JP2680823B2 - White spherical adsorbent and method for producing the same - Google Patents

White spherical adsorbent and method for producing the same

Info

Publication number
JP2680823B2
JP2680823B2 JP62309451A JP30945187A JP2680823B2 JP 2680823 B2 JP2680823 B2 JP 2680823B2 JP 62309451 A JP62309451 A JP 62309451A JP 30945187 A JP30945187 A JP 30945187A JP 2680823 B2 JP2680823 B2 JP 2680823B2
Authority
JP
Japan
Prior art keywords
core
activated carbon
white
fine powder
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62309451A
Other languages
Japanese (ja)
Other versions
JPH01151939A (en
Inventor
悌治 佐藤
正範 田中
希一 峯岸
幸一 山田
彰 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Mizusawa Industrial Chemicals Ltd
Original Assignee
Lion Corp
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp, Mizusawa Industrial Chemicals Ltd filed Critical Lion Corp
Priority to JP62309451A priority Critical patent/JP2680823B2/en
Publication of JPH01151939A publication Critical patent/JPH01151939A/en
Application granted granted Critical
Publication of JP2680823B2 publication Critical patent/JP2680823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は白色球状吸着剤及びその製法に関するもの
で、より詳細には広範囲の吸着スペクトルを有し且つ白
色でしかも粉塵飛散のない球状吸着剤及びその製法に関
する。 (従来の技術及びその問題点) 従来、各種気体、揮発性物質、液体等に対する吸着剤
としては粒状活性炭が広く使用されているが、この粒状
活性炭は疎水性の有機ガスや有機化合物には高い吸着性
能を示すが、硫化水素やアンモニアのような極性の強い
低分子量ガス等に対する吸着性能において劣っている。
これを改良するために、酸添着活性炭やアルカリ添着活
性炭が使用されているが、未だその吸着性能において十
分満足し得るものではない。 また、活性炭はその色が通常でないため、輸送時或い
は使用時における粉塵発生の問題があり、耐汚染性に優
れた白色吸着剤の出現が望まれている。 従って、本発明の目的は、広範囲の吸着スペクトルを
有し且つ白色でしかも粉塵飛散のない球状吸着剤及びそ
れを製造し得る方法を提供するにある。 (問題点を解決するための手段) 本発明によれば、粒状活性炭或いは粉末状活性炭を含
む粉末吸着剤と無機又は有機の結合剤との造粒物から成
るコアと、コアの周囲に緻密且つ強固に付着した、ハン
ター白色度が70%以上、隠蔽力(JIS K 5101)が250
cm2/g以下、アンモニア吸着容量が0.1ミリモル/g以上及
び硫化水素吸着容量が0.05ミリモル/g以上の無機白色微
粉末のシェルとから成る粒子構造を有し、且つ該無機白
色微粉末が亜鉛成分及び/又はマグネシウム成分を含む
フィロケイ酸塩又はフィロアルミノケイ酸塩を含有する
ものである白色球状吸着剤が提供される。 本発明によればまた、粒状活性炭或いは粉末状活性炭
を含む粉末吸着剤と無機又は有機の結合剤との造粒物か
ら成るコアとし、ハンター白色度が70%以上、隠蔽力
(JIS K 5101)が250cm2/g以下、アンモニア吸着容
量が0.1ミリモル/g以上及び硫化水素吸着容量が0.05ミ
リモル/g以上であり且つ亜鉛成分及び/又はマグネシウ
ム成分を含むフィロケイ酸塩又はフィロアルミノケイ酸
塩を含有する無機白色微粉末をシエルとして該コアの周
囲に緻密に付着させることを特徴とする白色球状吸着剤
の製法が提供される。前記微粉末のシエルとしての付着
は転動造粒により行うのが望ましい。また、活性炭のコ
アと微粉末シエルとの重量比は2:98乃至80:20、特に5:9
5乃至50:50の範囲にあるのがよい。 (作用) 本発明による球状吸着剤の断面構造を示す第1図にお
いて、この球状吸着剤は、粒状活性炭或いは粉末活性炭
造粒物から成るコア1と、コアの周囲に緻密に付着した
ハンター白色度が70%以上、特に85%以上、隠蔽力(JI
S K 5101)が250cm2/g以下、特に230cm2/g以下、アンモ
ニア吸着容量が0.1ミリモル/g以上、特に0.5ミリモル/g
以上、及び硫化水素吸着容量が0.05ミリモル/g以上、特
に0.1ミリモル/g以上の無機白色微粉末のシエル2とか
ら成っている。この特性を有する無機白色微粉末として
は、具体的には、亜鉛成分及び/又はマグネシウム成分
を含むフイロケイ酸塩或いはフイロアルミノケイ酸亜鉛
が挙げられる。 亜鉛成分及び/又はマグネシウム成分を含むフイロケ
イ酸塩或いはフイロアルミノケイ酸塩は、SiO4或いはSi
O4のAlO4の四面体層とMO6(MはZn及び/又はMgを表わ
す)の八面体層とが二層又は三層に結合した基本構造を
有するものであり、これらの層構成により、塩基性物質
及び酸性物質の両方に対して強い吸着性を示すことが特
徴である。 フイロ(アルミノ)ケイ酸塩は、多層構造の層間に基
ずく物理吸着と、各層に基ずく化学吸着により、各種物
質に対して優れた吸着性能を示すものではあるが、塩基
性物質や酸性物質の化学吸着については水分の影響を受
けにくいとしても、中性の有機物質の物理吸着について
は、水分の影響を受け易いという傾向がある。この問題
は、フイロ(アルミノ)ケイ酸塩の層間では、中性有機
物の吸着に比して水分の吸着の法が優先して生じ易いこ
とによるものである。 一方、活性炭の吸着は、多孔質カーボンの中の微細空
隙による物理吸着によるものであり、中性有機物の吸着
が水分の存在下によっても比較的容易に行われ易いとい
う利点がある。 かくして、本発明に従い、活性炭のコアと上記無機微
粉末のシエルとから成る吸着剤とを使用すると、シエル
が、硫化水素やアンモニアのみならず、アミン類や有機
酸やフエノール類に対して高い吸着性を示すと共に、活
性炭がメルカプタン類、スルフィド類、芳香族炭化水
素、アルデヒド類、アルコール類、アルカロイド類等に
対して高い吸着性を示し、極めて広い吸着スペクトルを
示す吸着剤が得られる。しかもこの吸着性能は水分の共
存下においてもあまり低下しないという利点がある。本
発明の吸着剤は、各種ガスや揮発性成分の吸着処理は勿
論のこと、水或いは各種液体中に含まれる特定成分、例
えば着色成分、有臭成分等の吸着処理に有利に使用され
ることになる。 また、本発明によれば、好ましくない色調の活性炭コ
アの周囲に白色度の高いフイロケイ酸塩やフイロアルミ
ノケイ酸塩が転動造粒等の手段により緻密に付着してい
るため、極めて白色度に優れていると共に、粒子構造も
強固であり、また球状であることから摩耗条件下でも粉
塵の発生が防止されることになる。 (発明の好適態様) 本発明に使用する粒状活性炭本体は石炭、石油残渣、
木炭、果実殻などを水蒸気、炭酸ガスなどのガス賦活法
あるいは塩化亜鉛、リン酸などの薬品賦活法のいずれに
よって得られたものでもよく、BET比表面積が500〜2000
m2/g、粒子の大きさが4〜30メッシュの球状、円筒状、
または不整形の粒状活性炭であれば使用可能であるが、
耐粉化性の点で球状のものが特に好適に使用される。 また、粉末活性炭を、合成樹脂ラテックス各種粘土鉱
物、カオリン、ハロイサイト、ベントナイト、酸性白
土、合成粘土等をバインダーとして上記粘度及びBET比
表面積となるように造粒したものが使用される。 フイロケイ酸塩又はフイロアルミノケイ酸塩を含有す
る無機微粉末としては、ZnO及び/又はMgOを5乃至70重
量%、特に20乃至50重量%で含有し、0.1乃至100μm、
特に1乃至10μmのメジアン径、30乃至900m2/g、特に2
00乃至700m2/gのBET比表面積及び40乃至300ml/100g、特
に70乃至200ml/100gの吸油量を有するものが有利に使用
される。 フイロケイ酸塩又はフイロアルミノケイ酸塩の適当な
例は次の通りである。 特開昭61−10021号、61−275127号及び61−275128号
公報記載のフライポンタイト型フイロアルミノケイ酸亜
鉛。 特開昭61−10020号公報記載の積層不整型層状フイロ
ケイ酸マグネシウム。 特開昭61−10019号公報記載のソーコナイト型フイロ
ケイ酸亜鉛。 特開昭61−116579号公報記載のフライポンタイト型結
晶構造を有するフイロ(アルミノ)ケイ酸マグネシウ
ム。 非結晶で多孔質のシリカ又はシリカアルミナと含アル
ミニウムフイロケイ酸塩層との複合物から成り、3成分
組成比でSiO25乃至60モル%、MO(式中Mは亜鉛及びマ
グネシウムから成る群より選ばれた原子を示す)5乃至
65モル%、及びAl2O3 1乃至60モル%の化学組成を有
し、X線回折で面間隔dx8.40〜6.40Åに実質上ピークを
有していなく、面間隔dx2.71〜2.56Åと面間隔dx1.56〜
1.52Åにピークを有し、比表面積が200m2/g以上で細孔
径10乃至300Åにおける細孔容積が0.25cc/g以上である
複合物。 球状吸着剤は、回転皿、回転円筒或いは回転頭切円錐
内にコア及び湿潤無機微粉末を供給し、凝集造粒物を生
長されることにより好便に製造されるが、勿論造粒法は
これに限定されない。 無機微粉末は、それ単独でシエル形成に用い得る他
に、種々の無機質バインダー或いは有機バインダーとの
組合せでシエル形成に用いることができる。この場合無
機バインダーとしては、水ガラス、天然又は合成のスメ
クタイト型粘土鉱物、シリカゾル、アルミナゾル、シリ
カ−アルミナゾル、チタン酸ゾル等を用いることができ
る。また、有機バインダーとしては、澱粉、シアノ化澱
粉、エチルセルロース、ヒドロキシエチルセルロース、
カルボキシメチルセルロース、ポリビニルアルコール、
無水マレイン酸−ビニルエーテル共重合体、アラビアゴ
ム、トラガントゴム、アルギン酸塩等の水溶性重合体
や、各種合成樹脂や合成ゴムの水性ラテックスが挙げら
れる。 液中でのシエルの崩壊を防止する目的には、合成樹脂
や合成ゴムのラテックスを用いることが好ましく、例え
ば下記に示すものが単独或いは2種以上の組合せで使用
される。 1) ブタジエン重合体またはブタジエンとスチレン、
スチレン誘導体、アクリロニトリル、メタアクリロニト
リル、イソプレン、イソブチレンなどとの共重合体。 2) イソプレンとスチレン、スチレン誘導体との共重
合体。 3) クロロプレン重合体、またはクロロプレンとスチ
レン、スチレン誘導体、アクリロニトリル、イソプレン
との共重合体。 4) アクリル酸エステルとスチレン、スチレン誘導
体、塩化ビニル、酢酸ビニル、アクリロニトリル、メタ
クリル酸エステルとの共重合体。 5) メタクリルニトリル重合体およびメタクリルニト
リルとスチレンなどとの共重合体。 6) 酢酸ビニル重合体、塩化ビニル重合体。 これらをカルボキシ変性などの適当な変性処理を行な
ったものでもよい。 樹脂ラテックス等のバインダーは、固形分として、無
機微粉末当り0.5乃至20重量%、特に1乃至10重量%で
用いるのがよい。球状吸着剤の径は0.5乃至10mm、特に
1乃至5mmの範囲にあることが望ましい。 (発明の効果) 本発明によれば、活性炭をコア及び特定のフイロケン
酸塩又はフイロアルミノケイ酸塩の微粉末をシエルの形
の球状吸着剤としたことにより、単一の粒子から成りな
がら、広範な吸着スペクトルを有する吸着剤が提供でき
た。この吸着剤は白色で粒子構造も強固で、耐摩耗性及
び耐粉塵飛散汚染性にも優れている。 本発明を次の例で説明する。 試験方法 本実施例中における各特性の試験方法はつぎのとおり
である。 1. 隠蔽力測定方法 JIS K 5101顔料試験方法に定める方法によった。 2. BET比表面積 自動BET(比表面積)測定装置(CARLO−ERBA社製Sorp
tomatic Series 1800)により測定した。 BET法の詳細については次の文献を参照すること。 S.Brunauer,P.H.Emmett,E.Teller,J.Am.Ohem.Soc,Vol.6
0、309(1938) なお、本明細書における比表面積の測定はあらかじめ
150℃になるまで乾燥したものを0.5〜1.6g秤量びんにと
り、150℃の恒温乾燥器中で1時間乾燥し、直ちに重量
を精秤する。この試料を吸着試料管に入れ150℃に加熱
し、吸着試料管内の真空度が10-4mmHgに到達するまで脱
気し、放冷後約−196℃の液体窒素中に吸着試料管を入
れ、 PN2/P0=0.05〜0.35 (PN2:窒素ガス圧力,P0=測定時の大気圧) の間で4〜5点N2ガスの吸着量を測定する。そして死容
積を差し引いたN2ガスの吸着量を0℃、1気圧の吸着量
に変換しBET式に代入して、Vm〔ml/g〕(試料面に単分
子層を形成するに必要な窒素ガス吸着量を示す)を求め
る。比表面積が次式により求められる。 S.A=4.35×Vm〔m2/g〕 3. メチレンブルー脱色力 JIS K−1470活性炭試験方法に定める方法によった。 4. ハンター白色度 ハンター白色度を東京電色(株)製オートマチック反
射計TR−600型を用いて測定した。 5. 吸油量(ml/100g) JIS K 5101顔料試験方法にて測定する。供試料は0.5g
とする。 6. アンモニア、硫化水素吸着容量測定方法 第2図に示した装置を用いた。ガス溜3に下記所定濃
度のアンモニアおよび硫化水素をそれぞれ含む完気を充
填し、チューブ式送液定量ポンプ6で200ml/分の流量
で、吸着剤試料を充填したカラム4を通過させる。 検知管5により、通過ガス中にそれぞれのガスが出て
くるまでのガス量を測定して消臭容量(ミリモル/g)を
求めた。 硫化水素:10,000ppm,アンモニア:5000ppm 7. 耐粉塵飛散汚染性 試料100gを300mlのビーカーに採り、マグネチックス
ターラー装置の上に置き、ガラス製の長さ40mm、径7mm
の棒状の回転子を用い、1分間60回転でビーカー中の試
料を撹拌し、そのビーカー上15mmの高さの所に学研製粉
塵測定装置をセットし、30/分の風量で5分間吸引す
ることにより、試料を撹拌することによって発生した粉
塵を測定装置に吸引させ、測定装置内に装着させた紙
面に粉塵を付着させ、その付着粉塵量を試料重量で除し
た値(%)を粉塵飛散率とし、次いでその粉塵付着紙
のハンター白色度(%)(未使用紙のハンター白色度
100%とする相対値)を測定し、下記の基準で耐粉塵飛
散汚染性を評価した。 参考例 1 (フイロアルミノケイ酸塩を含有する無機微粉末の製
造) 3号ケイ酸ソーダ(SiO2:22.0%,Na2O:7.0%)330gと
35%塩酸約80gを用いてpH2〜4の酸性条件下で中和反応
させて調製したシリカゾル加熱によりゲル化させ、水洗
し、シリカヒドロゲルを得た。得られたヒドロゲルを水
とともに家庭用ミキサーにて解砕し、非晶質シリカスラ
リー液(SiO2分:4.8%)を得た(第1工程)。3号ケイ
酸ソーダ205gと水酸化ナトリウム221g(NaOH分:5.5モ
ル)を水に溶かして全量を1とし、これをA液(SiO2
分:0.75モル)とする。一方、塩化亜鉛(無水塩)180g
と塩化アルミニウム(6水塩)241gを水に溶かして全量
を1とし、これをB液(ZnO分:1.2モル,Al2O3分:0.6
モル)とする。第一工程にて得たシリカスラリー液1.5K
g(SiO2分:1.2モル)を5ビーカーにとり、撹拌下、
液温を40℃に保ちながらA液とB液をそれぞれ25cc/分
の速度で同時に注加した。注加終了後この反応液のpHは
約7.2であった。さらに撹拌を続け、1時間熟成した。
反応液を吸引過水洗し、110℃で乾燥した。得られた
ケーキを小型衝撃粉砕機(サンプルミル)を用いて粉砕
し白色微粉末を得た(第2工程)。 得られた白色微粉末のBET比表面積は290m2/g、白色度
は95%、吸油量は150ml/100g、隠蔽力は11cm2/g、メチ
レンブルー脱色力は160ml/g、アンモニア吸着量は1.9ミ
リモル/g、硫化水素吸着容量は3.5ミリモル/gであっ
た。 参考例 2 (フイロケイ酸塩の製造) 新潟県中条町産・酸性白土を粗砕したのち線状に成型
(直径:3mm)したもの250gに、該粘土に含有されている
アルミニウム、マグネシウム、カルシウム、鉄、ナトリ
ウム、カリウム、チタニウム等の塩基性金属成分の全グ
ラム当量数(1.14グラム当量/100g乾燥物)の3.5倍グラ
ム当量数に相当する硫酸、すなわち34%硫酸700mlを加
え、85℃の水浴で15時間加熱し、酸処理を行なった。
過により水洗し、ケーキを得た。該ケーキの少量を110
℃で乾燥し、粉砕し、定量分析するとSiO2分は92.7%
(110℃乾燥物基準)であった。得られたケーキをポッ
トミルに入れ、水を加えて朝鮮ボールとともに湿式粉砕
し、SiO2分を15%含むスラリーを得た。 つぎに得られたスラリー200g(SiO2分:30g)と水酸化
マグネシウム(試薬一級)22gを1のオートクレーブ
容器にとり、更に水370gを加えて、500回転/分の撹拌
条件下で160℃で5時間水熱合成反応を行なった。冷却
後反応物をとりだし、過により水を分離したのち、13
0℃で乾燥した。乾燥品を卓上小型サンプルミルで粉砕
し、白色微粉末を得た。 得られた白色微粉末のBET比表面積は530m2/g、白色度
93%、吸油量は170ml/100g、隠蔽力は6cm2/g、メチレン
ブルー脱色力は210ml/g、アンモニア吸着容量は2.1ミリ
モル/g、硫化水素吸着容量は0.15ミリモル/gであった。 実施例 1 市販球状活性炭(16〜32メッシュ)100gに水を加え、
充分に湿らせたものを転動造粒機に入れ、水をスプレー
ノズルで噴霧しながら、参考例1にて得た白色の複合フ
イロケイ酸亜鉛微粉末100gを徐々に加え転動成型し、球
状の成型物を得これを核とした。 この核を再び転動造粒機に入れ、水をスプレーノズル
で噴霧しながら、さらに参考例1にて得た白色の複合フ
イロケイ酸亜鉛微粉末100gを徐々に加え転動成型し、13
0℃にて12時間乾燥し、白色の球状造粒物を得た。 実施例 2 市販粉末活性炭(成分A)70gと参考例2にて得た白
色のフイロケイ酸マグネシウム微粉末(成分B)30gに
水100gを加え、充分に混練したものを直径1mmの造粒板
を有する押し出し成型機にて成型し、円柱状の造粒物を
得これを核とした。 この核を転動造粒機に入れ、水をスプレーノズルで噴
霧しながら、参考例2にて得た白色のフイロケイ酸マグ
ネシウム微粉末(成分C)100gを徐々に加え転動造粒
し、130℃にて12時間乾燥し、やや灰色の白色球状造粒
物(実施例2−1)を得た。 同様にして成分A、成分B、成分Cをそれぞれ30g、1
5g及び150gとして白色球状造粒物(実施例2−2)を得
た。 実施例 3 市販粉末活性炭70gと参考例2にて得た白色のフイロ
ケイ酸マグネシウム微粉末30gに市販酢酸ビニルエマル
ジョン(濃度約35%)20gを水80gで希釈したもの100gを
加え、充分に混練したものを直径1mmの造粒板を有する
押し出し成型機にて成型し、円柱状の造粒物を得これを
核とした。 この核を転動造粒機に入れ、水で5%の濃度に希釈し
た酢酸ビニルエマルジョンをスプレーノズルで噴霧しな
がら、参考例2にて得た白色のフイロケイ酸マグネシウ
ム微粉末100gを徐々に加え転動造粒し、130℃にて12時
間乾燥し、白色の球状造粒物を得た。 実施例 4 市販球状活性炭(16〜32メッシュ)100gに水80gを加
え、充分に湿らせたものを核とした。 この核を転動造粒機に入れ、水で5%の濃度に希釈し
た酢酸ビニルエマルジョンをスプレーノズルで噴霧しな
がら、参考例2にて得た白色のフイロケイ酸マグネシウ
ム微粉末100gを徐々に加え転動成型し、130℃にて12時
間乾燥し、白色の球状造粒物を得た。 実施例 5 市販粉末活性炭60gと参考例1にて得た白色の複合フ
イロケイ酸亜鉛微粉末40gに平均粒径2μmのカオリン
粉末10gと水100gを加え、充分に混練したものを直径1mm
の造粒板を有する押し出し成型機にて成型し、円柱状の
造粒物を得これを核とした。 この核を転動造粒機に入れ、水をスプレーノズルで噴
霧しながら、参考例1にて得た白色の複合フイロケイ酸
亜鉛微粉末100gに同様のカオリン粉末10gを徐々に加え
転動処理をし、さらにこの造粒物に二酸化チタン粉末20
gを徐々に加え、転動造粒し、130℃にて12時間乾燥し、
白色の球状造粒物を得た。 実施例 6 市販粒状ヤシガラ活性炭(16〜33メッシュ)100gに水
を加え、充分に湿らせたものを転動造粒機に入れ、水を
スプレーノズルで噴霧しながら、参考例1にて得た白色
の複合フイロケイ酸亜鉛微粉末100gを徐々に加え転動造
粒し、球状の造粒物を得これを核とした。 この核を再び転動造粒機に入れ、水をスプレーノズル
で噴霧しながら、さらに参考例1にて得た白色の複合フ
イロケイ酸亜鉛微粉末70gを徐々に加え転動造粒し、130
℃にて12時間乾燥し、白色の球状造粒物を得た。 実施例1、2、3、4、5及び6にて得た球状吸着
剤、比較例1(市販食添用活性炭)及び比較例2(市販
粉末活性炭70gと参考例2による粉末200gとの粉末混合
物)についてアンモニア、硫化水素吸着容量、メチレン
ブルー脱色力を測定した結果を表1に示した。 応用例 実施例1、2、3及び4で得られた吸着剤を使って、
カキ、イガイ、カツオ等の魚介エキス及びしょう油につ
いて第3図に示した装置を用い、第2表の条件で吸着処
理を行なった。次いでそれぞれ吸着剤を分離して回収さ
れた精製液について、これらの味及び臭について5人か
ら成るパネルで対比較法による官能評価を行なった。 BX濃度20乃至40゜の回収精製液をそれぞれBX濃度5゜
に希釈し、50乃至60℃に加温し検液とした。 なお比較としてそれぞれBX濃度20乃至40゜の未処理濃
縮液を調製し、同様にそれぞれBX濃度5゜に希釈し50乃
至60℃に加温し比較検液A2、B2、C2、D2、E2、F2、G2、
H2、I2、J2、K2、L2及びM2とした。 その結果、味について第3表に、香について第4表に
示した。第3表、第4表の表中の数字は回収精製した検
液が未処理の比較検液よりも味または香が良好であると
答えたパネラーの数を示す。
TECHNICAL FIELD The present invention relates to a white spherical adsorbent and a method for producing the same, and more particularly to a white spherical adsorbent having a wide adsorption spectrum and being white and free from dust scattering. And its manufacturing method. (Prior art and its problems) Conventionally, granular activated carbon has been widely used as an adsorbent for various gases, volatile substances, liquids, etc., but this granular activated carbon is high for hydrophobic organic gas and organic compounds. Although it exhibits adsorption performance, it is inferior in adsorption performance to highly polar low molecular weight gases such as hydrogen sulfide and ammonia.
In order to improve this, acid-impregnated activated carbon or alkali-impregnated activated carbon has been used, but its adsorption performance is still unsatisfactory. Further, since the color of activated carbon is not normal, there is a problem of dust generation during transportation or use, and the advent of a white adsorbent having excellent stain resistance is desired. Therefore, an object of the present invention is to provide a spherical adsorbent having a wide adsorption spectrum and being white and free from dust scattering, and a method capable of producing the same. (Means for Solving the Problems) According to the present invention, a core made of a granulated material of granular activated carbon or a powdered adsorbent containing powdered activated carbon and an inorganic or organic binder, and a dense core around the core Strongly adhered, hunter whiteness of 70% or more, hiding power (JIS K 5101) of 250
cm 2 / g or less, ammonia adsorption capacity is 0.1 mmol / g or more and hydrogen sulfide adsorption capacity is 0.05 mmol / g or more having a particle structure consisting of a shell of an inorganic white fine powder, and the inorganic white fine powder is zinc There is provided a white spherical adsorbent containing a phyllosilicate or a phylloaluminosilicate containing a component and / or a magnesium component. According to the present invention, a core composed of a granulated product of a granular adsorbent containing powdered activated carbon or powdered activated carbon and an inorganic or organic binder, has a Hunter whiteness of 70% or more, and a hiding power (JIS K 5101). Of 250 cm 2 / g or less, ammonia adsorption capacity of 0.1 mmol / g or more and hydrogen sulfide adsorption capacity of 0.05 mmol / g or more, and containing a phyllosilicate or a phylloaluminosilicate containing a zinc component and / or a magnesium component. Provided is a method for producing a white spherical adsorbent, which comprises densely adhering an inorganic white fine powder as a shell around the core. The fine powder is preferably adhered as a shell by rolling granulation. The weight ratio of the activated carbon core to the fine powder shell is 2:98 to 80:20, especially 5: 9.
It should be in the range of 5 to 50:50. (Operation) In FIG. 1 showing the cross-sectional structure of the spherical adsorbent according to the present invention, the spherical adsorbent comprises a core 1 made of granular activated carbon or powdered activated carbon granules, and a Hunter whiteness densely adhered around the core. 70% or more, especially 85% or more, hiding power (JI
SK 5101) is 250 cm 2 / g or less, especially 230 cm 2 / g or less, ammonia adsorption capacity is 0.1 mmol / g or more, especially 0.5 mmol / g
The above, and the shell 2 of inorganic fine white powder having a hydrogen sulfide adsorption capacity of 0.05 mmol / g or more, particularly 0.1 mmol / g or more. Specific examples of the inorganic white fine powder having this property include a fluorosilicate or zinc fluoroaluminosilicate containing a zinc component and / or a magnesium component. A fluorosilicate or fluoroaluminosilicate containing a zinc component and / or a magnesium component is SiO 4 or Si.
It has a basic structure in which a tetrahedral layer of Al 4 O 4 of O 4 and an octahedral layer of MO 6 (M represents Zn and / or Mg) are combined in two or three layers. It is characterized by having strong adsorptivity to both basic substances and acidic substances. Phyllo (alumino) silicate has excellent adsorption performance for various substances by physical adsorption based on the layers of the multilayer structure and chemical adsorption based on each layer, but basic substances and acidic substances Although the chemical adsorption of (3) is less likely to be affected by moisture, the physical adsorption of a neutral organic substance tends to be more susceptible to moisture. This problem is due to the fact that the method of adsorbing water tends to occur preferentially between the layers of the fluoro (alumino) silicate as compared with the adsorption of neutral organic substances. On the other hand, the adsorption of activated carbon is due to physical adsorption by fine voids in the porous carbon, which has an advantage that the adsorption of neutral organic matter is relatively easy even in the presence of water. Thus, according to the present invention, the use of an adsorbent comprising a core of activated carbon and the shell of the above inorganic fine powder, the shell has a high adsorption to not only hydrogen sulfide and ammonia but also amines, organic acids and phenols. In addition to exhibiting properties, the activated carbon exhibits high adsorbability for mercaptans, sulfides, aromatic hydrocarbons, aldehydes, alcohols, alkaloids, etc., and an adsorbent having an extremely broad adsorption spectrum is obtained. Moreover, there is an advantage that this adsorption performance does not deteriorate so much even in the presence of water. The adsorbent of the present invention can be advantageously used not only for adsorption treatment of various gases and volatile components, but also for adsorption treatment of specific components contained in water or various liquids, such as coloring components and odorous components. become. Further, according to the present invention, since a highly white fluorosilicate or a fluoroaluminosilicate is densely adhered around the activated carbon core having an undesired color tone by means such as rolling granulation, the whiteness is extremely high. In addition to being excellent, the particle structure is strong, and since it is spherical, generation of dust is prevented even under wear conditions. (Preferred embodiment of the invention) The granular activated carbon body used in the present invention is coal, petroleum residue,
Charcoal, fruit shells and the like may be obtained by any of a gas activation method such as steam and carbon dioxide or a chemical activation method such as zinc chloride and phosphoric acid, and a BET specific surface area of 500 to 2000.
m 2 / g, spherical, cylindrical with a particle size of 4-30 mesh,
Or irregular shaped activated carbon can be used,
Spherical ones are particularly preferably used from the viewpoint of powder resistance. In addition, powdered activated carbon is used by granulating synthetic resin latex various clay minerals, kaolin, halloysite, bentonite, acid clay, synthetic clay, etc. as binders so as to have the above viscosity and BET specific surface area. As the inorganic fine powder containing a fluorosilicate or a fluoroaluminosilicate, ZnO and / or MgO is contained at 5 to 70% by weight, particularly 20 to 50% by weight, and 0.1 to 100 μm,
Especially median diameter of 1 to 10 μm, 30 to 900 m 2 / g, especially 2
Those having a BET specific surface area of 00 to 700 m 2 / g and an oil absorption of 40 to 300 ml / 100 g, in particular 70 to 200 ml / 100 g, are preferably used. Suitable examples of phyllosilicates or fluoroaluminosilicates are: Flypontite-type zinc aluminosilicate described in JP-A-61-10021, 61-275127 and 61-275128. Laminated irregular type layered magnesium fluorosilicate described in JP-A-61-10020. Sauconite type zinc fluorosilicate described in JP-A-61-10019. Fluoro (alumino) magnesium silicate having a flypontite type crystal structure described in JP-A-61-116579. Consists of a composite of amorphous and porous silica or silica-alumina and an aluminum-containing fluorosilicate layer, with a three-component composition ratio of SiO 2 5 to 60 mol%, MO (where M is zinc and magnesium) Showing an atom selected from the group) 5 to
It has a chemical composition of 65 mol% and Al 2 O 3 1 to 60 mol%, has substantially no peak in the interplanar spacing dx8.40 to 6.40Å in X-ray diffraction, and has the interplanar spacing dx2.71 to 2.56. Å and surface spacing dx1.56 ~
A composite having a peak at 1.52 Å, a specific surface area of 200 m 2 / g or more, and a pore volume of 0.25 cc / g or more at a pore diameter of 10 to 300 Å. The spherical adsorbent is conveniently produced by supplying the core and the wet inorganic fine powder into a rotating dish, a rotating cylinder, or a rotating truncated cone, and growing agglomerated granules. It is not limited to this. The fine inorganic powder can be used alone for shell formation, or can be used for shell formation in combination with various inorganic binders or organic binders. In this case, as the inorganic binder, water glass, natural or synthetic smectite type clay mineral, silica sol, alumina sol, silica-alumina sol, titanate sol and the like can be used. Further, as the organic binder, starch, cyanated starch, ethyl cellulose, hydroxyethyl cellulose,
Carboxymethyl cellulose, polyvinyl alcohol,
Examples thereof include water-soluble polymers such as maleic anhydride-vinyl ether copolymer, gum arabic, tragacanth and alginate, and various synthetic resins and aqueous latex of synthetic rubber. For the purpose of preventing the shell from collapsing in the liquid, it is preferable to use a latex of synthetic resin or synthetic rubber. For example, the following are used alone or in combination of two or more kinds. 1) butadiene polymer or butadiene and styrene,
Copolymers with styrene derivatives, acrylonitrile, methacrylonitrile, isoprene, isobutylene, etc. 2) A copolymer of isoprene, styrene and a styrene derivative. 3) A chloroprene polymer or a copolymer of chloroprene and styrene, a styrene derivative, acrylonitrile, or isoprene. 4) Copolymers of acrylic acid esters with styrene, styrene derivatives, vinyl chloride, vinyl acetate, acrylonitrile, and methacrylic acid esters. 5) Methacrylonitrile polymers and copolymers of methacrylnitrile and styrene. 6) Vinyl acetate polymers and vinyl chloride polymers. Those obtained by subjecting these to an appropriate modification treatment such as carboxy modification may be used. The binder such as resin latex is preferably used in a solid content of 0.5 to 20% by weight, particularly 1 to 10% by weight, based on the inorganic fine powder. The diameter of the spherical adsorbent is preferably in the range of 0.5 to 10 mm, particularly 1 to 5 mm. (Effect of the invention) According to the present invention, the activated carbon is a core and a fine powder of a specific phyllokenate or a fluoroaluminosilicate is a spherical adsorbent in the form of shell, so that it is composed of a single particle, An adsorbent having a wide adsorption spectrum could be provided. This adsorbent is white, has a strong particle structure, and is excellent in abrasion resistance and dust scattering resistance. The present invention will be described with the following examples. Test method The test method of each characteristic in the present example is as follows. 1. Hiding power measurement method According to the method specified in JIS K 5101 Pigment Test Method. 2. BET specific surface area Automatic BET (specific surface area) measuring device (Sorp manufactured by CARLO-ERBA)
tomatic Series 1800). For details of the BET method, refer to the following documents. S.Brunauer, PHEmmett, E.Teller, J.Am.Ohem.Soc, Vol.6
0, 309 (1938) It should be noted that the measurement of the specific surface area in this specification is performed in advance.
What was dried to 150 ° C. was placed in a weighing bottle of 0.5 to 1.6 g, dried in a thermostatic oven at 150 ° C. for 1 hour, and immediately weighed precisely. This sample is put into an adsorption sample tube and heated to 150 ° C, degassed until the degree of vacuum in the adsorption sample tube reaches 10 -4 mmHg, and after allowing to cool, put the adsorption sample tube into liquid nitrogen at about -196 ° C. , PN 2 / P 0 = 0.05 to 0.35 (PN 2 : nitrogen gas pressure, P 0 = atmospheric pressure at the time of measurement), measure the adsorption amount of N 2 gas at 4 to 5 points. Then, the adsorption amount of N 2 gas from which the dead volume is subtracted is converted into the adsorption amount at 0 ° C. and 1 atm and substituted into the BET formula to obtain Vm [ml / g] (necessary to form a monolayer on the sample surface. It shows the amount of nitrogen gas adsorbed). The specific surface area is calculated by the following equation. SA = 4.35 x Vm [m 2 / g] 3. Decolorizing power of methylene blue Measured according to JIS K-1470 Activated carbon test method. 4. Hunter whiteness Hunter whiteness was measured using an automatic reflectometer TR-600 type manufactured by Tokyo Denshoku Co., Ltd. 5. Oil absorption (ml / 100g) Measured according to JIS K 5101 pigment test method. Sample is 0.5g
And 6. Method for measuring ammonia and hydrogen sulfide adsorption capacity The apparatus shown in Fig. 2 was used. The gas reservoir 3 is filled with complete air containing the following predetermined concentrations of ammonia and hydrogen sulfide, respectively, and is passed through the column 4 filled with the adsorbent sample at a flow rate of 200 ml / min by the tube type liquid feed metering pump 6. The deodorizing capacity (mmol / g) was determined by measuring the amount of gas until each gas came out in the passing gas through the detector tube 5. Hydrogen sulphide: 10,000ppm, Ammonia: 5000ppm 7. Dust scattering resistance 100g sample is placed in a 300ml beaker and placed on a magnetic stirrer, glass length 40mm, diameter 7mm
Stir the sample in the beaker at 60 rpm for 1 minute using the rod-shaped rotator, and set the Gakken dust measuring device at a height of 15 mm on the beaker and suck at 5 / minute for 5 minutes. As a result, the dust generated by stirring the sample is sucked into the measuring device, the dust is attached to the paper surface mounted inside the measuring device, and the value (%) obtained by dividing the amount of the attached dust by the sample weight is scattered. And then the whiteness of the dust-attached paper (%) (Hunter whiteness of the unused paper
The relative value of 100%) was measured and the dust scattering resistance was evaluated according to the following criteria. Reference Example 1 (Production of inorganic fine powder containing fluoroaluminosilicate) 330 g of sodium silicate No. 3 (SiO 2 : 22.0%, Na 2 O: 7.0%)
Silica sol prepared by neutralizing reaction under acidic conditions of pH 2 to 4 with about 80 g of 35% hydrochloric acid was gelated by heating and washed with water to obtain silica hydrogel. The obtained hydrogel was crushed with a household mixer together with water to obtain an amorphous silica slurry liquid (SiO 2 content: 4.8%) (first step). 205 g of sodium silicate No. 3 and 221 g of sodium hydroxide (NaOH content: 5.5 mol) were dissolved in water to make the total amount 1, and this was liquid A (SiO 2
Min: 0.75 mol). On the other hand, zinc chloride (anhydrous salt) 180g
And 241g of aluminum chloride (hexahydrate) are dissolved in water to make the total amount 1, and this is liquid B (ZnO content: 1.2 moles, Al 2 O 3 content: 0.6).
Mol). 1.5K silica slurry obtained in the first step
g (SiO 2 min: 1.2 mol) is placed in a 5 beaker and stirred,
Solution A and solution B were simultaneously added at a rate of 25 cc / min while maintaining the solution temperature at 40 ° C. After the addition was completed, the pH of this reaction solution was about 7.2. Stirring was further continued and aged for 1 hour.
The reaction solution was washed with suction and water and dried at 110 ° C. The cake obtained was crushed using a small impact crusher (sample mill) to obtain a white fine powder (second step). The BET specific surface area of the obtained white fine powder is 290 m 2 / g, whiteness is 95%, oil absorption is 150 ml / 100 g, hiding power is 11 cm 2 / g, methylene blue decolorization power is 160 ml / g, ammonia adsorption amount is 1.9. The adsorption capacity for hydrogen sulfide was 3.5 mmol / g. Reference Example 2 (Manufacture of phyllosilicate) 250 g of a clay (acid: 3 mm) from Nakajo Town, Niigata Prefecture, which has been roughly crushed and then linearly molded (diameter: 3 mm), contains aluminum, magnesium, and calcium contained in the clay. , Sulfuric acid corresponding to 3.5 times the gram equivalent of all gram equivalents of basic metal components such as iron, sodium, potassium and titanium (1.14 gram equivalent / 100g dry matter), that is, 700 ml of 34% sulfuric acid is added, Acid treatment was carried out by heating in a water bath for 15 hours.
It was washed with water to obtain a cake. 110 a small amount of the cake
After drying at ℃, crushing and quantitative analysis, SiO 2 content is 92.7%
(110 ° C. dry matter standard). The obtained cake was put in a pot mill, water was added, and wet pulverization was performed together with Korean balls to obtain a slurry containing 15% of SiO 2 content. Next, 200 g (SiO 2 min: 30 g) of the obtained slurry and 22 g of magnesium hydroxide (first-grade reagent) were placed in an autoclave container of 1, and 370 g of water was further added, and the mixture was stirred at 500 ° C./min at 160 ° C. for 5 times. The hydrothermal synthesis reaction was carried out for an hour. After cooling, the reaction product was taken out and water was separated by filtration.
Dried at 0 ° C. The dried product was crushed with a small bench sample mill to obtain a white fine powder. The white fine powder obtained has a BET specific surface area of 530 m 2 / g and whiteness
The oil absorption was 93%, the oil absorption was 170 ml / 100 g, the hiding power was 6 cm 2 / g, the methylene blue decolorization power was 210 ml / g, the ammonia adsorption capacity was 2.1 mmol / g, and the hydrogen sulfide adsorption capacity was 0.15 mmol / g. Example 1 Water was added to 100 g of commercially available spherical activated carbon (16 to 32 mesh),
A sufficiently moistened product was put into a tumbling granulator, and 100 g of the white composite zinc fluorosilicate fine powder obtained in Reference Example 1 was gradually added while water was sprayed with a spray nozzle, and tumbling molding was performed. The obtained molded product was obtained and used as the core. This core was put into a tumbling granulator again, and while spraying water with a spray nozzle, 100 g of the white composite zinc fluorosilicate fine powder obtained in Reference Example 1 was gradually added and tumbling molded.
It was dried at 0 ° C for 12 hours to obtain a white spherical granule. Example 2 100 g of water was added to 70 g of commercially available powdered activated carbon (ingredient A) and 30 g of the white magnesium fluorosilicate fine powder (ingredient B) obtained in Reference Example 2 and thoroughly kneaded to form a granulation plate having a diameter of 1 mm. It was molded by an extrusion molding machine having the above to obtain a columnar granulated product, which was used as a core. This core was put into a tumbling granulator, and 100 g of the white magnesium fluorosilicate fine powder (component C) obtained in Reference Example 2 was gradually added while water was sprayed with a spray nozzle to tumbl granulate. The mixture was dried at 0 ° C. for 12 hours to obtain a slightly gray white spherical granule (Example 2-1). In the same manner, add 30 g and 1 g of component A, component B and component C
White spherical granules (Example 2-2) were obtained as 5 g and 150 g. Example 3 To 70 g of commercially available powdered activated carbon and 30 g of the white magnesium fluorosilicate fine powder obtained in Reference Example 2, 100 g of 20 g of commercially available vinyl acetate emulsion (concentration about 35%) diluted with 80 g of water was added and kneaded sufficiently. The product was molded by an extrusion molding machine having a granulation plate with a diameter of 1 mm to obtain a columnar granulated product, which was used as a core. This core was put in a tumbling granulator, and 100 g of the white magnesium fluorosilicate fine powder obtained in Reference Example 2 was gradually added while spraying a vinyl acetate emulsion diluted with water to a concentration of 5% with a spray nozzle. Rolled granulation and drying at 130 ° C. for 12 hours gave white spherical granules. Example 4 80 g of water was added to 100 g of commercially available spherical activated carbon (16 to 32 mesh) and sufficiently moistened to form a core. This core was put in a tumbling granulator, and 100 g of the white magnesium fluorosilicate fine powder obtained in Reference Example 2 was gradually added while spraying a vinyl acetate emulsion diluted with water to a concentration of 5% with a spray nozzle. Rolling-molded and dried at 130 ° C for 12 hours to obtain white spherical granules. Example 5 To 60 g of commercially available powdered activated carbon and 40 g of the white composite zinc fluorosilicate fine powder obtained in Reference Example 1, 10 g of kaolin powder having an average particle size of 2 μm and 100 g of water were added and sufficiently kneaded to give a diameter of 1 mm.
It was molded by an extrusion molding machine having a granulation plate of No. 1 to obtain a columnar granulated product, which was used as a core. This core was put into a tumbling granulator, and while spraying water with a spray nozzle, 10 g of the same kaolin powder was gradually added to 100 g of the white composite zinc fluorosilicate fine powder obtained in Reference Example 1 for rolling treatment. Then, add 20 parts of titanium dioxide powder to this granule.
g was gradually added, tumbled and granulated, and dried at 130 ° C for 12 hours,
A white spherical granule was obtained. Example 6 Commercially available granular coconut husk activated carbon (16-33 mesh) 100 g was added with water and sufficiently moistened was placed in a tumbling granulator, which was obtained in Reference Example 1 while spraying water with a spray nozzle. 100 g of white composite zinc fluorosilicate fine powder was gradually added and rolling granulated to obtain a spherical granulated product, which was used as a core. This core was put into the tumbling granulator again, and while spraying water with a spray nozzle, 70 g of the white composite zinc fluorosilicate fine powder obtained in Reference Example 1 was gradually added to tumbl granulate.
It was dried at ℃ for 12 hours to obtain white spherical granules. Powder of spherical adsorbents obtained in Examples 1, 2, 3, 4, 5 and 6, Comparative Example 1 (commercially available activated carbon for food addition) and Comparative Example 2 (commercially available powder activated carbon 70 g and powder according to Reference Example 2 200 g) The results of measuring ammonia, hydrogen sulfide adsorption capacity, and methylene blue decolorizing power of the mixture) are shown in Table 1. Application Example Using the adsorbents obtained in Examples 1, 2, 3 and 4,
Adsorption treatment was carried out for seafood extracts such as oysters, mussels and skipjacks and soy sauce under the conditions shown in Table 2 using the apparatus shown in FIG. Then, sensory evaluation by a paired comparison method was performed on the taste and odor of the purified liquids obtained by separating the adsorbents, using a panel of 5 persons. Each of the collected purified solutions with a BX concentration of 20 to 40 ° was diluted to a BX concentration of 5 ° and heated to 50 to 60 ° C to obtain a test solution. For comparison, prepare untreated concentrates with BX concentration of 20-40 °, dilute to BX concentration of 5 ° and heat to 50-60 ° C respectively. F2, G2,
H2, I2, J2, K2, L2 and M2. As a result, the taste is shown in Table 3 and the aroma is shown in Table 4. The numbers in Tables 3 and 4 indicate the number of panelists who answered that the recovered and purified test liquid had a better taste or aroma than the untreated comparative test liquid.

【図面の簡単な説明】 第1図は、本発明実施例1にて得た球状吸着剤の断面図
である。 第2図は、本発明実施例にてアンモニア、硫化水素吸着
容量測定に用いた装置の説明図である。 第3図は、本発明応用例にて各種エキスの精製処理に用
いた装置の説明図である。 1……コア、2……シエル 3……ガス溜め、4……カラム 5……検知管 6……チューブ式送液定量ポンプ 7……未処理エキス溜め 8……チューブ式送液定量ポンプ 9……カラム 10……精製エキス溜め。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of a spherical adsorbent obtained in Example 1 of the present invention. FIG. 2 is an explanatory view of an apparatus used for measuring the adsorption capacity of ammonia and hydrogen sulfide in the example of the present invention. FIG. 3 is an explanatory diagram of an apparatus used for purification processing of various extracts in the application example of the present invention. 1 ... Core, 2 ... Shell, 3 ... Gas reservoir, 4 ... Column, 5 ... Detector tube, 6 ... Tube type liquid feed metering pump, 7 ... Unprocessed extract reservoir, 8 ... Tube type liquid feed metering pump, 9 …… Column 10 …… Reserved refined extract.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 彰 千葉県八千代市大和田新田15 (56)参考文献 特開 昭58−27639(JP,A) 特開 昭61−10020(JP,A) 特開 昭63−175637(JP,A) 特開 昭63−185811(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Akira Ueno               15 Owada Nitta, Yachiyo City, Chiba Prefecture                (56) References JP-A-58-27639 (JP, A)                 JP-A-61-10020 (JP, A)                 JP 63-175637 (JP, A)                 JP 63-185811 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.粒状活性炭或いは粉末状活性炭を含む粉末吸着剤と
無機又は有機の結合剤との造粒物から成るコアと、コア
の周囲に緻密且つ強固に付着した、ハンター白色度が70
%以上、隠蔽力(JIS K 5101)が250cm2/g以下、ア
ンモニア吸着容量が0.1ミリモル/g以上及び硫化水素吸
着容量が0.05ミリモル/g以上の無機白色微粉末のシェル
とから成る粒子構造を有し、且つ該無機白色微粉末が亜
鉛成分及び/又はマグネシウム成分を含むフィロケイ酸
塩又はフィロアルミノケイ酸塩を含有するものである白
色球状吸着剤。 2.粒状活性炭或いは粉末活性炭を含む粉末吸着剤と無
機又は有機の結合剤との造粒物をコアとし、ハンター白
色度が70%以上、隠蔽力(JIS K 5101)が250cm2/g
以下、アンモニア吸着容量が0.1ミリモル/g以上及び硫
化水素吸着容量が0.05ミリモル/g以上であり且つ亜鉛成
分及び/又はマグネシウム成分を含むフィロケイ酸塩又
はフィロアルミノケイ酸塩を含有する無機白色微粉末を
シエルとして該コアの周囲に緻密に付着させることを特
徴とする白色球状吸着剤の製法。 3.前記無機白色微粉末の付着を転動造粒により行なう
特許請求の範囲第2項記載の製法。 4.活性炭を含むコアと微粉末シエルとを2:98乃至80:2
0の重量比で用いる特許請求の範囲第2項記載の製法。 5.コアの周囲に、予め無機又は有機結合剤を混合した
シエル成分を緻密に付着させたことを特徴とする特許請
求の範囲第2項記載の白色球状吸着剤の製法。 6.コアと該シエル成分との付着を転動造粒により行な
う特許請求の範囲第5項記載の製法。 7.該結合剤を固形分として全シエル成分当り0.5乃至2
0重量%で用いる特許請求の範囲第5項記載の製法。
(57) [Claims] A core composed of a granulated material of a powdered adsorbent containing granular activated carbon or powdered activated carbon and an inorganic or organic binder, and a whiteness of Hunter of 70 adhered densely and firmly around the core.
%, The hiding power (JIS K 5101) is 250 cm 2 / g or less, the ammonia adsorption capacity is 0.1 mmol / g or more, and the hydrogen sulfide adsorption capacity is 0.05 mmol / g or more. A white spherical adsorbent having the inorganic white fine powder, which contains a phyllosilicate or a phyloaluminosilicate containing a zinc component and / or a magnesium component. 2. Granules of granular activated carbon or a powder adsorbent containing powdered activated carbon and an inorganic or organic binder are used as cores, with a Hunter whiteness of 70% or more and a hiding power (JIS K 5101) of 250 cm 2 / g.
Hereinafter, an inorganic white fine powder containing a phyllosilicate or a phylloaluminosilicate that has an ammonia adsorption capacity of 0.1 mmol / g or more and a hydrogen sulfide adsorption capacity of 0.05 mmol / g or more and contains a zinc component and / or a magnesium component. A method for producing a white spherical adsorbent characterized in that it is densely adhered to the periphery of the core as a shell. 3. The method according to claim 2, wherein the inorganic white fine powder is attached by tumbling granulation. 4. 2:98 to 80: 2 with a core containing activated carbon and a fine powder shell
The method according to claim 2, which is used in a weight ratio of 0. 5. The method for producing a white spherical adsorbent according to claim 2, characterized in that a shell component, which is preliminarily mixed with an inorganic or organic binder, is densely adhered to the periphery of the core. 6. The method according to claim 5, wherein the core and the shell component are attached by tumbling granulation. 7. The binder is 0.5 to 2 per solid component of the solid content.
The manufacturing method according to claim 5, which is used at 0% by weight.
JP62309451A 1987-12-09 1987-12-09 White spherical adsorbent and method for producing the same Expired - Fee Related JP2680823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62309451A JP2680823B2 (en) 1987-12-09 1987-12-09 White spherical adsorbent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309451A JP2680823B2 (en) 1987-12-09 1987-12-09 White spherical adsorbent and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01151939A JPH01151939A (en) 1989-06-14
JP2680823B2 true JP2680823B2 (en) 1997-11-19

Family

ID=17993154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309451A Expired - Fee Related JP2680823B2 (en) 1987-12-09 1987-12-09 White spherical adsorbent and method for producing the same

Country Status (1)

Country Link
JP (1) JP2680823B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255792A (en) * 2004-03-10 2005-09-22 Shinto Paint Co Ltd Coating composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639550A (en) * 1995-06-21 1997-06-17 Specialty Media Corporation Composite particulate material and process for preparing same
JP3415446B2 (en) * 1997-07-03 2003-06-09 高砂熱学工業株式会社 Air purification filter, method of manufacturing the same, and advanced cleaning device
FR2843049B1 (en) * 2002-08-01 2005-03-25 Inst Francais Du Petrole NON-HOMOGENEOUS ADSORBENT AND ITS USE IN DIFFUSIONS SEPARATION PROCESSES
JP4796455B2 (en) * 2006-08-11 2011-10-19 コスモエンジニアリング株式会社 Silica gel activated carbon composite, removal method of volatile organic compound, removal method of organic compound having boiling point of -164 to 400 ° C, pressure swing adsorption method, and pressure swing adsorption device
WO2009157214A1 (en) * 2008-06-27 2009-12-30 富士化学工業株式会社 Spherical non-crystalline magnesium aluminosilicate
WO2017212724A1 (en) * 2016-06-08 2017-12-14 東亞合成株式会社 Deodorant dispersion, deodorant-containing processing solution, and method for producing deodorant product
JP2021054490A (en) * 2019-09-30 2021-04-08 大日本印刷株式会社 Gas absorbing film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827639A (en) * 1981-08-10 1983-02-18 Toyobo Co Ltd Composite adsorbent
JPS6110020A (en) * 1984-06-22 1986-01-17 Mizusawa Ind Chem Ltd Synthetic lamellar magnesium phyllosilicate and its preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255792A (en) * 2004-03-10 2005-09-22 Shinto Paint Co Ltd Coating composition

Also Published As

Publication number Publication date
JPH01151939A (en) 1989-06-14

Similar Documents

Publication Publication Date Title
Laksaci et al. Synthesis and characterization of microporous activated carbon from coffee grounds using potassium hydroxides
JP3419787B2 (en) Method for producing hollow silica particles
JP5987128B1 (en) Agent for reducing acid value of used edible oil and method for reprocessing used edible oil using the same
CN106413764B (en) Method for controlling odor
JP2008544835A (en) Use of stevensite for mycotoxin adsorption
MX2007015276A (en) Surface-rich clays used for the production of bleaching earth, and method for the activation of said clays.
US20200283301A1 (en) High absorption minerals
KR20010079598A (en) Activated clay particles having similar shapes, method for production thereof and use thereof
CN105817199A (en) Diatomaceous earth products, processes for preparing them, and methods of their use
JPH01293134A (en) Mixed adsorbent
CA2701740A1 (en) Elimination of unwanted accompanying substances from vegetable protein extracts
JP2680823B2 (en) White spherical adsorbent and method for producing the same
US20210347642A1 (en) Porous Carbon Material, Method for Manufacturing Same, Filter, Sheet, and Catalyst Carrier
AU2017229266A1 (en) A particulate earth alkali carbonate-comprising material and/or particulate earth alkali phosphate-comprising material for NOx uptake
TW201840486A (en) Heavy metal adsorbent
JP3977151B2 (en) Deodorants
Joshi Optimization of Conditions for the Preparation of Activated Carbon from Lapsi (Choerospondias axillaris) Seed Stone Using ZnCl 2.
Tejedor et al. Environmentally friendly synthesis of silicon dioxide nanoparticles and their application for the removal of emerging contaminants in aqueous media
JP4175726B2 (en) Pet toilet sand
US5264597A (en) Process for refining glyceride oil using precipitated silica
JP4769927B2 (en) Method for producing silica adsorbent
US20090050557A1 (en) High-bond strength silicon and a method for the production and use thereof
Daas et al. Synthesis and characterization of porous bentonite adsorbent and its application to remove methylene blue dye from aqueous solutions
JP2840601B2 (en) Solid porous silica beads containing metal compound, method for producing the same, and powder deodorant
AU628084B2 (en) Process for refining glyceride oil

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees