JP2686882B2 - Cooler operation determination device - Google Patents

Cooler operation determination device

Info

Publication number
JP2686882B2
JP2686882B2 JP4223011A JP22301192A JP2686882B2 JP 2686882 B2 JP2686882 B2 JP 2686882B2 JP 4223011 A JP4223011 A JP 4223011A JP 22301192 A JP22301192 A JP 22301192A JP 2686882 B2 JP2686882 B2 JP 2686882B2
Authority
JP
Japan
Prior art keywords
cooler
energy
exhaled
time
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4223011A
Other languages
Japanese (ja)
Other versions
JPH05240485A (en
Inventor
保朗 山中
寿也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JPH05240485A publication Critical patent/JPH05240485A/en
Application granted granted Critical
Publication of JP2686882B2 publication Critical patent/JP2686882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主に車両に搭載された
クーラの作動状態を判定するクーラの作動判定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooler operation judging device for judging the operation state of a cooler mounted mainly on a vehicle.

【0002】[0002]

【従来の技術】例えば車両に搭載されるクーラは車両へ
の組み込みが完了すると、正常に作動するか否かを判定
する必要があるが、従来では組み立て完了後に実際にク
ーラを作動させ、該クーラの吐出口から吐出される吐気
の温度が低下しているか否かを作業者の官能によって判
定し、温度が低下していないと感じた場合にクーラの作
動状態を不良と判定していた。しかしながら、作業者の
官能による場合には作業者の個人差によって判定結果が
異なる場合があり、また、冬期等吸気温度や周囲の気温
が低い場合には正常に作動していない場合でも正常と判
定するおそれがある。尚、クーラの構成部品であるコン
デンサファンやコンプレッサの電磁クラッチの通電状態
を検知することによりクーラの作動状態を判定すること
は可能であるが、カプラーの取り外し等の作業を行わな
ければならず、作業工数が増加すると共に、検査後にカ
プラーを付け忘れる等の不具合が生じるおそれがある。
そこで、クーラの作動状態の判定を作業者の官能に頼る
のではなく、客観的に、かつ簡便に判定することが望ま
れる。
2. Description of the Related Art For example, when a cooler mounted on a vehicle is installed in the vehicle, it is necessary to determine whether or not the cooler operates normally. The operator's sensory judgment was made as to whether or not the temperature of the air discharged from the discharge port of No. 2 was lowered, and if the temperature was felt not to have fallen, the operating state of the cooler was judged to be defective. However, the judgment result may differ depending on the operator's sensuality depending on the individual difference of the worker, and it is judged to be normal even if it is not operating normally when the intake temperature and ambient temperature are low such as in winter. May occur. Although it is possible to determine the operating state of the cooler by detecting the energization state of the electromagnetic clutch of the condenser fan and compressor, which are the components of the cooler, it is necessary to perform work such as removal of the coupler, As the number of work steps increases, there is a risk of problems such as forgetting to attach the coupler after the inspection.
Therefore, it is desired to make an objective and simple determination of the operating state of the cooler, rather than relying on the operator's sensuality.

【0003】ところで、特開昭56−36029号公報
には、例えば冷暖房機の吐気の温度と相対湿度とを検知
し、該検知データに基づいてエンタルピを演算すること
により冷暖房負荷を求めるエンタルピ測定装置が記載さ
れているが、該エンタルピ測定装置は、測定の対象とな
る冷暖房機等の設置されている雰囲気を一定状態にしな
ければ正確に冷暖房負荷を求めることができない。とこ
ろが上記車載されたクーラの作動状態を判定する場合に
は、クーラが搭載されている車両を恒温室等に配置し車
両全体の雰囲気を一定状態にすることは、技術的には可
能でもコスト等の理由から実際に行うには至らないの
で、車載されたクーラの作動判別に上記公報に記載され
ているエンタルピ測定装置を用いることはできない。
By the way, Japanese Patent Laid-Open No. 56-36029 discloses, for example, an enthalpy measuring device for detecting a temperature and relative humidity of exhaled air from a cooling and heating machine and calculating an enthalpy based on the detected data to obtain a cooling and heating load. However, the enthalpy measuring apparatus cannot accurately obtain the cooling / heating load unless the atmosphere in which the cooling / heating machine or the like to be measured is installed is kept in a constant state. However, when determining the operating state of the vehicle-mounted cooler, it is technically possible, but costly, to place the vehicle equipped with the cooler in a temperature-controlled room or the like to keep the atmosphere of the entire vehicle constant. Therefore, the enthalpy measuring device described in the above publication cannot be used for determining the operation of the cooler mounted on the vehicle because it cannot be actually performed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の問題
点に鑑み、クーラの置かれている雰囲気が一定状態でな
くても該クーラの作動状態を客観的に判別することので
きるクーラの作動判定装置を提供することを目的とす
る。
In view of the above problems, the present invention provides a cooler capable of objectively determining the operating state of the cooler even if the atmosphere in which the cooler is placed is not constant. An object is to provide an operation determination device.

【0005】[0005]

【0006】[0006]

【課題を解決するための手段】 上記目的を達成するため
に、本 発明は、クーラの吐出口から吐出される吐気のエ
ネルギを検知し該検知される吐気エネルギを基にクーラ
の作動状態の良否を判定するクーラの作動判定装置にお
いて、クーラの雰囲気の状態を検知する雰囲気検知手段
と、所定の雰囲気からの作動による吐気エネルギの経時
変化率の極大値とこの時の吸気温度とを基準データとし
て予め記憶する記憶手段とを備え、検知される実際の吐
気エネルギの経時変化率の極大値をこの時の吸気温度と
基準データの吸気温度との温度差に基づいて比較データ
に変換すると共に、該比較データと基準データの極大値
とを比較し、両データの偏差が所定の正常範囲外の場合
に上記クーラの作動状態を不良と判定する作動判定手段
を有することを特徴とする。
[MEANS FOR SOLVING THE PROBLEMS] To achieve the above object
According to the present invention, there is provided a cooler operation determination device for detecting the energy of exhaled gas discharged from a discharge port of a cooler and determining whether the operating state of the cooler is good or bad based on the detected exhaled energy. The actual detected exhaled gas is provided with an atmosphere detecting means for detecting the above, and a storage means for preliminarily storing the maximum value of the rate of change over time of the exhaled energy due to the operation from the predetermined atmosphere and the intake air temperature at this time as reference data. The maximum value of the rate of change of energy with time is converted into comparison data based on the temperature difference between the intake air temperature at this time and the intake temperature of the reference data, and the comparison data and the maximum value of the reference data are compared, and both data are compared. When the deviation of is outside a predetermined normal range, it has an operation determination means for determining the operation state of the cooler as defective.

【0007】[0007]

【作用】測定により求められる実際の吐気エネルギの経
時変化率の極大値を該測定時の実際の雰囲気状態に応じ
て上記基準データと比較可能な比較データに変換し、上
記基準データに対する該比較データの偏差が許容される
正常範囲から外れる場合にはクーラの作動を不良と判断
することにより、クーラの雰囲気が変化しても基準デー
タと比較データとを比較し得るようにし、クーラの作動
判定に対する雰囲気の影響を排除するようにした。
[Action] through of actual nausea energy, which is determined by measurement
When the maximum value of the time change rate is converted into comparison data that can be compared with the reference data according to the actual atmosphere condition at the time of measurement, and the deviation of the comparison data from the reference data is out of the allowable normal range, Determines that the cooler operation is defective so that the reference data and the comparison data can be compared even if the cooler atmosphere changes, and the influence of the atmosphere on the cooler operation determination is eliminated.

【0008】尚、クーラの作動が開始されると、吸入さ
れた空気が冷やされても吐出されるまでに送風通路壁面
等から熱伝達を受けるため吐気エネルギは緩やかに減少
するが、送風通路壁面等からの熱伝達量が減少するに従
い吐気エネルギの減少率は増加し、その後吸気温度の低
下に伴って吐気エネルギの減少率は低下する。従ってク
ーラ作動開始後所定時間経過時に吐気エネルギの変化率
は極大となる。この吐気エネルギの変化率が極大となる
所定時間は作動開始時の雰囲気状態により変化するの
で、作動開始からの経過時間ではなく吐気エネルギの変
化率が極大となる時点を基準として、この変化率の極大
値、即ち吐気エネルギの変化の変曲点における勾配につ
いて基準データと比較データとを比較することにした。
尚、基準データとなる極大値が生じた時点の吸気温度と
比較データの基になる極大値が生じた時点の吸気温度と
の温度差に基づいてこの極大値を補正し比較データを得
るようにした。
When the operation of the cooler is started, even if the sucked air is cooled, heat is transferred from the wall surface of the air passage or the like until the air is discharged, so that the exhaust gas energy is gradually reduced. The rate of decrease in exhaled energy increases as the amount of heat transfer from the same decreases, and thereafter, the rate of decrease in exhaled energy decreases as the intake air temperature decreases. Therefore, the change rate of the exhalation energy becomes maximum when a predetermined time has elapsed after the start of the cooler operation. Since the predetermined time when the rate of change of the exhaled energy becomes maximum varies depending on the atmospheric state at the time of starting the operation, the change rate of this change rate is set not as the elapsed time from the start of the operation but at the time when the rate of change of the exhaled energy becomes maximum. It was decided to compare the reference data and the comparison data with respect to the maximum value, that is, the slope at the inflection point of the change in exhaled energy.
It should be noted that the maximum value is corrected based on the temperature difference between the intake temperature at the time when the maximum value that is the reference data is generated and the intake temperature at the time when the maximum value that is the basis of the comparison data is generated to obtain the comparison data. did.

【0009】[0009]

【実施例】図1は車両に搭載されたクーラの作動状態を
判定する場合の実施例について示すものであり、1はク
ーラにより冷却された空気が吐出される吐出口11にセ
ットされ、該吐出口11からの吐気エネルギを検知する
エネルギセンサである。該エネルギセンサ1には該吐気
の温度Toutを検知する熱電対等の周知の温度センサ
と、吐気の相対湿度Houtを検知する周知の湿度センサ
とが格納されている。また、該エネルギセンサ1には吐
出口11からの吐気の風速Vを検知する周知の風速セン
サも合わせて格納されている。一方、クーラの吸気口2
1には車両内の雰囲気を検知する雰囲気センサ2がセッ
トされており、該雰囲気センサ2にも上記エネルギセン
サ1と同様、吸気の温度Tinを検知する周知の温度セン
サと、吸気の相対湿度Hinを検知する周知の湿度センサ
とが格納されている。そして、エネルギセンサ1及び雰
囲気センサ2からの検知信号は、A/Dコンバータや各
センサ作動用電源を備えたセンサ制御装置31を介して
コンピュータ3に入力される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment for determining the operating state of a cooler mounted on a vehicle, where 1 is set at a discharge port 11 from which air cooled by the cooler is discharged, It is an energy sensor that detects the exhaled energy from the outlet 11. The energy sensor 1 stores a known temperature sensor such as a thermocouple that detects the temperature Tout of the exhaled gas and a known humidity sensor that detects the relative humidity Hout of the exhaled gas. The energy sensor 1 also stores a well-known wind speed sensor that detects the wind speed V of the air discharged from the discharge port 11. On the other hand, cooler intake port 2
An atmosphere sensor 2 for detecting the atmosphere inside the vehicle is set in the vehicle 1, and, like the energy sensor 1, the well-known temperature sensor for detecting the temperature Tin of the intake air and the relative humidity Hin of the intake air are also set in the atmosphere sensor 2. A well-known humidity sensor for detecting is stored. Then, the detection signals from the energy sensor 1 and the atmosphere sensor 2 are input to the computer 3 via the sensor control device 31 having an A / D converter and a power supply for operating each sensor.

【0010】該コンピュータ3には、車両内の雰囲気が
所定の状態における吐気エネルギを基に得られる基準デ
ータが記憶されている
The computer 3 stores reference data obtained on the basis of exhaled energy in a predetermined atmosphere of the vehicle .

【0011】[0011]

【0012】ところで、冷却される空気の変化状態は等
圧変化なので、エネルギの変化はエンタルピの変化とし
て示される。従って、周知の公式を用いて吸気温度Tin
及び吸気湿度Hinとから吸気のエンタルピを求め、これ
を吸気のエネルギQinとし、同様に吐気温度Tout及び
吐気湿度Houtから該吐気のエンタルピを求め、これを
吐気のエネルギQoutとすることができ、これら温度、
湿度、及びエネルギの実際の経時変化を図乃至図
示す。尚、各図共に風速Vはコンプレッサのオン・オフ
の影響を受け脈動するのでならし処理を施し、両エネル
ギに該風速Vの脈動の影響が出ないようにしている。
By the way, since the changed state of the cooled air is a constant pressure change, the change in energy is indicated as a change in enthalpy. Therefore, using the well-known formula, the intake air temperature Tin
And the intake air humidity Hin, the intake air enthalpy is obtained, and this is used as the intake air energy Qin. temperature,
Actual changes in humidity and energy over time are shown in FIGS. 2 to 5 . In each figure, the wind speed V pulsates under the influence of the ON / OFF state of the compressor, so a leveling process is performed to prevent both energy from being affected by the pulsation of the wind speed V.

【0013】図において、横軸はクーラ作動開始時から
の経過時間を示しており、各曲線の内、aは吸気の温度
Tin、bは吸気の湿度Hin、cは吸気のエネルギQin、
dは吐気の温度Tout、eは吐気の湿度Hout、fは吐気
のエネルギQoutの各経時変化を示している。
In the figure, the horizontal axis represents the elapsed time from the start of the cooler operation. In each curve, a is the intake air temperature Tin, b is the intake humidity Hin, c is the intake energy Qin, and
d is the temperature Tout of exhalation, e is the humidity Hout of exhalation, and f is the change over time of the energy Qout of exhalation.

【0014】ところで、図及び図に示す、クーラの
作動が正常である場合には該クーラの作動開始後所定時
間経過するとコンプレッサは一旦停止し、その後周期的
に再作動と再停止とを繰り返すので、吐気エネルギQou
tは所定時間経過時までは急速に減少し、その後脈動現
象を生じる。これはコンプレッサが停止すると、エバポ
レータの表面に結露した水滴が吐気中に再蒸発するため
Houtが急速に上昇し、次にコンプレッサが再作動する
とエバポレータの温度が低下し逆に結露が再開されるの
で、湿度Houtはコンプレッサが作動し続けた場合のHo
utに復帰すべく急速に低下することに起因する。一方、
及び図に示すように、クーラのいずれかの部分に
欠陥がありクーラの作動が不良の場合にはエバポレータ
の温度が余り低下しないので該エバポレータに空気中の
水蒸気が結露せず、従って上記のような吐気エネルギQ
outの脈動は見られない。この点に注目し、クーラの作
動開始から所定時間経過後に吐気側の湿度Houtの脈動
の有無を検知し、該脈動の有無によってクーラの作動状
態が正常か否かを判定することも可能である。
By the way, when the operation of the cooler is normal as shown in FIGS. 2 and 3 , the compressor is temporarily stopped after a predetermined time has elapsed after the operation of the cooler is started, and then periodically restarted and restarted. Because it repeats, nausea energy Qou
t decreases rapidly until a predetermined time has elapsed, and then a pulsation phenomenon occurs. This is because when the compressor stops, the water droplets that have condensed on the surface of the evaporator re-evaporate during exhalation, so Hout rises rapidly, and when the compressor restarts, the temperature of the evaporator drops and condensing restarts. , Humidity Hout is Ho when the compressor continues to operate.
It is due to the rapid decrease to return to ut. on the other hand,
As shown in FIG. 4 and FIG. 5, when any part of the cooler is defective and the cooler is not operating properly, the temperature of the evaporator does not drop so much that water vapor in the air does not condense on the evaporator. Nausea energy Q as described above
No pulsation of out is seen. Paying attention to this point, it is possible to detect the presence or absence of the pulsation of the humidity Hout on the discharge side after a lapse of a predetermined time from the start of the operation of the cooler, and determine whether or not the operating state of the cooler is normal based on the presence or absence of the pulsation. .

【0015】実施例の場合には、実際に測定された吐
気エネルギQoutを、吸気温度Tinを基準に補正し、こ
の補正された吐気エネルギQoutと基準状態時における
吐気エネルギQoutとの偏差に基づいて作動判定を行う
ものである。図に基準となる雰囲気で作動させた場合
の吐気エネルギQRの経時変化の状態と吸気温度TRの
経時変化の状態とを示す。尚、該吐気エネルギQRの変
化率をSRで示す。ところでこれら吐気エネルギQR及
び吸気温度TRは上記図に示したデータを、吐気の湿
度Houtの脈動の影響を排除するよう補正したものを用
いている。そして、変曲点Q1での接線の勾配である変
化率SRの極大値S1とこの時の吸気温度T1とを基準
データとして予め記憶しておき、実際にクーラを作動さ
せ検知したデータから風量及び湿度の脈動の影響を排除
したものから得られる吐気エネルギQDの変化率SDの
極大値S2とこの極大値S2が生じる時点の吸気温度T
2とを基に、まず、T1とT2との温度差ΔTをパラメ
ータとする補正係数Kを求め、これをS2に乗じて補正
し比較データであるS3を求め、このS3とS1との偏
差S*が所定の範囲外の場合に作動不良と判定するよう
にした。
In the case of the present embodiment, the actually measured exhalation energy Qout is corrected with reference to the intake air temperature Tin, and based on the deviation between the exhaled energy Qout thus corrected and the exhalation energy Qout in the reference state. The operation is determined by FIG. 6 shows a state in which the exhaled gas energy QR changes with time and a state in which the intake air temperature TR changes with time when operated in a reference atmosphere. The rate of change in the exhaled energy QR is indicated by SR. By the way, the exhalation energy QR and the intake air temperature TR are obtained by correcting the data shown in FIG. 2 so as to eliminate the influence of the pulsation of the exhalation humidity Hout. Then, the maximum value S1 of the rate of change SR, which is the gradient of the tangent line at the inflection point Q1, and the intake air temperature T1 at this time are stored in advance as reference data, and the air volume and the air flow rate are detected from the data actually detected by operating the cooler. The maximum value S2 of the rate of change SD of the exhaled energy QD obtained by eliminating the influence of the pulsation of humidity and the intake air temperature T at the time when this maximum value S2 occurs.
First, a correction coefficient K using the temperature difference ΔT between T1 and T2 as a parameter is calculated based on 2, and is corrected by multiplying S2 by S2, which is the comparison data, and the deviation S between S3 and S1 is calculated. When * is out of the specified range, it is judged as defective operation.

【0016】ところでこの補正係数Kは定性的に下記の
(1)式で示される。尚、x・y・z・wは定数を示
し、eは自然対数の底を示す。一方、温度差ΔTと補正
係数Kとの関係を実験により求めた結果を図に示す。
この図に示す関係から(1)式の各定数を求めること
により、実験式が得られる。
The correction coefficient K is qualitatively expressed by the following equation (1). In addition, x, y, z, and w represent constants, and e represents the base of natural logarithm. On the other hand, FIG. 7 shows a result obtained by an experiment on the relationship between the temperature difference ΔT and the correction coefficient K.
By obtaining the constants of equation (1) from the relationship shown in FIG. 7, the empirical formula is obtained.

【0017】[0017]

【数1】 (Equation 1)

【0018】[0018]

【発明の効果】以上の説明から明らかなように、発明
によれば、クーラの設置されている場所の温度や湿度が
一定でなくても、該クーラの作動状態が正常であるか否
かを客観的に、かつ簡便に判別することができる。
As is apparent from the above description, according to the present invention, whether or not the cooler is operating normally even if the temperature and humidity of the place where the cooler is installed are not constant. Can be determined objectively and easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の構成を示す図FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.

【図2】 Tinが40℃でクーラが正常の場合の検知信
号及び両エネルギの経時変化を示す線図
Fig. 2 Detection signal when Tin is 40 ℃ and cooler is normal
No. and a diagram showing changes in both energies over time

【図3】 Tinが20℃でクーラが正常の場合の検知信
号及び両エネルギの経時変化を示す線図
[Fig.3] Detection signal when Tin is 20 ℃ and cooler is normal
No. and a diagram showing changes in both energies over time

【図4】 Tinが30℃でコンデンサファン及びラジエ
ータファンが停止した場合の検知信号及び両エネルギの
経時変化を示す線図
[Fig. 4] Condenser fan and radiator at Tin of 30 ° C
Of the detection signal and both energies when the data fan stops
Diagram showing changes over time

【図5】 Tinが30℃でコンプレッサが停止した場合
の検知信号及び両エネルギの経時変化を示す線図
[Fig. 5] When the compressor stops at Tin of 30 ° C
Diagram showing the time-dependent change of both detection signals and both energies

【図6】 他の作動判定内容を示す図 FIG. 6 is a diagram showing another operation determination content.

【図7】 補正係数と温度差との関係を実験により求め
た結果を示す図
[FIG. 7] The relationship between the correction coefficient and the temperature difference was found by experiments.
Figure showing the result

【符号の説明】[Explanation of symbols]

1 (吐気側の)エネルギセンサ 2 (吸気側
の)エネルギセンサ 3 コンピュータ 11 吐出口 21
吸気口
1 Energy sensor (on the exhalation side) 2 Energy sensor (on the intake side) 3 Computer 11 Discharge port 21
Air intake

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 クーラの吐出口から吐出される吐気のエ
ネルギを検知し該検知される吐気エネルギを基にクーラ
の作動状態の良否を判定するクーラの作動判定装置にお
いて、クーラの雰囲気の状態を検知する雰囲気検知手段
と、所定の雰囲気からの作動による吐気エネルギの経時
変化率の極大値とこの時の吸気温度とを基準データとし
て予め記憶する記憶手段とを備え、検知される実際の吐
気エネルギの経時変化率の極大値をこの時の吸気温度と
基準データの吸気温度との温度差に基づいて比較データ
に変換すると共に、該比較データと基準データの極大値
とを比較し、両データの偏差が所定の正常範囲外の場合
に上記クーラの作動状態を不良と判定する作動判定手段
を有することを特徴とするクーラの作動判定装置。
1. A cooler operation determination device for detecting the energy of exhaled gas discharged from an outlet of a cooler and judging whether the operating state of the cooler is good or bad based on the detected exhaled energy. The atmosphere detecting means for detecting and the storage means for storing the maximum value of the change rate of the exhaled energy due to the operation from the predetermined atmosphere with time and the intake air temperature at this time as reference data in advance, and the detected actual exhaled energy The maximum value of the change rate with time is converted into comparison data based on the temperature difference between the intake air temperature at this time and the intake temperature of the reference data, and the comparison data and the maximum value of the reference data are compared, and both data are compared. An operation determination device for a cooler, comprising operation determination means for determining the operation state of the cooler as being defective when the deviation is outside a predetermined normal range.
JP4223011A 1991-08-21 1992-08-21 Cooler operation determination device Expired - Fee Related JP2686882B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-209559 1991-08-21
JP20955991 1991-08-21

Publications (2)

Publication Number Publication Date
JPH05240485A JPH05240485A (en) 1993-09-17
JP2686882B2 true JP2686882B2 (en) 1997-12-08

Family

ID=16574834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4223011A Expired - Fee Related JP2686882B2 (en) 1991-08-21 1992-08-21 Cooler operation determination device

Country Status (1)

Country Link
JP (1) JP2686882B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6087152A (en) * 1983-10-19 1985-05-16 Fuji Photo Film Co Ltd Web roll rewinder

Also Published As

Publication number Publication date
JPH05240485A (en) 1993-09-17

Similar Documents

Publication Publication Date Title
US6708508B2 (en) Method of monitoring refrigerant level
US6460354B2 (en) Method and apparatus for detecting low refrigerant charge
CN106989488A (en) The defrosting control method and system of air conditioner and air conditioner
CN109983286B (en) Method for fault mitigation in a vapor compression system
KR100876024B1 (en) How to predict inlet and outlet air conditions of HBC system
EP3545243B1 (en) A method for controlling a vapour compression system during gas bypass valve malfunction
JPH11501114A (en) Feedforward control of expansion valve
EP0751356A3 (en) Air conditioning apparatus
US6471398B2 (en) Temperature management apparatus for foodstuff in storage cabinet
JP3428648B2 (en) Method and apparatus for diagnosing the amount of coolant in an air conditioning system
KR20010043805A (en) Method and device cool-drying
US9267726B2 (en) Device and method for cool drying
WO2016047305A1 (en) Control device and control method for bleed device
EP2527656B1 (en) Method for calculating the probability of moisture build-up in a compressor
US20030145614A1 (en) Refrigerating device
US20230040776A1 (en) Virtual sensor for water content in oil circuit
CN106766444B (en) The liquid impact prevention control method and control device and air-conditioning system of air-conditioning system
CN109340992A (en) A kind of operation method, system and air conditioner controlling air-conditioning reliability
JP2686882B2 (en) Cooler operation determination device
JP2005282894A (en) Dehumidifier
CN106595145A (en) Control system and method for preventing compressor from liquid returning
JPH06235577A (en) Clogged filter sensing device for air-cooled condenser
JP2880478B2 (en) Drain discharge controller of refrigeration air dryer and refrigeration air dryer
KR19980018431A (en) Air conditioner
JP2002349974A (en) Refrigeration unit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees