JP2684765B2 - Dynamic pressure gas bearing - Google Patents

Dynamic pressure gas bearing

Info

Publication number
JP2684765B2
JP2684765B2 JP1109846A JP10984689A JP2684765B2 JP 2684765 B2 JP2684765 B2 JP 2684765B2 JP 1109846 A JP1109846 A JP 1109846A JP 10984689 A JP10984689 A JP 10984689A JP 2684765 B2 JP2684765 B2 JP 2684765B2
Authority
JP
Japan
Prior art keywords
foil
runner
wedge
shaped space
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1109846A
Other languages
Japanese (ja)
Other versions
JPH02286908A (en
Inventor
昌尚 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1109846A priority Critical patent/JP2684765B2/en
Publication of JPH02286908A publication Critical patent/JPH02286908A/en
Application granted granted Critical
Publication of JP2684765B2 publication Critical patent/JP2684765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Description

【発明の詳細な説明】 A.発明の目的 (1) 産業上の利用分野 本発明は、航空機のエアサイクルマシン、ヘリウム液
化装置の膨張タービン、自動車のターボチャージャ等の
高速回転機械に使用される軸受に関し、特に、固定部材
と回転部材間に形成された気体膜により荷重を支持する
動圧気体軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Objects of the Invention (1) Field of Industrial Application The present invention is used in high-speed rotating machines such as air cycle machines for aircraft, expansion turbines for helium liquefaction devices, and turbochargers for automobiles. The present invention relates to a bearing, and more particularly to a dynamic pressure gas bearing that supports a load by a gas film formed between a fixed member and a rotating member.

(2) 従来の技術 高速回転機械用に使用される軸受として、たとえば米
国特許第3635534号明細書(クラス308、1972年特許)に
示されているように、固定部材と回転部材間に形成した
楔状の空間により両部材間に薄い気体膜を生じさせ、こ
の気体膜の潤滑作用により荷重を支持する動圧気体軸受
が知られている。このような動圧気体軸受はスラスト軸
受またはジャーナル軸受に適用されている。
(2) Prior Art As a bearing used for a high speed rotating machine, it is formed between a fixed member and a rotating member as shown in, for example, US Pat. No. 3,635,534 (Class 308, 1972 patent). A dynamic pressure gas bearing is known in which a thin gas film is generated between both members by a wedge-shaped space and a load is supported by the lubricating action of this gas film. Such a dynamic pressure gas bearing is applied to a thrust bearing or a journal bearing.

第14図は、このような従来の動圧気体軸受の構造を示
すもので、いずれも荷重支持面の円周に沿う断面を直線
状に展開した状態を示している。
FIG. 14 shows the structure of such a conventional dynamic pressure gas bearing, and each shows a state in which the cross section along the circumference of the load supporting surface is linearly developed.

第14図(A)に示す第1従来例は、固定部材であるベ
ース01上に所定間隔で固着した複数の支持台02を備えて
おり、この支持台02上に3層に積層した補強部材03の上
面には、金属薄板等の可撓性材料で形成した複数のフォ
イル04が止着されている。フォイル04は上向きに傾斜し
た自由端04aを備えており、このフォイル04の上面に対
向して矢印R方向に回転する可動部材としてのランナ05
との間に、初期楔状空間06が形成されている。
The first conventional example shown in FIG. 14 (A) is provided with a plurality of support bases 02 fixed at predetermined intervals on a base 01 which is a fixing member, and reinforcing members laminated on the support base 02 in three layers. A plurality of foils 04 formed of a flexible material such as a thin metal plate are fixed to the upper surface of 03. The foil 04 has a free end 04a inclined upward, and a runner 05 as a movable member that faces the upper surface of the foil 04 and rotates in the direction of arrow R.
An initial wedge-shaped space 06 is formed between and.

この第1従来例によれば、ランナ05が矢印R方向に回
転すると気体が初期楔状空間06に押込まれ、この初期楔
状空間06により形成される気体膜の圧力でランナ05が浮
動状態で支持される。これにより、ランナ05はベース01
に接触することなく回転することができる。
According to the first conventional example, when the runner 05 rotates in the direction of arrow R, gas is pushed into the initial wedge-shaped space 06, and the runner 05 is supported in a floating state by the pressure of the gas film formed by the initial wedge-shaped space 06. It As a result, the runner 05 is the base 01
It can rotate without touching.

第14図(B)に示す第2従来例は、ベース01に設けた
複数の支持台02上に載置された帯状のフォイル04を備え
ており、各支持台02の後部近傍において、ランナ05に対
向するフォイル04の上面に小さな窪み04bが形成されて
いる。
The second conventional example shown in FIG. 14 (B) includes a strip-shaped foil 04 placed on a plurality of support bases 02 provided on the base 01, and a runner 05 is provided near the rear portion of each support base 02. A small recess 04b is formed on the upper surface of the foil 04 facing to.

この第2従来例によれば矢印R方向にランナ05が回転
すると、窪み04bに作用する気体圧力により該窪み04bの
部分でフォイル04が下方に屈曲する。したがって、屈曲
したフォイル04の最下点から後続の支持台2の頂部にか
けてランナ05との間に楔状空間が生じ、この楔状空間に
形成される気体膜の圧力により浮動状態で支持されたラ
ンナ05はベース01と非接触で回転することができる。
According to the second conventional example, when the runner 05 rotates in the direction of the arrow R, the foil 04 bends downward in the recess 04b due to the gas pressure acting on the recess 04b. Therefore, a wedge-shaped space is formed between the lowermost point of the bent foil 04 and the top of the subsequent support base 2 and the runner 05, and the runner 05 supported in a floating state by the pressure of the gas film formed in the wedge-shaped space. Can rotate without contact with the base 01.

第14図(C)に示す第3従来例は、ベース01の上面に
突設した多数の微小突起07を備えており、一端をベース
01に止着した帯状のフォイル04が前記微小突起07の上面
に載置されている。微小突起07は円周方向の複数箇所
(例えば3箇所)においてランナ05の回転方向Rに沿っ
て次第に高さが増加するように形成されており、この部
分でランナ05とフォイル04間に初期楔状空間06が形成さ
れる。したがって、この初期楔状空間06およびそれより
下流側(図中、右側)に形成される気体膜の圧力により
浮動状態で支持されたランナ05はベース01と非接触で回
転することができる。
The third conventional example shown in FIG. 14 (C) is equipped with a large number of minute projections 07 projectingly provided on the upper surface of the base 01, and one end of which is the base.
A strip-shaped foil 04 fixed to 01 is placed on the upper surface of the minute projection 07. The micro-projections 07 are formed so that the height gradually increases along the rotation direction R of the runner 05 at a plurality of locations (for example, three locations) in the circumferential direction, and in this portion, an initial wedge shape is formed between the runner 05 and the foil 04. A space 06 is formed. Therefore, the runner 05 supported in a floating state by the pressure of the gas film formed on the initial wedge-shaped space 06 and on the downstream side (the right side in the drawing) of the initial wedge-shaped space 06 can rotate without contact with the base 01.

(3) 発明が解決しようとする課題 しかしながら、上記第1従来例の動圧気体軸受は、多
数の微細なフォイル04の自由端04aを傾斜状態に屈曲さ
せる加工が極めて面倒であるばかりか、回転開始時にラ
ンナ05に接触したフォイル04の自由端04aが偏平状態に
押圧されて初期楔状空間06が消滅してしまい、充分な圧
力上昇が得られないという問題がある。
(3) Problems to be Solved by the Invention However, in the dynamic pressure gas bearing of the first conventional example, not only is it extremely troublesome to bend the free ends 04a of a large number of fine foils 04 into an inclined state, but also rotation is difficult. There is a problem that the free end 04a of the foil 04 that is in contact with the runner 05 at the start is pressed into a flat state and the initial wedge-shaped space 06 disappears, so that a sufficient pressure increase cannot be obtained.

また、上記第2従来例の動圧気体軸受は、フォイル04
に形成した窪み04bが小さいため、この部分における回
転開始時の圧力上昇が不十分になり、充分な楔状空間が
形成されるまでフォイル04を屈曲させることが困難であ
る。これを防ぐためにフォイル04の板厚を小さく設定す
ると、このフォイル04の剛性が不足して負荷容量が低下
するという問題がある。また、窪み04bに異物が詰まり
やすく、耐久性に欠けるという問題もある。
The dynamic pressure gas bearing of the second conventional example is a foil 04
Since the dent 04b formed in 1 is small, the pressure increase at the start of rotation in this portion is insufficient, and it is difficult to bend the foil 04 until a sufficient wedge-shaped space is formed. If the plate thickness of the foil 04 is set small in order to prevent this, there is a problem that the rigidity of the foil 04 is insufficient and the load capacity is reduced. Further, there is also a problem that the recesses 04b tend to be clogged with foreign matter and lack in durability.

更に、上記第3従来例の動圧気体軸受は、フォイル04
が微小突起07間で下方に撓んで小さな凹凸が生じ、この
ために負荷容量が低下するだけでなく、回転開始時およ
び回転停止時にランナ05下面のほぼ全域に摩擦力が作用
して耐久性が低下する問題がある。また、回転中に作用
する楔状空間が数個の初期楔状空間06だけであるため、
ランナ05が傾斜してコニカルな運動をした時に充分な負
荷容量が得られない問題がある。
Further, the dynamic pressure gas bearing of the third conventional example is a foil 04
Is bent downward between the minute projections 07 to generate small irregularities, which not only lowers the load capacity, but also causes frictional force to act on almost the entire lower surface of the runner 05 at the time of starting and stopping the rotation to improve durability. There is a problem of decline. Also, since the wedge-shaped space that acts during rotation is only a few initial wedge-shaped spaces 06,
There is a problem that a sufficient load capacity cannot be obtained when the runner 05 tilts and makes a conical movement.

本発明は、前述の事情に鑑みてなされたもので、回転
開始時および回転中に充分な気体膜を形成することが可
能であり、異物の詰まりや摩擦力に対する耐久性が高
く、しかも負荷容量の大きい動圧気体軸受を提供するこ
とを課題とする。
The present invention has been made in view of the above circumstances, and is capable of forming a sufficient gas film at the start of rotation and during rotation, has high durability against clogging of foreign matter and frictional force, and has a load capacity. An object of the present invention is to provide a dynamic pressure gas bearing having a large size.

B.発明の構成 (1) 課題を解決するための手段 前記課題を解決するために、本発明は、固定部材と回
転部材とを微小な間隔を介して対向させ、これら固定部
材と回転部部材間に形成される気体膜の圧力により両部
材間に作用する荷重を支持する動圧気体軸受において、
前記固定部材側に所定間隔で配設された複数の支持突
起、前記複数の支持突起の上面に支持されて該支持突起
間を架橋するとともに、その一端が前記固定部材に止着
された可撓性を有するフォイルと、前記フォイルの止着
部の近傍において該フォイルと回転部材間に形成された
初期楔状空間とを備え、この初期楔状空間から回転部材
とフォイルの間隙に導入された気体の圧力により、フォ
イルが撓んで隣接する支持突起間に前記初期楔状空間と
同様の複数の楔状空間を繰り返し形成することを特徴と
する。
B. Configuration of the Invention (1) Means for Solving the Problems In order to solve the above problems, the present invention provides a fixing member and a rotating member that face each other with a minute gap therebetween, and these fixing member and the rotating member. In a dynamic pressure gas bearing that supports the load acting between both members due to the pressure of the gas film formed between them,
A plurality of support protrusions arranged at a predetermined interval on the fixing member side, and a flexible member supported by the upper surfaces of the plurality of support protrusions to bridge the support protrusions and one end of which is fixed to the fixing member. And an initial wedge-shaped space formed between the foil and the rotating member in the vicinity of the fixing portion of the foil, and the pressure of the gas introduced from the initial wedge-shaped space into the gap between the rotating member and the foil. Thus, the foil is bent and a plurality of wedge-shaped spaces similar to the initial wedge-shaped space are repeatedly formed between the adjacent support protrusions.

(2) 作用 前述の構成を備えた本発明によれば、回転部材の回転
に伴い、粘性により引摺られて移動する気体がフォイル
との間に形成された初期楔状空間に押込まれると、この
気体の圧力はフォイルの上面に作用し、隣接した支持突
起間を架橋するフォイルを下方に撓ませる。これによ
り、フォイルは波状に屈曲し、その上面に前記初期楔状
空間と同様の複数の楔状空間が繰り返し形成される。し
たがって、前記初期楔状空間と新たに形成された複数の
楔状空間とにより、フォイルと回転部材間に気体膜が形
成され、その圧力で浮動状態で支持された回転部材はフ
ォイルと接触することなく回転することができる。
(2) Operation According to the present invention having the above-described configuration, when the gas that is dragged by the viscosity and moves with the rotation of the rotating member is pushed into the initial wedge-shaped space formed between the foil and the foil, The pressure of the gas acts on the upper surface of the foil, causing the foil bridging between adjacent support projections to deflect downward. As a result, the foil bends in a wave shape, and a plurality of wedge-shaped spaces similar to the initial wedge-shaped space are repeatedly formed on the upper surface of the foil. Therefore, a gas film is formed between the foil and the rotating member by the initial wedge-shaped space and the newly formed wedge-shaped spaces, and the rotating member supported in a floating state by the pressure rotates without contacting the foil. can do.

(3) 実施例 以下、図面に基づいて本発明の動圧気体軸受をスラス
ト軸受に適用した実施例を説明する。なお、各実施例に
おいて対応する構成要素には同一の符号を付すことによ
り重複する詳細な説明は省略する。
(3) Example Hereinafter, an example in which the dynamic pressure gas bearing of the present invention is applied to a thrust bearing will be described with reference to the drawings. In the respective embodiments, corresponding components are designated by the same reference numerals and overlapping detailed description will be omitted.

第1図〜第4図は本発明の第1実施例を示すもので、
第1図はその固定部材であるベースを回転部材であるラ
ンナ側から見た平面図、第2図は第1図の円周方向に沿
う切断線II−IIによる断面図、第3図はその回転開始時
における圧力分布を示す図、第4図はその回転中におけ
る圧力分布を示す図である。
1 to 4 show a first embodiment of the present invention.
FIG. 1 is a plan view of the base, which is the fixed member, as seen from the runner side, which is the rotary member, FIG. 2 is a sectional view taken along the line II-II along the circumferential direction of FIG. 1, and FIG. FIG. 4 is a diagram showing the pressure distribution at the start of rotation, and FIG. 4 is a diagram showing the pressure distribution during the rotation.

第1図および第2図に示すように、この動圧気体軸受
Bは固定部材であるベース1の表面に固着したリング状
の支持台2を備えている。支持台2の中央部に形成した
開口部2a(第1図参照)を貫通する図示しない回転軸に
は、円盤状の回転部材である第2図に示すランナ3が一
体に形成されており、前記支持台2の上面とランナ3の
下面は所定の間隙を介して互いに対向している。
As shown in FIGS. 1 and 2, the dynamic pressure gas bearing B includes a ring-shaped support base 2 fixed to the surface of a base 1 which is a fixing member. A runner 3 shown in FIG. 2, which is a disk-shaped rotating member, is integrally formed on a rotary shaft (not shown) that penetrates an opening 2a (see FIG. 1) formed in the center of the support base 2. The upper surface of the support base 2 and the lower surface of the runner 3 face each other with a predetermined gap.

支持台2の表面には断面矩形状の複数(この実施例に
おいては8個)の支持突起4が放射状に形成されてお
り、この支持突起4の表面には可撓性を有する金属薄板
等で形成したリング状のフォイル5が載置されている。
このフォイル5は円周状の一部において切断されてお
り、その一方の端部において支持台2の表面にスポット
溶接等の手段で止着されている。したがって、この溶接
部6と隣接する支持突起4の間に位置するフォイル5は
斜めに上方に傾斜し、ランナ3との間に該ランナ3の回
転方向(矢印Rで示す)に向けて先細りの初期楔状空間
7が形成される。
A plurality of (8 in this embodiment) support projections 4 having a rectangular cross section are radially formed on the surface of the support base 2. The surface of the support projections 4 is made of a flexible metal thin plate or the like. The formed ring-shaped foil 5 is placed.
This foil 5 is cut in a part of its circumference, and is fixed to the surface of the support base 2 by means such as spot welding at one end thereof. Therefore, the foil 5 located between the welded portion 6 and the adjacent support protrusion 4 is inclined obliquely upward and is tapered between itself and the runner 3 in the rotation direction of the runner 3 (shown by the arrow R). An initial wedge-shaped space 7 is formed.

次に、前述の構成を備えた本発明の実施例の作用につ
いて説明する。
Next, the operation of the embodiment of the present invention having the above-described configuration will be described.

ランナ3が矢印R方向に回転を開始すると、その下面
に接触する気体が粘性により引摺られ、該ランナ3と共
に矢印R方向に移動を始める。ランナ3と共に移動する
気体は、該ランナ3とフォイル5との間に形成された初
期楔状空間7に強制的に押込まれ、フォイル5上面の全
周に薄い気体膜が形成される。上記ランナ3の回転開始
時直後には、フォイル5は全周にわたって平坦な状態に
あり、その気体膜の圧力は第3A図に示す一定の分布とな
る。
When the runner 3 starts rotating in the direction of arrow R, the gas contacting the lower surface of the runner 3 is dragged by the viscosity, and starts to move in the direction of arrow R together with the runner 3. The gas that moves with the runner 3 is forcibly pushed into the initial wedge-shaped space 7 formed between the runner 3 and the foil 5, and a thin gas film is formed on the entire upper surface of the foil 5. Immediately after the start of rotation of the runner 3, the foil 5 is in a flat state over the entire circumference, and the pressure of the gas film has a constant distribution shown in FIG. 3A.

ランナ3の回転開始から時間が経過すると、気体膜の
圧力によって押圧されたフォイル5が隣接する支持突起
4の間において下方に撓み、波状に変形する。このフォ
イル5の変形により第3図(B)に示すように、各支持
突起4の手前位置にそれぞれ前記初期楔状空間7と同様
の楔状空間7aが形成され、気体膜の圧力分布は第3B図に
示すような独立した高圧部を持つようになる。そして、
この圧力は気体膜の厚さが薄くなる支持突起4の上部に
おいて最も大きく、気体膜の厚さが厚くなる支持突起4
間に向けて小さくなる。
After a lapse of time from the start of rotation of the runner 3, the foil 5 pressed by the pressure of the gas film is bent downward between the adjacent support protrusions 4 and is wavy. By this deformation of the foil 5, as shown in FIG. 3 (B), a wedge-shaped space 7a similar to the initial wedge-shaped space 7 is formed at the position in front of each support protrusion 4, and the pressure distribution of the gas film is shown in FIG. 3B. It has an independent high voltage part as shown in. And
This pressure is greatest at the upper part of the support protrusion 4 where the thickness of the gas film is thin, and is large in the support protrusion 4 where the thickness of the gas film is thick.
It becomes smaller in the meantime.

このようにして、ランナ3はフォイル5との間に形成
された気体膜により浮動状態で支持され、フォイル5と
非接触の状態で回転することができる。そして、ランナ
3がベース1に対して傾斜してコニカルな運動をする
と、ランナ3とフォイル5の間隔が部分的に小さくな
り、その部分の気体膜の圧力が増加する。これにより、
傾斜したランナ3に復元力が生じ、安定した回転状態が
保たれる。
In this way, the runner 3 is supported in a floating state by the gas film formed between the runner 3 and the foil 5, and can be rotated without contacting the foil 5. When the runner 3 tilts with respect to the base 1 and makes a conical movement, the gap between the runner 3 and the foil 5 is partially reduced, and the pressure of the gas film at that portion is increased. This allows
A restoring force is generated in the inclined runner 3 and a stable rotation state is maintained.

第4図および第5図は本発明の第2実施例を示すもの
である。
4 and 5 show a second embodiment of the present invention.

この実施例は、フォイル5の下面に剛性のやや大きな
アンダーフォイル8を重ね合わせた2個の半円状の積層
体を有している。この2個の積層体は、フォイル5とア
ンダーフォイル8を溶接部6aで溶着し、アンダーフォイ
ル8と支持台2を溶接部6bで溶着することにより、全体
としてリング状を成すように支持台2に止着されてい
る。
This embodiment has two semicircular laminates in which a slightly rigid underfoil 8 is superposed on the lower surface of the foil 5. In the two laminated bodies, the foil 5 and the underfoil 8 are welded at the welded portion 6a, and the underfoil 8 and the support base 2 are welded at the welded portion 6b, so that the support base 2 has a ring shape as a whole. Is fastened to.

この実施例によれば、ランナ3の回転開始時に2個の
初期楔状空間7の作用で気体膜が速やかに形成される。
また、アンダーフォイル8を積層することにより、フォ
イル5の剛性を調整することができる。しかも、フォイ
ル5とアンダーフォイル8は相対的にスリップ可能であ
るため、その全体の厚さが増加しても用意に撓むことが
でき、ランナ3の回転中にフォイル5が波状に変形して
楔状空間7を形成る作用を妨げることがない。
According to this embodiment, the gas film is quickly formed by the action of the two initial wedge-shaped spaces 7 at the start of the rotation of the runner 3.
By stacking the underfoil 8, the rigidity of the foil 5 can be adjusted. Moreover, since the foil 5 and the underfoil 8 are relatively slippery, they can be easily bent even if the total thickness thereof is increased, and the foil 5 is deformed in a wave shape while the runner 3 is rotated. It does not hinder the action of forming the wedge-shaped space 7.

第6図は本発明の第3実施例を示すものであって、フ
ォイル5に当接する支持突起4の上部にランナ3の回転
方向Rの下流側(図中、右側)が高くなるように傾斜面
4aを形成した点に特徴を有している。
FIG. 6 shows a third embodiment of the present invention, which is inclined so that the downstream side (the right side in the figure) of the runner 3 in the rotation direction R is higher than the upper part of the support protrusion 4 that abuts on the foil 5. surface
It is characterized in that 4a is formed.

この実施例によれば、フォイル5が支持突起4の傾斜
面4aに案内されて初期楔状空間7の形状が規制されると
ともに、フォイル5が波状に変形した際にも、各支持突
起4の手前位置に適切な傾斜角を持った楔状空間7aが形
成される。
According to this embodiment, the foil 5 is guided by the inclined surface 4a of the support protrusion 4 to regulate the shape of the initial wedge-shaped space 7, and even when the foil 5 is deformed into a wavy shape, the front side of each support protrusion 4 is prevented. A wedge-shaped space 7a having an appropriate inclination angle is formed at the position.

また、上述のように支持突起4の上面を傾斜させる代
わりに、第7図に示す第4実施例のように支持突起4の
手前側を切り欠いて段部4bを形成したり、さらに、第8
図に示す第5実施例のように支持突起4の両側に段部4b
を形成してもよく、これにより前記第3実施例と同様の
効果を得ることができる。
Further, instead of inclining the upper surface of the support protrusion 4 as described above, the front side of the support protrusion 4 is cut out to form a step 4b as in the fourth embodiment shown in FIG. 8
Steps 4b are formed on both sides of the support protrusion 4 as in the fifth embodiment shown in the figure.
May be formed, whereby the same effect as that of the third embodiment can be obtained.

第9図は本発明の第6実施例を示すものであり、この
実施例は支持台2の下面に複数の補助突起9を形成した
点に特徴を有している。この補助突起9は支持台2の上
面に形成した支持突起4の中間部に位置するように形成
されており、支持突起4に荷重が加わると隣接する補助
突起9間において支持台2が下方に撓むようになってい
る。
FIG. 9 shows a sixth embodiment of the present invention, which is characterized in that a plurality of auxiliary projections 9 are formed on the lower surface of the support base 2. The auxiliary protrusions 9 are formed so as to be positioned in the middle of the support protrusions 4 formed on the upper surface of the support base 2. When a load is applied to the support protrusions 4, the support bases 2 are moved downward between the adjacent auxiliary protrusions 9. It is designed to bend.

したがって、製作上の誤差等により各支持台突起4上
方のフォイル5とランナ3間に形成される間隙δが不均
一になった場合、前記間隙δの小さい部分において空気
膜の圧力が過大になるが、この過大な圧力が作用した支
持突起4が下方に沈下することにより前記間隙δが増加
し、結果として間隙δを均一化させることができる。
Therefore, when the gap δ formed between the foil 5 and the runner 3 above each support stand projection 4 becomes non-uniform due to manufacturing errors or the like, the pressure of the air film becomes excessive in the portion where the gap δ is small. However, the support protrusions 4 to which this excessive pressure acts sink downward, so that the gap δ increases, and as a result, the gap δ can be made uniform.

第10図は本発明の第7実施例を示すものであり、この
実施例は支持台2を支持突起4を有する上側支持台2a
と、補助突起9を有する下側支持台2bの2層構造とした
ものであり、上記第6実施例のものと同様の効果を得る
ことができる。
FIG. 10 shows a seventh embodiment of the present invention. In this embodiment, the support base 2 has an upper support base 2a having a support protrusion 4.
And the lower support 2b having the auxiliary protrusion 9 has a two-layer structure, and the same effect as that of the sixth embodiment can be obtained.

第11図は本発明の第8実施例を示すものであり、この
実施例はフォイル5の下面に複数の支持突起5aを形成
し、この支持突起5aを平板状の支持台2の上面に当接さ
せた点に特徴を有している。
FIG. 11 shows an eighth embodiment of the present invention. In this embodiment, a plurality of support protrusions 5a are formed on the lower surface of the foil 5, and the support protrusions 5a are brought into contact with the upper surface of the flat plate-shaped support base 2. It has a feature in the point of contact.

この実施例によれば、脆弱なフォイル5が支持台突起
4に直接摺接することがないので、その耐久性を向上さ
せることが可能となる。
According to this embodiment, the fragile foil 5 does not come into direct sliding contact with the support base projection 4, so that the durability thereof can be improved.

第12図は本発明の第9実施例を示すものであり、この
実施例はフォイル5の下面に剛性のやや大きなアンダー
フォイル8を積層し、このアンダーフォイル8の下面に
支持突起8aを一体に形成したものである。
FIG. 12 shows a ninth embodiment of the present invention. In this embodiment, a slightly rigid underfoil 8 is laminated on the lower surface of the foil 5, and a support projection 8a is integrally formed on the lower surface of the underfoil 8. It was formed.

この実施例によれば、前述の第2実施例のものと同様
の効果が得られる。
According to this embodiment, the same effect as that of the second embodiment can be obtained.

第13図は本発明の第10実施例を示すものであり、この
実施例は支持台2を備えておらず、ベース1表面に直接
支持突起1aを形成した点に特徴を有している。
FIG. 13 shows a tenth embodiment of the present invention, which is characterized in that the supporting base 2 is not provided and the supporting protrusion 1a is directly formed on the surface of the base 1.

この実施例によれば、支持台2を省略したことにより
部品点数が減少し、その構造を簡素化することができ
る。
According to this embodiment, since the support base 2 is omitted, the number of parts is reduced and the structure can be simplified.

以上、本発明の実施例を詳述したが、本発明は、前記
実施例に限定されるものではなく、特許請求の範囲に記
載された本発明を逸脱することなく、種々の小設計変更
を行うことが可能である。
As described above, the embodiments of the present invention have been described in detail. However, the present invention is not limited to the above embodiments, and various small design changes can be made without departing from the present invention described in the claims. It is possible to do.

例えば、この動圧気体軸受はスラスト軸受に限らず、
ジャーナル軸受に対しても適用可能である。この場合、
回転軸外周面が円筒状固定部材の内周面に配置されたフ
ォイルにより支持されることとなる。
For example, this dynamic pressure gas bearing is not limited to a thrust bearing,
It is also applicable to journal bearings. in this case,
The outer peripheral surface of the rotating shaft is supported by the foil arranged on the inner peripheral surface of the cylindrical fixing member.

また、フォイル5の分割数は実施例の1個または2個
に限らず、3個以上としてもよい。
Further, the number of divisions of the foil 5 is not limited to one or two in the embodiment, and may be three or more.

また、フォイル5の下面を支持する支持突起をばねで
上方に向けて付勢してもよく、このようにすれば、過大
な荷重が作用した場合前記ばねが圧縮されて支持突起が
沈下し、フォイル5とランナ3との間隙δが自動的に一
定になり、均一な荷重分布を得ることが可能となる。
Further, the support projection supporting the lower surface of the foil 5 may be biased upward by a spring. With this arrangement, when an excessive load is applied, the spring is compressed and the support projection sinks, The gap δ between the foil 5 and the runner 3 automatically becomes constant, and it becomes possible to obtain a uniform load distribution.

C.発明の効果 前述の本発明の動圧気体軸受によれば、回転開始時に
フォイルとランナ間に初期楔状空間が確実に確保される
ため、速やかに気体膜を形成することが可能となる。ま
た、回転中にはフォイルの撓みにより複数の楔状空間が
形成され、この楔状空間と前記初期楔状空間により形成
される気体膜により充分な負荷容量を得ることができ
る。そして、前記楔状空間はフォイルの円周上に多数の
独立した高圧部を構成するため、回転部材のコニカルな
運動に対し、充分な負荷容量を得ることができる。更
に、回転開始および回転停止時の摺動部面積が小さく、
しかも異物の詰まる溝がないので、その耐久性を向上さ
せることが可能となる。
C. Effects of the Invention According to the above-described dynamic pressure gas bearing of the present invention, the initial wedge-shaped space is reliably ensured between the foil and the runner at the start of rotation, so that the gas film can be quickly formed. Further, during rotation, a plurality of wedge-shaped spaces are formed by the deflection of the foil, and a sufficient load capacity can be obtained by the gas film formed by the wedge-shaped spaces and the initial wedge-shaped space. Further, since the wedge-shaped space constitutes a large number of independent high-pressure portions on the circumference of the foil, it is possible to obtain a sufficient load capacity with respect to the conical movement of the rotating member. In addition, the sliding area at the start and stop of rotation is small,
Moreover, since there is no groove in which foreign matter is clogged, its durability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例による動圧気体軸受の平面
図、第2図は第1図のII−II線断面図、第3図(A)お
よび第3図(B)はその作用の説明図、第4図は本発明
の第2実施例による動圧気体軸受の平面図、第5図は第
4図のV−V線断面図、第6図〜第13図はそれぞれ本発
明の第3実施例〜第10実施例を示す断面図、第14図
(A),(B),(C)は従来の動圧気体軸受を示す断
面図である。 1……ベース(固定部材)、1a……支持突起、3……ラ
ンナ(回転部材)、4……支持突起、5……フォイル、
5a……支持突起、7……初期楔状空間、7a……楔状空
間、8a……支持突起
FIG. 1 is a plan view of a dynamic pressure gas bearing according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line II-II of FIG. 1, and FIGS. 3 (A) and 3 (B) show the same. FIG. 4 is a plan view of a dynamic pressure gas bearing according to a second embodiment of the present invention, FIG. 5 is a sectional view taken along line VV of FIG. 4, and FIGS. Sectional views showing the third to tenth embodiments of the invention, and FIGS. 14 (A), (B) and (C) are sectional views showing a conventional dynamic pressure gas bearing. 1 ... Base (fixed member), 1a ... Support protrusion, 3 ... Runner (rotating member), 4 ... Support protrusion, 5 ... Foil,
5a ... Support protrusion, 7 ... Initial wedge-shaped space, 7a ... Wedge-shaped space, 8a ... Support protrusion

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固定部材と回転部材とを微小な間隔を介し
て対向させ、これら固定部材と回転部材間に形成される
気体膜の圧力により両部材間に作用する荷重を支持する
動圧気体軸受において、 前記固定部材側に所定間隔で配設された複数の支持突起
と、前記複数の支持突起の上面に支持されて該支持突起
間を架橋するとともに、その一端が前記固定部材に止着
された可撓性を有するフォイルと、前記フォイルの止着
部の近傍において該フォイルと回転部材間に形成された
初期楔状空間とを備え、この初期楔状空間から回転部材
とフォイルの間隙に導入された気体の圧力により、フォ
イルが撓んで隣接する支持突起間に複数の楔状空間を繰
り返し形成することを特徴とする動圧気体軸受。
1. A dynamic pressure gas in which a fixed member and a rotating member are opposed to each other with a minute gap therebetween, and a load acting between both members is supported by a pressure of a gas film formed between the fixed member and the rotating member. In the bearing, a plurality of support protrusions arranged at a predetermined interval on the side of the fixing member and a bridge between the support protrusions supported by the upper surfaces of the plurality of supporting protrusions and one end of which is fixed to the fixing member. A flexible foil and an initial wedge-shaped space formed between the foil and the rotating member in the vicinity of the fastening portion of the foil, and introduced into the gap between the rotating member and the foil from this initial wedge-shaped space. A dynamic pressure gas bearing, characterized in that the foil bends due to the pressure of the gas to repeatedly form a plurality of wedge-shaped spaces between adjacent support protrusions.
JP1109846A 1989-04-28 1989-04-28 Dynamic pressure gas bearing Expired - Fee Related JP2684765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1109846A JP2684765B2 (en) 1989-04-28 1989-04-28 Dynamic pressure gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1109846A JP2684765B2 (en) 1989-04-28 1989-04-28 Dynamic pressure gas bearing

Publications (2)

Publication Number Publication Date
JPH02286908A JPH02286908A (en) 1990-11-27
JP2684765B2 true JP2684765B2 (en) 1997-12-03

Family

ID=14520679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1109846A Expired - Fee Related JP2684765B2 (en) 1989-04-28 1989-04-28 Dynamic pressure gas bearing

Country Status (1)

Country Link
JP (1) JP2684765B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267605A (en) * 2007-04-23 2008-11-06 Hamilton Sundstrand Corp Fluid bearing, and manufacturing method of fluid bearing
US9157472B2 (en) * 2009-10-07 2015-10-13 Neuros Co., Ltd. Thrust foil air bearing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902049A (en) * 1997-03-28 1999-05-11 Mohawk Innovative Technology, Inc. High load capacity compliant foil hydrodynamic journal bearing
JP4911048B2 (en) * 2008-01-22 2012-04-04 株式会社島津製作所 Dynamic pressure gas bearing
JP6268847B2 (en) 2013-09-19 2018-01-31 株式会社Ihi Thrust bearing
JP6372062B2 (en) * 2013-09-19 2018-08-15 株式会社Ihi Thrust bearing
KR102426608B1 (en) * 2015-11-26 2022-07-29 한온시스템 주식회사 Air foil bearing
KR102441853B1 (en) * 2020-10-15 2022-09-08 ㈜티앤이코리아 Journal foil air bearing with herringbone pattern

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138324U (en) * 1984-08-13 1986-03-10 トヨタ自動車株式会社 Dynamic thrust gas bearing
JPH0833163B2 (en) * 1987-02-07 1996-03-29 大豊工業株式会社 Leaf type oil thrust bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267605A (en) * 2007-04-23 2008-11-06 Hamilton Sundstrand Corp Fluid bearing, and manufacturing method of fluid bearing
JP4615581B2 (en) * 2007-04-23 2011-01-19 ハミルトン・サンドストランド・コーポレイション Fluid bearing and fluid bearing manufacturing method
US8967866B2 (en) 2007-04-23 2015-03-03 Hamilton Sundstrand Corporation Hydrodynamic bearing
US9157472B2 (en) * 2009-10-07 2015-10-13 Neuros Co., Ltd. Thrust foil air bearing

Also Published As

Publication number Publication date
JPH02286908A (en) 1990-11-27

Similar Documents

Publication Publication Date Title
US5961217A (en) High load capacity compliant foil hydrodynamic thrust bearing
US6997613B2 (en) Foil bearing
US6601853B2 (en) Brush seal device
US5110220A (en) Thrust bearing underspring
US6261002B1 (en) Gas dynamic foil bearing
JP2684765B2 (en) Dynamic pressure gas bearing
US4223958A (en) Modular compliant hydrodynamic bearing with overlapping bearing sheet
KR101903865B1 (en) Thrust bearing
JP4973590B2 (en) Dynamic pressure gas bearing
US4597677A (en) Leaf-type foil thrust bearing
EP0228251B1 (en) Fluid thrust bearing
US4871267A (en) Foil thrust bearing
KR20160057456A (en) Thrust bearing
US5871284A (en) Foil thrust bearing set
US4315359A (en) Hydrodynamic compliant thrust bearing and method of making
JPH11503812A (en) Top foil plate for dynamic pressure type fluid film thrust bearing
JP7070714B2 (en) Manufacturing method of thrust foil bearing and base plate of thrust foil bearing
US5399141A (en) Roller supporting structure using a dynamic pressure
US4776077A (en) Method of making a thrust bearing underspring
JP4911048B2 (en) Dynamic pressure gas bearing
CN111664188B (en) Air dynamic pressure bearing and bearing assembly
JPS649495B2 (en)
JPS6165908A (en) Dynamic pressure type thrust bearing
US20230366429A1 (en) Thrust foil bearing
JPH0742981B2 (en) Hydrodynamic journal fluid bearing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees