenosylmethionine turnover in Jukat T-cell. C
ancer Res., 52: 3361-3363, 1992. (28) Chiba, P., Wallner, L., and Kaiser, E., S-Adne
osylmethionine metabolism in HL-60 cells: effects
of cell cycle and differentiation. Biochem. Biophy
s. Acta, 971: 38-45, 1988. (29) Liau, MC, Szopa, M., Burzynski, B., Burzyn
ski, SR, Quantitative assay of plasma and urina
ry peptides as an aid for the evaluation of cancer
patients undergoing antineoplaston therapy. Drugs
Exptl. Clin Res. 12 (Suppl. I): 61-70, 1987a. (30) Burzynski, SR, and Kubove, E., Initial cli
nical study with antiplaston A2 injections in canc
er patients with five years follow-up. Drugs Expt
l. Clin. Res., I3 (Suppl.1): 1-11,1987a. (31) Clark, PMS, Kricka, LJ, and Whitehea
d, TP, Pattern of urinary proteins and peptides
with rheumatoid arthritis investigated with the iso
-dalt technique. Clin. Chem., 26: 201, 1980. (32) Borek, E., et al. Altered excretion of modifi
ed nucleosides and b-aminoisobutyric acid in subje
cts with acquired immunodeficiency syndrome or at
risk for acquired immunodeficiency syndrome. Cance
r Res., 46: 2557, 1986. (33) Bar-Or, D., Greisman, SL, Kastendieck, J.
G., Detection of appendicitis by measurement of ur
oerythrin.United States Patent 5,053,389,1991. (34) Kampalath, BN, Liau, MC, Burzynski, B.and
Burzynski, SRM, Chemoprevention by antineopals
tons A10 of benzo (a) pyrene-induced pulmonary neo
plasia. Drugs Exptl. Clin. Res., 13 (Suppl.): 51-56,19
87. (35) Kampalath, BN, Liau, MC, Burzynski, B.and
Burzynski, SR, Protective effect of antineopla
ston A10 in hepatocarcinogenensis induced by aflato
xin B1. Intl. J. Tiss. React., 12 (Suppl.): 43-50,1
990. (36) Muldoon, TG, Copland, JA and Hendry, L.
B., AntineoplastonA10 activity on carcinogen-indu
ced rat mammary tumors. Intl. J. Tiss. React., 12
(Supppl.): 51-56, 1990. (37) Rubin, H., and Colby, C., Early release of gr
owth inhibition in cells infected with Rous sarcom
a virus. Proc. Natl. Acad. Sci. USA, 60: 752-759,
1982. (38) Parod, S. and Brambilla, G., Relationship bet
ween mutation and transformation frequencies in ma
mmlian cells treated in vitro with chemical carcin
ogens. Mutat. Res., 47:53. 1977. (39) Liau, MC, Lee, SS, and Burzynski, S.
R., Modulation of cancer methylation complex isozy
mes as a decisive factor in the induction of termin
al differentiation mediated by antineoplaston A5.
Intl. J. Tiss. React. 12 (Suppl): 27-36, 1990b. (40) Liau, MC, Liau, CP, and Burzynski, S.
R., Potentiation of induced terminal differentiati
on by phenylacetic acid and related chemicals. Int
l. J. Exptl. Clin. Chemother. 5: 9-17, 1992. (41) Burzynski, SR, Mohabbat, MO,, Lee SS,
Preclinical studies in Antineoplaston AS2-1 and An
tineoplaston AS2-5.Drugs Exptl. Clin.Res.12 (Suppl.
I): 11-16, 1986a. (42) Burzynski, SR, Burzynski, B., Mohabbat, M.
O., Toxicology studies in antineoplaston AS2-1 in
jections in cancer patients. Drugs Exptl. Clin. Re
s., 12 (Suppl. I): 25-36, 1986b. (43) Ram, Z., Samid, D., Walbriddge, S., Oshiro,
EM, Viola, JJ, Tao-Cheng, JH Shack, S., Th
ibault, A., Myers, CE, Oldfield EH Growth inh
ibition, tumor maturation, and extended survival i
n experimental brain tumors in rats treated with ph
enylacetate. Cancer Res., 54: 2923-2927, 1994. (44) Adamson, PC, Boylan, BF, Balis, FM, Mur
fy, RF, Godwin, KAGudas, LT, and Poplack, D.
G., Time course of induction of metabolism of all-
trans retinotic acid and the up-regulation of cell
ular retinoic acid binding protein .Cancer Res., 5
3: 472- 476,1993. (45) Yen, A., Reese, SL and Albright, KL, De
pendence of HL-60 myeloid cell differentiation on
continuous and split retinoic acid exposure: preco
mmitment memory associated with altered nuclear st
ructure. J. Cell Physiol., 118: 277-286, 1984. (46) Yen, A., Reese, SL, and Albright, KL, C
ontrol of cell differentiation during proliferatio
n.II.Mycloid differentiation and cell cycle arr
est of HL-60 promyelocytes preceded by nuclear str
uctural changes. Leuk. Res., 9: 51-71, 1985a. (47) Yen, A., Control of HL-60 myeloid differentia
tion: Evidence of uncoupled growth and differentia
tion, S-phase specificity, and two step regulatio
n. Exp. Cell Res., 156: 198-212, 1985b. (48) Burzynski, SR, and Kubove, E., Phase I cli
ncial studies of antineoplastons A3 injections. Dr
ugs Exptl. Clin. Res., 13 (Suppl.1): 13-30,1987b. (49) Burzynski, SR, Kubove, E. and Burzynski,
B., Phase I clincialstudies of antineoplaston A5
injections. Drug Exptl. Clin. Res., 13 (Suppl.1): 33
-44,1987c. (50) Burzynski, SR, Treatment of malignant brai
n tumors with antineoplastons. Adv. Exp.Clin. Chemo
ther.6 / 88: 45-46,1988. (51) Slobodan D., Petrovic, Nada D., Stojanovic, O
stoja K., Stojanovic, Nestor L. Kobilarox, J. Ser
b. Chem. Soc., 51, 395-405, 1986. (52) Japanese patent laid-open No. 61-271250 (198
6). (53) El-Chahawi, Moustafa; Richtzenhain, Hermann,
Ger. Offen. 2,240,399 (Cl. C 07c), 28 Feb 1974, App
l. P22 40 399.2, 17 Aug 1972.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 RAー誘導末期分化のヨウ化エチジウムによ
る強化作用を示しているが、ヨウ化エチジウムの濃度
は、それぞれ、0.0μM(図中三角形)、1.0μM
(図中黒丸)と2.0μM(図中白丸)である。
FIG. 1 shows the enhancing effect of ethidium iodide on RA-induced terminal differentiation, and the concentration of ethidium iodide was 0.0 μM (triangle in the figure) and 1.0 μM, respectively.
(Black circle in the figure) and 2.0 μM (white circle in the figure).

【図2】 酢酸、酪酸、ヘキサン酸とフェニル酢酸の分
化誘導補助剤としての効果を示す図。
FIG. 2 is a diagram showing the effect of acetic acid, butyric acid, hexanoic acid and phenylacetic acid as differentiation-inducing aids.

【図3】 メチルフェニルアセトアミドの分化誘導補助
剤としての活性とそれによる細胞阻害効果を示す図。
FIG. 3 is a graph showing the activity of methylphenylacetamide as a differentiation-inducing auxiliary agent and the cell-inhibitory effect thereof.

【図4】 エチルフェニルアセトアミドの分化誘導補助
剤としての活性とそれによる細胞阻害効果を示す図。
FIG. 4 is a graph showing the activity of ethylphenylacetamide as a differentiation-inducing auxiliary agent and the cell-inhibitory effect thereof.

【図5】 フェニル酢酸エチルエステルの分化誘導補助
剤としての活性とそれによる細胞阻害効果を示す図。
FIG. 5 is a graph showing the activity of phenylacetic acid ethyl ester as a differentiation-inducing auxiliary agent and the cell-inhibitory effect thereof.

【図6】 2,4ージクロロフェニル酢酸の分化誘導補
助剤としての活性とそれによる細胞阻害効果を示す図。
FIG. 6 is a graph showing the activity of 2,4-dichlorophenylacetic acid as a differentiation-inducing aid and the cell-inhibitory effect thereof.

【図7】 インドール酢酸の分化誘導補助剤としての活
性とそれによる細胞阻害効果を示す図。
FIG. 7 is a graph showing the activity of indoleacetic acid as a differentiation-inducing aid and the cell-inhibitory effect thereof.

【図8】 インドール酢酸の末期分化に対する誘導効果
を示す図。
FIG. 8 is a graph showing the inducing effect of indole acetate on terminal differentiation.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分化療法と癌の予防に使われる分化誘導
補助剤であるメチルフェニルアセトアミド、エチルフェ
ニルアセトアミド、フェニル酢酸エチルエステル、2,
4ージクロロフェニル酢酸とインドール酢酸から選ばれ
た単一組成や混合組成の製薬組成である癌の分化療法及
び化学予防法に使われる新規分化誘導補助剤。
1. Methylphenylacetamide, ethylphenylacetamide, phenylacetic acid ethyl ester, which are auxiliary agents for differentiation induction used for differentiation therapy and prevention of cancer.
A novel differentiation-inducing aid used for cancer differentiation therapy and chemoprevention, which has a single composition or a mixed composition selected from 4-dichlorophenylacetic acid and indoleacetic acid.
【請求項2】 経口的、非経口的や局所的な投与に適す
る剤形を有する請求項1記載の製薬組成である癌の分化
療法及び化学予防法に使われる新規分化誘導補助剤。
2. A novel differentiation-inducing auxiliary agent for use in the cancer differentiation therapy and chemoprevention method, which is a pharmaceutical composition according to claim 1, having a dosage form suitable for oral, parenteral or topical administration.
【請求項3】 さらに癌の分化療法に使われる分化誘導
剤を有効成分として添加した請求項1記載の製薬組成で
ある癌の分化療法及び化学予防法に使われる新規分化誘
導補助剤。
3. A novel differentiation-inducing auxiliary agent for use in the cancer differentiation therapy and chemoprevention method, which is the pharmaceutical composition according to claim 1, further comprising a differentiation inducer used in cancer differentiation therapy as an active ingredient.
【請求項4】 癌が脳癌と前立腺癌を示す請求項1記載
の製薬組成である癌の分化療法及び化学予防法に使われ
る新規分化誘導補助剤。
4. A novel differentiation-inducing auxiliary agent for use in the cancer differentiation therapy and chemoprevention method, which is the pharmaceutical composition according to claim 1, wherein the cancer represents brain cancer and prostate cancer.
JP5021595A 1995-03-09 1995-03-09 Novel differentiation-inducing aid used for cancer differentiation therapy and chemoprevention method Expired - Fee Related JP2688182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5021595A JP2688182B2 (en) 1995-03-09 1995-03-09 Novel differentiation-inducing aid used for cancer differentiation therapy and chemoprevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5021595A JP2688182B2 (en) 1995-03-09 1995-03-09 Novel differentiation-inducing aid used for cancer differentiation therapy and chemoprevention method

Publications (2)

Publication Number Publication Date
JPH08245376A JPH08245376A (en) 1996-09-24
JP2688182B2 true JP2688182B2 (en) 1997-12-08

Family

ID=12852861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5021595A Expired - Fee Related JP2688182B2 (en) 1995-03-09 1995-03-09 Novel differentiation-inducing aid used for cancer differentiation therapy and chemoprevention method

Country Status (1)

Country Link
JP (1) JP2688182B2 (en)

Also Published As

Publication number Publication date
JPH08245376A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
Burke et al. Hydroxylated aromatic inhibitors of HIV-1 integrase
Stefani et al. Synthesis, biological evaluation and molecular docking studies of 3-(triazolyl)-coumarin derivatives: effect on inducible nitric oxide synthase
KR100309194B1 (en) Antiviral compound
WO2017205115A1 (en) Compounds for the treatment of hepatitis b virus infection
JP2008523082A (en) Nucleotides having antibacterial and anticancer activities
CA2989682A1 (en) Oligonucleotide compositions and methods thereof
Banasik et al. Natural inhibitors of poly (ADP-ribose) polymerase-1
WO1996014857A1 (en) Multicatalytic protease inhibitors
CZ301802B6 (en) Urea derivatives as IMPDH inhibitors and pharmaceutical compositions comprising these derivatives
KR20010031813A (en) Use of quinazoline derivatives as tyrosine kinase inhibitors for treating colonic polyps
JP2015531771A (en) Tenofovir prodrug and its pharmaceutical use
KR20100072230A (en) Azacytidine analogues and uses thereof
EP4306517A1 (en) Triazole derivative, preparation method therefor, and application thereof
JPH10279477A (en) Protein tyrosine kinase inhibitor for suppression of proliferation process in mammal cell, containing benzylidene-and cinnamylidene-malonic nitrile derivative as active ingredient
WO2017013265A1 (en) Metabolically robust analogs of cyp-eicosanoids for the treatment of cardiac disease
US5783605A (en) Helper inducers for differentiation therapy and chemoprevention of cancer
JPWO2006115137A1 (en) 2-Aminobenzimidazole derivatives and their pharmaceutical use
JP2688182B2 (en) Novel differentiation-inducing aid used for cancer differentiation therapy and chemoprevention method
CA2179314A1 (en) Esters and amides of 9(z)-retinoic acid
US9399644B2 (en) [1,3] dioxolo [4,5-G] quinoline-6(5H)thione derivatives as inhibitors of the late SV40 factor (LSF) for use in treating cancer
WO2015081867A1 (en) Gemcitabine derivative, composition containing the derivative and pharmaceutical use of the derivative
CA3230542A1 (en) Novel ras inhibitors
CN106661060A (en) Phenanthroline phosphonic acid derivative and preparation method therefor and application thereof
US5616563A (en) Glutathione N-hydroxycarbamoyl thioesters and method of inhibiting neoplastic growth
KR101425228B1 (en) Dioxolane derivates for the treatment of cancer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees