JP2682471B2 - Underwater sensor with stable wings - Google Patents

Underwater sensor with stable wings

Info

Publication number
JP2682471B2
JP2682471B2 JP26132994A JP26132994A JP2682471B2 JP 2682471 B2 JP2682471 B2 JP 2682471B2 JP 26132994 A JP26132994 A JP 26132994A JP 26132994 A JP26132994 A JP 26132994A JP 2682471 B2 JP2682471 B2 JP 2682471B2
Authority
JP
Japan
Prior art keywords
sensor
underwater sensor
stabilizer
underwater
water flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26132994A
Other languages
Japanese (ja)
Other versions
JPH0899692A (en
Inventor
浩司 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26132994A priority Critical patent/JP2682471B2/en
Publication of JPH0899692A publication Critical patent/JPH0899692A/en
Application granted granted Critical
Publication of JP2682471B2 publication Critical patent/JP2682471B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、船舶,航空機等からケ
ーブルで垂下され、海中のかなりの深度まで沈下し、そ
の後、海上に引揚げられ回収される海中センサに関し、
特に、沈下,引揚げのいずれのときにも海中センサを抵
抗の少ない姿勢に安定的に維持する安定翼を備えた海中
センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater sensor which is hung by a cable from a ship, an aircraft or the like, sinks to a considerable depth in the sea, and then is lifted up and recovered at sea.
In particular, the present invention relates to an underwater sensor having a stabilizing wing that stably maintains the underwater sensor in a posture with low resistance during both subsidence and lifting.

【0002】[0002]

【従来の技術】船舶,航空機等からケーブルで垂下さ
れ、海中のかなりの深度まで沈められ、水中探査等の作
業を行ない、その後、海上に引揚げられ回収される海中
センサにおいては、作業の効率化,広範囲な探査の実施
等を図るため、海中センサの作業と直接関係のない、海
中センサの沈下・引揚げ時間を極力短縮することが要請
される。
2. Description of the Related Art A submarine sensor that is suspended from a ship or aircraft by a cable, sunk to a considerable depth in the sea, performs underwater exploration, etc., and is then salvaged and collected in the sea. In order to promote the realization and wide-ranging exploration, it is required to shorten the subsidence / lifting time of the undersea sensor, which is not directly related to the work of the undersea sensor.

【0003】ここで、海中センサの沈下・引揚げ時間の
短縮を図るためには、海中センサ自体を水の抵抗を最も
少なくする流体力学的構造により形成したり,引揚げ時
の吊下ケーブルの牽引力を大きくするとともに、沈下・
引揚げ時の海中センサの海中における姿勢を垂直方向に
一定に保つことが重要な要因となる。
Here, in order to shorten the subsidence / lifting time of the underwater sensor, the underwater sensor itself is formed by a hydrodynamic structure that minimizes the resistance of water, or the hanging cable of the underwater sensor is pulled up. Greater traction force and
It is an important factor to keep the posture of the underwater sensor at the time of salvage in the sea vertically.

【0004】すなわち、一般に海中センサは可撓性を有
するケーブルのみによって垂下されているので、海中内
を高速で沈下・引揚げされると、海中センサ周囲の水流
により生ずる流体力によって海中センサの姿勢が不安定
となる。このため、たとえ海中センサ自体を水の抵抗の
最も少ない流体力学的構造により形成しても、海中セン
サが左右に傾けばそれだけ流体抵抗が増大してしまい、
結果として、沈下・引揚げに多大な時間が必要となり、
吊下ケーブルにも過大な負担がかかるとともに、ケーブ
ル巻上機等の設備も大型化することとなる。
That is, since the undersea sensor is generally hung only by a flexible cable, when it is submerged and lifted in the sea at high speed, the posture of the undersea sensor is generated by the fluid force generated by the water flow around the undersea sensor. Becomes unstable. Therefore, even if the underwater sensor itself is formed by a hydrodynamic structure with the least water resistance, if the underwater sensor is tilted to the left or right, the fluid resistance will increase accordingly.
As a result, a lot of time is required for sinking and lifting,
The hanging cable is also overloaded, and the equipment such as the cable hoisting machine is also enlarged.

【0005】このような弊害を回避すべく、海中センサ
の沈下・引揚げ時の姿勢を安定的に保つ手段として、海
中センサに安定翼を設ける技術が従来より種々提案され
ている。例えば、特公昭51−10111号公報に記載
の水中変換機では、水中変換機(海中センサ)の上端側
(ケーブル側)に中空円筒形部材を配設するとともに、
下端側に複数個のひれを設け、これらを安定翼として沈
下・引揚げ時の変換機の海中での姿勢を垂直に保つよう
にしている。
In order to avoid such adverse effects, various techniques for providing stabilizing wings on the undersea sensor have been proposed as means for keeping the posture of the undersea sensor stable during subsidence / lifting. For example, in the underwater converter described in Japanese Patent Publication No. 51-10111, a hollow cylindrical member is provided on the upper end side (cable side) of the underwater converter (underwater sensor),
A plurality of fins are provided on the lower end side, and these fins are used as stabilizing wings to maintain the vertical position of the converter in the sea during subsidence / lifting.

【0006】また、特公昭53−11388号公報に
は、海中センサのケーブル側端部に可動式の円錐台形状
のシュラウドを設け、これを安定翼として海中センサの
姿勢を一定に保つための構造体が提案されている。
Further, Japanese Patent Publication No. 53-11388 discloses a structure in which a movable frustoconical shroud is provided at the end of the undersea sensor on the cable side, and this is used as a stabilizing wing to keep the position of the undersea sensor constant. The body is proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特公昭
51−10111号公報記載の水中変換機では、安定翼
が変換機の引揚げ時の姿勢のみを保つ構造となっていた
ため、沈下の際には変換機を安定的に保つことができ
ず、全体的には沈下・引揚げの時間の短縮を図ることが
困難であった。
However, in the underwater converter described in Japanese Patent Publication No. 51-11111, the stabilizing blades have a structure that maintains only the posture when the converter is lifted. It was not possible to keep the converter stable, and it was difficult to reduce the time for sinking / lifting overall.

【0008】また、特公昭53−11388号公報に記
載の構造体にあっても、安定翼が海中センサ引揚げ時の
ためのみに設けられており、上記特公昭51−1011
1号公報の技術と同様の問題を有していた。さらに、両
公報の技術ともに、安定翼が固定式であったため、海中
センサの沈下時には、かえって海中センサの流体抵抗を
増大させてしまうという問題点もあった。
Further, even in the structure disclosed in Japanese Patent Publication No. 53-11388, the stabilizer blades are provided only for lifting the sensor in the sea.
It had the same problem as the technique of Japanese Patent No. 1 publication. Further, in both the techniques disclosed in both publications, since the stabilizer blades are fixed, there is a problem that the fluid resistance of the underwater sensor is increased when the underwater sensor sinks.

【0009】本発明は、このような従来の各技術が有す
る問題を解決するために提案されたものであり、沈下・
引揚げ時の海中センサの姿勢を安定的に垂直に保持する
ことができ、海中センサを高速かつ短時間で沈下,引揚
げできる安定翼付き海中センサの提供を目的とする。
The present invention has been proposed in order to solve the problems of each of the above conventional techniques.
An object of the present invention is to provide an underwater sensor with a stable wing, which can stably hold the posture of the underwater sensor at the time of lifting and can sink and lift the underwater sensor at high speed and in a short time.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
本発明の請求項1記載の安定翼付き海中センサは、船舶
又は航空機等から、吊下ケーブルの一端に取り付けられ
て海中の所定深度まで高速で沈下され、かつ、海中から
高速で引揚げられる海中センサにおいて、沈下時には前
記海中センサが沈下されることにより発生する前記海中
センサ周囲の水流によって展開され、かつ、引揚げ時に
は前記海中センサが引揚げされることにより発生する前
記海中センサ周囲の水流によって格納される可動式の上
部安定翼と、沈下時には前記海中センサが沈下されるこ
とにより発生する前記海中センサ周囲の水流によって格
納され、かつ、引揚げ時には前記海中センサが引揚げさ
れることにより発生する前記海中センサ周囲の水流によ
って展開される可動式の下部安定翼とを具備する構成と
してある。
In order to achieve the above object, the underwater sensor with stabilizer wings according to claim 1 of the present invention is attached to one end of a suspension cable from a ship or an aircraft to a predetermined depth in the sea. A submerged sensor that is submerged at high speed, and that is submerged at high speed from the sea, is developed by a water flow around the submerged sensor that is generated when the submerged sensor is submerged at the time of subsidence, and the submerged sensor is at the time of retraction. A movable upper stabilizing wing that is stored by the water flow around the undersea sensor that is generated by being lifted, and is stored by the water flow around the undersea sensor that is generated when the underwater sensor is submerged during subsidence, and , When it is lifted up, it may be developed by the water flow around the underwater sensor generated when the underwater sensor is lifted up. It is constituted comprising a lower stable wing formula.

【0011】また、請求項2記載の安定翼付き海中セン
サは、前記上部安定翼が、格納時には、前記海中センサ
に設けた凹部と係合することによって前記海中センサの
上端側の側面と一体形状となり、展開時には、安定翼の
表面が前記海中センサの引揚げ方向に傾斜し、前記下部
安定翼が、格納時には、前記海中センサに設けた凹部と
係合することによって前記海中センサの下端側の側面と
一体形状となり、展開時には、安定翼の表面が前記海中
センサの沈下方向に傾斜する構成としてある。
Further, in the undersea sensor with stabilizer blades according to a second aspect of the present invention, the upper stabilizer blade is integrally formed with a side surface on an upper end side of the undersea sensor by engaging with a recess provided in the undersea sensor during storage. When deployed, the surface of the stabilizing wing tilts in the lifting direction of the undersea sensor, and when the lower stabilizing wing is retracted, it engages with a recess provided in the undersea sensor, thereby lowering the lower end side of the undersea sensor. The side surface is integrally formed, and the surface of the stabilizing wing is inclined in the subsidence direction of the undersea sensor when deployed.

【0012】さらに、請求項3記載の安定翼付き海中セ
ンサは、前記上部安定翼が係合する凹部の下側垂直方向
に、この凹部と連通した流面形状の上部水流導入溝を形
成するとともに、前記下部安定翼が係合する凹部の上側
垂直方向に、この凹部と連通した流面形状の下部水流導
入溝を形成した構成としてあり、また、請求項4記載の
安定翼付き海中センサは、前記海中センサの外形が沈下
方向及び/又は引揚げ方向に流線型状をなす構成として
ある。
Further, in the underwater sensor with stabilizer blades according to a third aspect of the present invention, an upper water flow introduction groove having a flow surface shape communicating with the recess is formed in a vertical direction below a recess with which the upper stabilizer is engaged. The underwater sensor with a stabilizing wing according to claim 4, wherein a lower water flow introduction groove having a flow surface shape communicating with the concave is formed in a direction perpendicular to an upper side of the concave with which the lower stabilizing wing engages. The submarine sensor has a streamlined outer shape in the sinking direction and / or the lifting direction.

【0013】[0013]

【作用】上記構成からなる本発明の安定翼付き海中セン
サによれば、海中センサの沈下時には、上部安定翼が展
開するとともに下部安定翼が格納されるので、上部安定
翼によって海中センサの姿勢が保たれ、海中センサは垂
直に沈下する。一方、海中センサの引揚げ時には、上部
安定翼が格納するとともに下部安定翼が展開されるの
で、下部安定翼によって海中センサの姿勢が保たれ、海
中センサは垂直に引揚げられる。
According to the underwater sensor with a stabilizer according to the present invention having the above structure, when the underwater sensor sinks, the upper stabilizer expands and the lower stabilizer is retracted. Retained, the undersea sensor sinks vertically. On the other hand, when the underwater sensor is lifted, the upper stabilizer is retracted and the lower stabilizer is deployed, so that the lower stabilizer maintains the attitude of the underwater sensor and the underwater sensor is lifted vertically.

【0014】[0014]

【実施例】以下、本発明の安定翼付き海中センサの一実
施例について、図面を参照して説明する。図1は、本発
明の一実施例の安定翼付き海中センサの正面図で、
(a)は沈下時、(b)は引揚げ時を示す。図2は、図
1(a)に示す海中センサの上部及び下部安定翼の一部
拡大断面図であり、図3は、図1(b)に示す海中セン
サの上部及び下部安定翼の一部拡大断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of an underwater sensor with a stabilizer wing according to the present invention will be described below with reference to the drawings. FIG. 1 is a front view of an underwater sensor with a stabilizer wing according to an embodiment of the present invention.
(A) shows the time of sinking, (b) shows the time of withdrawal. 2 is a partially enlarged cross-sectional view of the upper and lower stabilizers of the underwater sensor shown in FIG. 1A, and FIG. 3 is a part of the upper and lower stabilizers of the underwater sensor shown in FIG. 1B. It is an expanded sectional view.

【0015】これらの図に示すように、1は海中センサ
で、上端部には吊下ケーブル2が接続されている。海中
センサ1は、この吊下ケーブル2によって、図示しない
船舶,航空機等から垂下されるとともに、同様に図示し
ないケーブル巻上機によって吊下ケーブル2が開放,巻
上されることで海中を沈下・引揚げされる。
As shown in these figures, 1 is an underwater sensor, and a suspension cable 2 is connected to the upper end portion thereof. The underwater sensor 1 is hung down from a ship, an aircraft or the like not shown by this hanging cable 2, and similarly the hanging cable 2 is opened and hoisted by a cable hoist not shown to sink in the sea. Be lifted.

【0016】また、この海中センサ1は、図1に示すよ
うに、海中での海中センサ1自体の流体抵抗を軽減する
べく、外形が水の抵抗を最も少なくした流体力学的構造
となっている。すなわち、海中センサ1は、全体を垂直
方向に長い円柱形状とするとともに、上端及び下端を各
々流線形状に形成してある。
Further, as shown in FIG. 1, the underwater sensor 1 has a hydrodynamic structure in which the water resistance is minimized in order to reduce the fluid resistance of the underwater sensor 1 itself. . That is, the underwater sensor 1 has a columnar shape that is long in the vertical direction, and has an upper end and a lower end each formed in a streamlined shape.

【0017】そして、この上端及び下端の流線形状の傾
斜面に沿って、上部安定翼3及び下部安定翼5が取り付
けてある。これら上部安定翼3及び下部安定翼5は、そ
れぞれ海中センサ1の端部側面をなし、格納状態で海中
センサ1と一体になっている。
The upper stabilizers 3 and the lower stabilizers 5 are attached along the streamlined inclined surfaces of the upper and lower ends. The upper stabilizer 3 and the lower stabilizer 5 form the end side surface of the undersea sensor 1, respectively, and are integrated with the undersea sensor 1 in a stored state.

【0018】上部安定翼3は、図2及び図3に示すよう
に、海中センサ1の上端側に形成した凹部1aに係合
し、海中センサ1の外側水平方向に展開自在に格納され
る。そして、格納した状態では海中センサ1の側面の一
部となって、海中センサ1と一体形状となるように形成
してある。
As shown in FIGS. 2 and 3, the upper stabilizer 3 engages with a recess 1a formed on the upper end side of the underwater sensor 1 and is retractably stored outside the underwater sensor 1 in the horizontal direction. Then, when it is stored, it forms a part of the side surface of the underwater sensor 1 and is formed integrally with the underwater sensor 1.

【0019】すなわち、この上部安定翼3は、海中セン
サ1の側面をなす翼部3aと、この翼部3aを裏面から
支持して凹部1aのさらに内側に形成したガイド穴1b
に移動可能に係合する基部3bとからなり、この基部3
bがガイド穴1b内を移動することによって、翼部3a
が海中センサ1の外側水平方向に展開するようになって
いる。
That is, the upper stabilizer 3 has a wing portion 3a forming a side surface of the undersea sensor 1, and a guide hole 1b formed inside the recess 1a for supporting the wing portion 3a from the back surface.
And a base portion 3b movably engaged with the base portion 3b.
By moving b inside the guide hole 1b, the wings 3a
Are deployed in the horizontal direction outside the underwater sensor 1.

【0020】翼部3aは海中センサ1の上端側の側面の
流線型状の傾斜の一部をなしているので、図3に示すよ
うに、展開時にも表面が引揚げ方向(ケーブル2側)に
傾斜し、引揚げ時に後述する水流が翼部3aの表面に当
たりやすくなっている。なお、翼部3aは、本実施例に
おいては、海中センサ1の側面を垂直方向に二分割した
構成となっているが、これを三分割,四分割等して構成
することもできる。また、海中センサ1の側面の一部の
みを翼部3aとしてもよい。
Since the wing portion 3a forms a part of the streamlined inclination of the side surface on the upper end side of the undersea sensor 1, as shown in FIG. 3, the surface is in the pulling direction (cable 2 side) at the time of deployment. The water flow, which is inclined, makes it easy for a water flow, which will be described later, to hit the surface of the wing portion 3a during lifting. In the present embodiment, the wing portion 3a has a configuration in which the side surface of the undersea sensor 1 is vertically divided into two parts, but it may be divided into three or four parts. Further, only a part of the side surface of the underwater sensor 1 may be the wing portion 3a.

【0021】基部3bは、展開時にガイド穴1bとの係
合が外れないよう、ガイド穴1bの開口部内側と当接す
るストッパが端部に形成してある。さらに、本実施例に
おいては、ガイド穴1b内の水の抵抗により移動が妨げ
られないよう、基部3bとガイド穴1b内壁には隙間が
設けてあるが、これに代えて、基部3bのストッパに水
抜け用の貫通孔を形成するようにしてもよい。
The base portion 3b is formed with a stopper at its end portion which comes into contact with the inside of the opening portion of the guide hole 1b so that the engagement with the guide hole 1b does not come off during the expansion. Further, in this embodiment, a gap is provided between the base portion 3b and the inner wall of the guide hole 1b so that the movement of the guide hole 1b is not hindered by the resistance of water, but instead of this, a stopper of the base portion 3b is used. You may make it form the through-hole for water drainage.

【0022】4は上部水流導入溝で、上部安定翼3が係
合する凹部1aの下側垂直方向に、この凹部1aと連通
した流面形状に形成してある。すなわち、沈下時には、
後述する水流がこの上部水流導入溝4に導かれることに
よって凹部1aに流れ込み、上部安定翼3の翼部3a裏
面に当たるようになっている。
Reference numeral 4 denotes an upper water flow introduction groove, which is formed in a flow surface shape which communicates with the concave portion 1a in the lower vertical direction of the concave portion 1a with which the upper stabilizer 3 is engaged. That is, at the time of subsidence,
A water flow, which will be described later, is introduced into the upper water flow introduction groove 4 to flow into the recess 1 a and hit the back surface of the blade portion 3 a of the upper stabilizer blade 3.

【0023】下部安定翼5は、図2及び図3に示すよう
に、上部安定翼3と同様に構成されており、海中センサ
1の下端側の側面をなす翼部5aと、翼部5aを裏面か
ら支持してガイド穴1dに移動可能に係合する基部5b
とからなり、翼部5aが凹部1cに係合して海中センサ
1と一体となっている。そして、展開時には、翼部5a
の表面が沈下方向(ケーブル2と反対側)に傾斜し、引
揚げ時に水流が翼部5aの表面に当たりやすくなってい
る。
As shown in FIGS. 2 and 3, the lower stabilizer 5 has the same structure as the upper stabilizer 3, and includes a blade portion 5a forming a side surface on the lower end side of the undersea sensor 1 and a blade portion 5a. Base 5b supported from the back side and movably engaged with the guide hole 1d
The wing 5a is engaged with the recess 1c and is integrated with the undersea sensor 1. And, at the time of deployment, the wing portion 5a
The surface of the blade tilts in the sinking direction (the side opposite to the cable 2), so that the water flow easily hits the surface of the blade portion 5a during lifting.

【0024】6は下部水流導入溝で、上部安定翼3に対
する上部水流導入溝4と同様の関係にあり、下部安定翼
5が係合する凹部1cの上側垂直方向に、この凹部1c
と連通した流面形状に形成してある。そして、引揚げ時
に、水流が下部水流導入溝6に導かれ、下部安定翼5の
翼部5a裏面に当たるようになっている。
Reference numeral 6 denotes a lower water flow introduction groove, which has the same relationship as the upper water flow introduction groove 4 with respect to the upper stabilizer vane 3, and is formed vertically above the concave portion 1c with which the lower stabilizer vane 5 engages.
It is formed in a flow surface shape that communicates with. Then, at the time of lifting, the water flow is guided to the lower water flow introduction groove 6 and hits the rear surface of the blade portion 5a of the lower stabilizing blade 5.

【0025】次に、このような構成からなる本実施例の
海中センサの沈下・引揚げ機構の動作について説明す
る。まず、沈下時には、図1(a)に示すように、海中
センサ1が上方から下方に沈下されることにより、相対
的に海中センサ1の下方から上方へ向かう水の流れが発
生する。この水の流れが、上部水流導入溝4に導かれ、
上部安定翼3が外側に押し出されて展開する。
Next, the operation of the submergence / retraction mechanism of the underwater sensor of this embodiment having the above-mentioned structure will be described. First, at the time of subsidence, as shown in FIG. 1A, the submerged sensor 1 is submerged from the upper side to the lower side, so that a flow of water relatively from the lower side to the upper side of the subsea sensor 1 is generated. This water flow is guided to the upper water flow introduction groove 4,
The upper stabilizing wings 3 are pushed outward and deployed.

【0026】すなわち、上部水流導入溝4に導かれた水
の流れは凹部1aに流れ込み(図1(a),図2に示す
矢印A参照)、この水流が上部安定翼3の翼部3a裏面
に当たり、その結果、流体力が海中センサ1の外側水平
方向に作用する。これによって基部3bがガイド穴1b
内を外側に移動し、上部安定翼3が外側水平方向に展開
する。
That is, the flow of water guided to the upper water flow introduction groove 4 flows into the recess 1a (see arrow A shown in FIGS. 1 (a) and 2), and this water flow is the back surface of the blade portion 3a of the upper stabilizer blade 3. As a result, the fluid force acts on the outer horizontal direction of the undersea sensor 1. As a result, the base portion 3b becomes the guide hole 1b.
The inside is moved to the outside, and the upper stabilizing wing 3 is deployed in the outside horizontal direction.

【0027】これと同時に、同じ水の流れによって、下
部安定翼5は格納される。すなわち、水の流れが下部安
定翼5の外側面(翼部5aの表面)に当たり(図1
(a),図2に示す矢印B参照)、その結果、流体力が
海中センサ1の内側水平方向に作用する。これによって
基部5bがガイド穴1d内を内側に移動し、下部安定翼
5は格納される。
At the same time, the lower stabilizer 5 is retracted by the same water flow. That is, the flow of water hits the outer surface of the lower stabilizer 5 (the surface of the blade 5a) (see FIG.
(A), see arrow B in FIG. 2), and as a result, the fluid force acts in the horizontal direction inside the underwater sensor 1. As a result, the base portion 5b moves inward in the guide hole 1d, and the lower stabilizing wing 5 is stored.

【0028】このようにして、海中センサ1の進行方向
に対して後方に位置する上部安定翼3が展開し、海中セ
ンサ1の進行方向に対して前方の下部安定翼5が閉じる
ことにより、海中センサ1の進行方向に対して後方に抵
抗力が生じる。この抵抗力が海中センサ1が傾いた場合
にも、これを真っ直に復元しようとする方向に回転モー
メントを発生させ、海中センサ1を垂直方向に維持する
ことができ、海中センサ1を安定して沈下することがで
きる。
In this way, the upper stabilizing vane 3 positioned rearward with respect to the traveling direction of the undersea sensor 1 is deployed, and the lower stabilizing vane 5 forward of the traveling direction of the undersea sensor 1 is closed, thereby A resistance force is generated rearward with respect to the traveling direction of the sensor 1. Even when the underwater sensor 1 is tilted by this resistance force, a rotational moment can be generated in a direction to restore the underwater sensor 1 in a straight line, so that the underwater sensor 1 can be maintained in the vertical direction and the underwater sensor 1 can be stabilized. Can sink.

【0029】次に、引揚げ時には、図1(b)に示すよ
うに、海中センサ1が下方から上方に引揚げされること
により、上記沈下時とまったく逆に、海中センサ1の上
方から下方へ向かう水の流れが発生し、これによって上
部安定翼3が格納される。
Next, at the time of withdrawal, as shown in FIG. 1 (b), the underwater sensor 1 is withdrawn from below to above, so that, contrary to the above-mentioned subsidence, the underwater sensor 1 is brought down from above. A flow of water towards it occurs, which causes the upper stabilizer 3 to be retracted.

【0030】すなわち、水流が上部安定翼3の外側面に
当たり(図1(b),図3に示す矢印C参照)、その結
果、流体力が海中センサ1の内側水平方向に作用する。
これにより基部3bがガイド穴1b内を移動して上部安
定翼3は格納される。
That is, the water flow hits the outer surface of the upper stabilizer 3 (see arrow C in FIG. 1B), and as a result, the fluid force acts in the horizontal direction inside the undersea sensor 1.
As a result, the base portion 3b moves in the guide hole 1b, and the upper stabilizer 3 is stored.

【0031】同時に、同じ水流により下部安定翼5が展
開する。すなわち、下部水流導入溝6に導かれた水流が
凹部に流れ込み(図1(b),図3に示す矢印D参
照)、この水流が下部安定翼5の翼部5a裏面に当た
り、流体力が海中センサ1の外側水平方向に作用する。
これにより基部5bがガイド穴1d内を移動して下部安
定翼5を展開する。
At the same time, the lower stabilizer 5 is developed by the same water flow. That is, the water flow guided to the lower water flow introduction groove 6 flows into the concave portion (see the arrow D shown in FIG. 1 (b) and FIG. 3), and this water flow hits the back surface of the blade portion 5a of the lower stabilizer blade 5 and the hydrodynamic force is exerted in the sea. It acts in the horizontal direction outside the sensor 1.
As a result, the base portion 5b moves in the guide hole 1d to deploy the lower stabilizing blade 5.

【0032】このようにして、海中センサ1の進行方向
に対して前方に位置する上部安定翼3が格納し、後方に
位置する下部安定翼5が展開することで、上記沈下時と
は逆に海中センサ1の進行方向に対して後方に抵抗力が
生じる。この抵抗力により、海中センサ1を真っ直にし
ようとする方向に回転モーメントが発生し、海中センサ
を垂直方向に維持する。これによって、海中センサ1は
安定的に引揚げられることになる。
In this way, the upper stabilizers 3 located in the forward direction with respect to the traveling direction of the undersea sensor 1 are retracted, and the lower stabilizers 5 located in the rear are deployed, which is the reverse of the above-mentioned subsidence. A resistance force is generated rearward with respect to the traveling direction of the undersea sensor 1. Due to this resistance force, a rotational moment is generated in a direction to straighten the underwater sensor 1, and the underwater sensor is maintained in the vertical direction. As a result, the underwater sensor 1 can be stably pulled up.

【0033】このように、本実施例の安定翼付き海中セ
ンサによれば、海中センサの沈下時には、上部安定翼が
展開するとともに下部安定翼が格納されるので、上部安
定翼によってセンサの姿勢が保たれ海中を垂直に沈下す
る。一方、海中センサの引揚げ時には、上部安定翼が格
納するとともに下部安定翼が展開されるので、下部安定
翼によってセンサの姿勢が保たれ海中を垂直に引揚げら
れる。
As described above, according to the underwater sensor with stabilizer blades of this embodiment, when the underwater sensor sinks, the upper stabilizer blades are deployed and the lower stabilizer blades are retracted. It is kept and sinks vertically in the sea. On the other hand, when the undersea sensor is lifted, the upper stabilizer is retracted and the lower stabilizer is deployed, so that the lower stabilizer maintains the attitude of the sensor and can be lifted vertically in the sea.

【0034】これによって、海中センサは高速で短時間
に海中を沈下・引揚げすることができるとともに、沈下
・引揚げ時のセンサの流体抵抗も大幅に低減することが
できるので、吊下ケーブルにかかる負担を軽減でき、ケ
ーブル巻上機の小型化を図ることもできる。
As a result, the underwater sensor can sink and lift the sea at high speed in a short time, and the fluid resistance of the sensor at the time of sinking and lifting can be significantly reduced. Such a burden can be reduced and the cable hoisting machine can be downsized.

【0035】[0035]

【発明の効果】以上説明したように本発明の安定翼付き
海中センサによれば、沈下・引揚げ時の海中センサの姿
勢を安定的に垂直に保持することができ、海中センサを
高速かつ短時間で沈下,引揚げすることができる。
As described above, according to the underwater sensor with a stabilizer wing of the present invention, the attitude of the underwater sensor at the time of subsidence / lifting can be stably held vertically, and the underwater sensor can be operated at high speed and with a short length. Can be subsided and lifted in time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の沈下・引揚げ機構の正面図
で、(a)は沈下時、(b)は引揚げ時を示す。
FIG. 1 is a front view of a sinking / lifting mechanism according to an embodiment of the present invention, in which (a) shows a sinking state and (b) shows a pulling up state.

【図2】図1(a)に示す海中センサの上部及び下部安
定翼部の一部拡大断面図である。
FIG. 2 is a partially enlarged cross-sectional view of upper and lower stabilizer wings of the underwater sensor shown in FIG. 1 (a).

【図3】図1(b)に示す海中センサの上部及び下部安
定翼部の一部拡大断面図である。
FIG. 3 is a partially enlarged cross-sectional view of upper and lower stabilizer wings of the underwater sensor shown in FIG. 1 (b).

【符号の説明】[Explanation of symbols]

1…海中センサ 2…吊下ケーブル 3…上部安定翼 4…上部水流導入溝 5…下部安定翼 6…下部水流導入溝 DESCRIPTION OF SYMBOLS 1 ... Underwater sensor 2 ... Suspension cable 3 ... Upper stabilizer vane 4 ... Upper water flow introduction groove 5 ... Lower stabilizer vane 6 ... Lower water flow introduction groove

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 船舶又は航空機等から、吊下ケーブルの
一端に取り付けられて海中の所定深度まで高速で沈下さ
れ、かつ、海中から高速で引揚げられる海中センサにお
いて、 沈下時には前記海中センサが沈下されることにより発生
する前記海中センサ周囲の水流によって展開され、か
つ、引揚げ時には前記海中センサが引揚げされることに
より発生する前記海中センサ周囲の水流によって格納さ
れる可動式の上部安定翼と、 沈下時には前記海中センサが沈下されることにより発生
する前記海中センサ周囲の水流によって格納され、か
つ、引揚げ時には前記海中センサが引揚げされることに
より発生する前記海中センサ周囲の水流によって展開さ
れる可動式の下部安定翼と、を具備することを特徴とす
る安定翼付き海中センサ。
1. An underwater sensor that is attached to one end of a suspension cable from a ship or an aircraft and sinks at a high speed to a predetermined depth in the sea, and is pulled up at a high speed from the sea. And a movable upper stabilizing wing that is stored by the water flow around the underwater sensor that is developed by the water flow around the underwater sensor and that is generated when the underwater sensor is lifted during lifting. , Is stored by the water flow around the underwater sensor generated when the underwater sensor is submerged during subsidence, and is expanded by the water flow around the undersea sensor generated when the underwater sensor is pulled up during lifting. An underwater sensor with a stabilizing wing, comprising: a movable lower stabilizing wing.
【請求項2】 前記上部安定翼が、格納時には、前記海
中センサに設けた凹部と係合することによって前記海中
センサの上端側の側面と一体形状となり、展開時には、
安定翼の表面が前記海中センサの引揚げ方向に傾斜し、 前記下部安定翼が、格納時には、前記海中センサに設け
た凹部と係合することによって前記海中センサの下端側
の側面と一体形状となり、展開時には、安定翼の表面が
前記海中センサの沈下方向に傾斜する請求項1記載の安
定翼付き海中センサ。
2. The upper stabilizer is integrally formed with a side surface on an upper end side of the undersea sensor by engaging with a recess provided in the undersea sensor when stored, and when unfolded,
The surface of the stabilizing wing is inclined in the lifting direction of the underwater sensor, and the lower stabilizing wing is integrally formed with the side surface on the lower end side of the underwater sensor by engaging with a recess provided in the underwater sensor during storage. 2. The undersea sensor with a stabilizer wing according to claim 1, wherein the surface of the stabilizer wing inclines in a subsidence direction of the undersea sensor during deployment.
【請求項3】 前記上部安定翼が係合する凹部の下側垂
直方向に、この凹部と連通した流面形状の上部水流導入
溝を形成するとともに、 前記下部安定翼が係合する凹部の上側垂直方向に、この
凹部と連通した流面形状の下部水流導入溝を形成した請
求項2記載の安定翼付き海中センサ。
3. An upper water flow introduction groove having a flow surface shape communicating with the recess is formed in a lower vertical direction of the recess with which the upper stabilizer is engaged, and an upper side of the recess with which the lower stabilizer is engaged is formed. The underwater sensor with a stabilizer wing according to claim 2, wherein a lower water flow introduction groove having a flow surface shape communicating with the recess is formed in a vertical direction.
【請求項4】 前記海中センサの外形が沈下方向及び/
又は引揚げ方向に流線型状をなす請求項1,2又は3記
の安定翼付き海中センサ。
4. The submarine sensor has an outer shape in a sinking direction and / or
Or repatriation direction form a streamlined shape claim 1, 2 or 3 Symbol
Stable winged undersea sensor mounting.
JP26132994A 1994-09-30 1994-09-30 Underwater sensor with stable wings Expired - Fee Related JP2682471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26132994A JP2682471B2 (en) 1994-09-30 1994-09-30 Underwater sensor with stable wings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26132994A JP2682471B2 (en) 1994-09-30 1994-09-30 Underwater sensor with stable wings

Publications (2)

Publication Number Publication Date
JPH0899692A JPH0899692A (en) 1996-04-16
JP2682471B2 true JP2682471B2 (en) 1997-11-26

Family

ID=17360305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26132994A Expired - Fee Related JP2682471B2 (en) 1994-09-30 1994-09-30 Underwater sensor with stable wings

Country Status (1)

Country Link
JP (1) JP2682471B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018899A (en) * 2006-07-14 2008-01-31 Japan Agengy For Marine-Earth Science & Technology Underwater vessel
CN103448891B (en) * 2013-08-12 2015-10-21 湖南科技大学 A kind of folder cable release gear

Also Published As

Publication number Publication date
JPH0899692A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
US8512088B2 (en) Buoy
JP5237155B2 (en) Recovery method of middle-floating floating reef and metal fittings for recovery
JP2682471B2 (en) Underwater sensor with stable wings
EP0220758B1 (en) Device for turning an anchor
EP0585698A1 (en) High-speed lateral-stability hull construction
NL8301831A (en) DEVICE FOR LIGHTING AND REMOVING THE UNDERFRAME OF ANY DISPOSED OFFSHORE CONSTRUCTION.
JP2001130486A (en) Submarine
JP2970625B2 (en) Underwater sensor with stable wings
JP3118172U (en) Power-driven small ship
EP0028896B1 (en) Apparatus for use by a marine vessel in handling anchors
JP2000153798A (en) Posture stabilizing mechanism of underwater sensor
US6226225B1 (en) Expandable marine diverter
JP3191786B2 (en) Attitude stabilization mechanism of underwater sensor
EP0397770A1 (en) Marine launch and recovery arrangement
US6564736B2 (en) Device for installing and/or removing a steerable propulsion pod for a ship
JP2615348B2 (en) Rollover prevention device with wing ring on hull
KR101903077B1 (en) Ship and apparatus for installing azimuth thruster
JPH0699889A (en) Buoyancy device for towed body
US20170080998A1 (en) System, Method, and Apparatus for Stabilizing a Boat
JP2636156B2 (en) 3 float type floating boat stand
JP2020011690A (en) Vessel
CN114671359B (en) Marine hoisting equipment with intelligent compensation anti-inclination function
US4387657A (en) Centerboard snubber
JPS63101190A (en) Float device for refloating sunken matter
JPS60176889A (en) Diving stabilization device for submersible apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees