JP2678737B2 - Organozinc compound - Google Patents

Organozinc compound

Info

Publication number
JP2678737B2
JP2678737B2 JP6243109A JP24310994A JP2678737B2 JP 2678737 B2 JP2678737 B2 JP 2678737B2 JP 6243109 A JP6243109 A JP 6243109A JP 24310994 A JP24310994 A JP 24310994A JP 2678737 B2 JP2678737 B2 JP 2678737B2
Authority
JP
Japan
Prior art keywords
adduct
r2zn
reaction
organozinc compound
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6243109A
Other languages
Japanese (ja)
Other versions
JPH08143575A (en
Inventor
則久 岡本
直行 伊藤
隆 下林
照之 水本
正男 藤沢
昭宏 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP6243109A priority Critical patent/JP2678737B2/en
Publication of JPH08143575A publication Critical patent/JPH08143575A/en
Application granted granted Critical
Publication of JP2678737B2 publication Critical patent/JP2678737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、ジアルキル亜鉛(以下
R2Znと略す)と、ジアルキル硫黄(以下R2Sと略
す)の付加体からなる有機亜鉛化合物に関する。 【0002】さらに詳しくは、半導体薄膜並びに半導体
装置の製造技術であるMO−CVD法の原料として有効
なR2ZnとR2Sの付加体からなる有機亜鉛化合物に
関する。 【0003】〔発明の概要〕 本発明は、青色発光ダイオード、及び薄膜EL素子用材
料である硫化亜鉛(ZnS)及びその混晶薄膜の製造に
有効なMO−CVD法の原料である有機亜鉛化合物に於
て、R2ZnとR2Sとを混合し、反応及び熱成によっ
てR2ZnとR2Sの付加体を高純度に、又再現性よく
形成させる事により、従来のR2Znに比較してH2S
(硫化水素)又はH2Se(セレン化水素)等の水素化
物に対する反応性が低く、従来MO−CVD法に於て問
題となっていた原料の混合により、基板の上流で生じる
不要な前反応が生じ難く、良質のZnS及びその混晶薄
膜、ひいては、高性能半導体装置の実現を可能とする原
料を提供するものである。 【0004】 【従来の技術】従来、ZnS及びその混晶薄膜のMO−
CVD法による製造に於て、原料として、亜鉛ソースに
ジメチル亜鉛:Zn(CH3)2ジエチル亜鉛:Zn
(C2H5)2等の有機亜鉛化合物を用い、硫化水素:
H2S及びセレン化水素:H2Sと反応させるのが通例
であった。これらの原料を用いた場合の化学反応は次式
で表わされる。 【0005】 (CH3)2Zn+H2S→ZnS十2CH4…(1) (C2H5)2Zn+H2S→ZnS+2C2H6…(2) しかしこれらの反応は、R2Znが活性であるためMO
−CVD反応装置内に原料ガスを導入すると該水素化物
との混合と同時に室温近傍でも気相中で反応が進行し基
板表面に原料が到達する以前にZnS微粒子を生成し、
このZnS微粒子が薄膜成長用基板表面での成長過程に
悪影響を及ぼしており得られる結晶の質はあまり高くな
かった。 【0006】従来、これらの問題を解決する手段として
(1)基板直前でR2ZnとH2Sを混合する(例え
ば、J.Cryst Growth 59、P1.(1
982)記載)、(2)減圧にして、ガス流速を高める
(例えぱ、Jpn.J.Appl.Phys.22、L
583(1983)記載)等の装置系の対策、並びに、
(3)亜鉛原料をR2Znの代わりに、R2ZnとR2
Sとの等モル混合により得られる付加体を用いる(第4
5回応用物理学会学術講演会講演予稿集、P633(1
984) 講演番号12P−S−4記載)等の原料によ
る対策が検討されてきた。 【0007】 【発明が解決しようとする課題】上述の従来技術に基づ
くMO−CVD法に於ては、製法上及びデバイスへの応
用上次の如き問題点を有し、解決が望まれていた。 【0008】従来技術(1)及び(2)に対して 1.基板直前で混合するために、薄膜の膜厚、組成、ド
ーパント分布等の均一性が得にくい。 【0009】2.大面積、多数枚基板の処理が困難で量
産性に乏しい。 【0010】3.結晶の質が悪く、発光特性、電導特性
が制御できない。 【0011】例えば、従来の製造法に於ては、R2Zn
とH2Sとを、基板から〜2cmの距離で混合吹き付け
をしており、これにより処理できる基板の大きさは、高
々直径20mm1枚であった。 【0012】ヌ、得られた結晶は、多くの欠陥を有し、
発光ダイオードを作成する際に必要な、ドナー性不純物
をドーピングしても、電流素子として利用可能な、低抵
抗な膜が得られていないのが実情であった。(Exte
nded Abstructs of the 15t
h Conference on SolidStat
e Devices and Materials 1
983 pp349,B−7−8記載) 従来技術(3)に対して、 1.R2ZnとR2Seとの反応性はあまり高く無く、
単に両者を等モル量混合しただけでは、次式のR2Zn
+R2S→R2Zn−SR2 (3) 反応を完結できず、得られたものの蒸気圧等の物性も、
混合条件、反応に用いる迄の履歴等により異なり、バラ
付きが大きかった。 【0013】2.又その結果として、該等モル量混合に
よる付加体を原料として、MO−CVD法によりH2S
と反応させて、ZnSエピキシャル成長を行うと、エピ
タキシャル薄膜の成長速度並びにその物性の再現性が悪
かった。 【0014】本発明の目的は、かかる問題点を解決すべ
く、Zn原料としてH2S又は、H2Se等水素化合物
との反応性がR2Znに比べ低く、室温での気相反応が
抑制でき、MO−CVD法にZn原料として用いる事
で、良質の結晶薄膜を大面積上に、多数枚上に成長可能
であり、又、不純物のドーピングにより、所望の発光特
性と電導性を有する、デバイスレベルの結晶品質を再現
性よく実現する高純度な有機亜鉛化合物を提供する点に
ある。 【0015】 【課題を解決するための手段】本発明の有機亜鉛化合物
は,ジアルキル亜鉛とジアルキル硫黄とが混合されてな
り,それらの過剰成分が存在しない一般式R2Zn−S
2(式中,Rはアルキル基を示す)で示される付加体
からなることを特徴とする。具体的には,高純度で再現
性のある付加体物性を確保するため,両者のうち低沸点
成分をおおむね過剰に混合し,反応及び熟成後,不要成
分を除去して得られるR2Zn−SR2の付加体である。 【0016】又、高純度で、再現性のあるその製造法と
して、両者のうち、低沸点成分を概ね過剰に混合し、反
応条件は、個々のアルキル基の組み合せにより異なる
が、0℃〜40℃で10分〜3時間反応し、その後徐々
に昇温し、30℃〜80℃で10分〜2時間熟成後、過
剰成分を溜出除去する工程よりなるものである。 【0017】本発明に適用可能なR2Zn及びR2Sを
表1にまとめて示すが、この限りではない事は明らかで
ある。 【0018】 【表1】【0019】R2ZnとR2Sの付加体は、電子受容体
としてのR2Znと、電子供与体としてのR2Sとの、
1対1の酸−塩基反応の結果得られるもので、(4)式 R2Zn−SR2 …(4) の構造からなる。該付加体の製造法としては、各成分の
等モル量の混合によっても原理的には可能であるが、
(第45回応用物理学会学術講演会予稿集P633(1
984)講演番号12P−S−4記載)、反応を完結
し、高純度で再現性のある物性を有する付加体を製造す
るには以下の工程が必要である。 【0020】R2ZnとR2Sとを、両者のうち低沸点
成分を概ね過剰に、好ましくは、低沸点成分対高沸点成
分の比率を1.1〜1.2当量比として混合し、両者を
低沸点成分の沸点以下で、概そ0℃〜40℃で10分〜
3時間、好ましくは10〜35℃で1〜2時間、充分に
反応させる。 【0021】その後反応を完結するために、徐々に昇温
し、30〜80℃で10分〜2時間、好ましくは10〜
15℃/時間の割で昇温し、30〜70℃で30分〜1
時間熟成させる。 【0022】最後に過剰成分を蒸留により除去する。 【0023】付加体の生成は以下の事実により確認でき
る。 【0024】(1)両者の混合により発熱する。 【0025】(2)生成した付加体の蒸気圧−温度曲線
は、出発原料のR2Zn及びR2Sのいずれとも異な
る。 【0026】(3)原料の仕込み量、生成物及び溜出過
剰成分の量から、反応がR2ZnとR2Sの1:1で生
じている。 【0027】(4)NMRによる解析 以下実施例に従い本発明に基づく有機亜鉛化合物並びに
その製造法を説明する。 【0028】 【実施例】 (実施例1) (CH3)2Zn−S(C2H5)2 300ml丸底フラスコにS(C2H5)2 109.
5g(1.2166モル)を仕込み、撹はんしながら
(CH3)2Zn 122.0g(1.279モル)を
滴下ロートにより滴下して反応させた。反応は発熱反応
で、発熱量は大であった。 【0029】反応温度を10〜15℃に制御し、1時間
反応を行った。その後10℃/時間の割で徐々に昇温
し、38℃で30分熟成した。その後蒸留により不要な
過剰分を溜出除去した。生成物は227gであった。 【0030】図1は得られた付加体の蒸気圧−温度特性
を示す。横軸1が温度、縦軸2が蒸気圧である。実線3
が付加体の、又破線4、破線5が各々、原料であるS
(C2H5)2及び(CH3)2Znの蒸気圧特性を示
す。 【0031】図2にNMRによる生成物の(CH3)2
Znのメチル基のプロトンによるシグナルを示す。 【0032】生成物のケミカルシフトは、δ=−0.6
0ppmであり、(CH3)2Znの単一成分ではδ=
−0.67ppmである事から(CH3)2Zn−S
(C2H5)2付加体の生成を認めた。 【0033】又、蒸気圧特性、等の物性値の異なるロッ
ト間のバラ付きは検出以下であった。又、NMRの結果
からも原料である(CH3)2Znの単独成分の存在は
認められず極めて高純度であった。 【0034】(実施例2) (C2H5)2Zn−S(C2H5)2 実施例1と同様に、300mlの丸底フラスコに、S
(C2H5)2 56.3g(0.6255モル)を仕
込、撹はんしながら(C2H5)Zn 75.4g
(0.611モル)を滴下して反応させた。反応は発熱
反応で発熱量は大であった。 【0035】反応温度を35〜40℃に制御し、2時間
反応を行った。その後徐々に昇温し、45℃に昇温後、
自然状態で1時間熟成した。次に蒸留により、不要な過
剰分を留出した。生成物は130gであった。 【0036】図1に、実線6に得られた付加体の蒸気圧
を示す。破線4、破線7は各々原料であるS(C2H
5)2及び(C2H5)2Znの蒸気圧を示す。 【0037】(実施例3) (CH3)2Zn−S(CH3)2 同様にしてS(CH3)2に概ね当量以下の(CH3)
2Znを滴下反応させる事により上記の付加体を生成し
た。図1の実線8が付加体の、又破線9破線5が各々の
原料であるS(CH3)2及び(CH3)2Znの蒸気
圧を示す。 【0038】(実施例4) (C2H5)2Zn−S(CH3)2 同様にして、S(CH3)2と(C2H5)2Znを用
いて上記付加体を生成した。図1の実線10が付加体
の、蒸気圧を示す。 【0039】表2に本発明に基づくR2ZnとR2Sの
付加体からなる有機亜鉛化合物の蒸気圧を代表的温度に
対し例示する。 【0040】 【表2】 【0041】次に上記実施例により得られた付加体を用
いて常圧のMO−CVD装置によりZnS結晶薄膜をG
aAS及びGaP基板上に形成したところ、いずれの付
加体に於いても良質の単結晶薄膜が得られた。従来問題
となっていた混合と同時に生じる気相中でのR2Znと
H2Sとの前反応に伴う白濁粒子の流れ、薄膜成長基板
の上流での粒子の堆積は認められず、本発明に基づく付
加体及びH2SをHeガスをキャリアーとして、事前に
混合して後反応管に導入し、導入口から200mm離れ
た位置に置かれたGaAs及びGaP単結晶基板上に表
面状態が滑らかな鏡面のZnS単結晶薄膜が得られた事
から、本発明に基づく付加体が前反応を抑制し生産性の
面で大きな効果がある事が明きらかとなった。又、A
l,Ga,Cl,I等のドナー性不純物をドープする事
により、成長上りで、比抵抗0.1〜1Ωcmのn型電
導性が得られた。又、キセノンランプにより波長250
〜350nmまでの紫外線照射により470nmの強い
青色発光が得られた。これらの事実は、本発明に基づく
有機亜鉛化合物を用いてできた結晶が高品位である事を
示している。又、本発明に基づく付加体は、従来の単に
等モル混合した付加体に比べ次に様な効果を有する。 【0042】(1)同一バブラーを用いての、結晶薄膜
の物性、特に、比抵抗、発光波長、並びに、該結晶を用
いての発光ダイオードの作製に於いて発光波長、強度等
素子特性の製造に対する経時変化はほとんど無く、バラ
付きも極めて小さかった。 【0043】(2)ロット間の異なる付加体を用いて
も、バラ付きは極めて小さかった。 【0044】 【発明の効果】以上述べたように、本発明によれば、高
純度で、蒸気圧等物性定数の再現性を有するR2Znと
R2Sの付加体からなる有機亜鉛化合物を提供すること
ができる。 【0045】これにより、青色に限らず可視発光ダイオ
ード、半導体レーザ及び薄膜EL素子等の製造に対し本
発明の果たす役割が絶大なものである事を確信する。
BACKGROUND OF THE INVENTION [0001] Field of the Invention The present invention includes a dialkyl zinc (hereinafter referred to as R2Zn), relates to the adduct or Ranaru organozinc compound dialkyl sulfur (hereinafter abbreviated as R2S). [0002] More specifically, it relates <br/> the organozinc compound consisting adduct valid R2Zn and R2S as raw materials for MO-CVD method is a manufacturing technology of a semiconductor thin film and a semiconductor device. SUMMARY OF THE INVENTION The present invention relates to a blue light emitting diode, zinc sulfide (ZnS) which is a material for a thin film EL element, and an organozinc compound which is a raw material of an MO-CVD method effective for producing a mixed crystal thin film thereof. In this case, by mixing R2Zn and R2S and forming an adduct of R2Zn and R2S with high purity and reproducibility by reaction and thermal formation, H2S can be formed as compared with conventional R2Zn.
The reactivity to hydrides such as (hydrogen sulfide) or H2Se (hydrogen selenide) is low, and mixing of the raw materials, which has been a problem in the conventional MO-CVD method, causes an unnecessary pre-reaction that occurs upstream of the substrate. It is difficult to obtain high-quality ZnS and its mixed crystal thin film, and thus high-performance semiconductor devices.
The fee is provided. [0004] Conventionally, the MO-of ZnS and its mixed crystal thin film
In the production by the CVD method, dimethylzinc: Zn (CH3) 2 and diethylzinc: Zn are used as raw materials in a zinc source.
Using an organic zinc compound such as (C2H5) 2, hydrogen sulfide:
H2S and hydrogen selenide: It was customary to react with H2S. The chemical reaction when these raw materials are used is represented by the following formula. (CH3) 2Zn + H2S → ZnS-12CH4 ... (1) (C2H5) 2Zn + H2S → ZnS + 2C2H6 ... (2) However, these reactions are MO because R2Zn is active.
-When a raw material gas is introduced into the CVD reactor, the reaction proceeds in the gas phase at the same time as the hydride is mixed with the hydride to generate ZnS fine particles before the raw material reaches the substrate surface,
These ZnS fine particles adversely affected the growth process on the surface of the thin film growth substrate, and the quality of the obtained crystals was not very high. Conventionally, as means for solving these problems, (1) R2Zn and H2S are mixed immediately before the substrate (for example, J. Cryst Growth 59, P1.
982)), (2) increase the gas flow rate by reducing the pressure (eg, Jpn. J. Appl. Phys. 22, L).
583 (1983)) and other equipment system measures, and
(3) R2Zn and R2 instead of R2Zn as the zinc raw material
The adduct obtained by equimolar mixing with S is used (4th
Proceedings of the 5th JSAP Academic Lecture, P633 (1)
984) Measures using raw materials such as lecture number 12P-S-4) have been studied. The MO-CVD method based on the above-mentioned prior art has the following problems in terms of manufacturing method and application to devices, and it has been desired to solve the problems. . For the prior arts (1) and (2), 1. Since they are mixed just before the substrate, it is difficult to obtain the uniformity of the thin film thickness, composition, dopant distribution and the like. [0009] 2. Large area and large number of substrates are difficult to process and mass productivity is poor. 3. The quality of the crystals is poor, and the emission and conduction properties cannot be controlled. For example, in the conventional manufacturing method, R2Zn
And H2S were mixed and sprayed at a distance of ˜2 cm from the substrate, and the size of the substrate that could be processed by this was 20 mm in diameter at most. The obtained crystal has many defects,
The fact is that a low-resistance film that can be used as a current element has not been obtained even when doping with a donor impurity, which is necessary when manufacturing a light emitting diode. (Exte
ended Abstracts of the 15t
h Conference on SolidStat
e Devices and Materials 1
983 pp349, B-7-8) With respect to the prior art (3), 1. The reactivity between R2Zn and R2Se is not very high,
R2Zn of the following formula is obtained by simply mixing both in equimolar amounts.
+ R2S → R2Zn-SR2 (3) The reaction could not be completed, and the physical properties such as vapor pressure of the obtained product were
The variation was large, depending on the mixing conditions, history until use in the reaction, etc. 2. In addition, as a result, using the adduct obtained by mixing the equimolar amounts as a raw material, H2S
When ZnS epitaxial growth was carried out by reacting with, the growth rate of the epitaxial thin film and the reproducibility of its physical properties were poor. In order to solve the above problems, the object of the present invention is that the reactivity with a hydrogen compound such as H2S or H2Se as a Zn raw material is lower than that of R2Zn, the gas phase reaction at room temperature can be suppressed, and MO-CVD. By using it as a Zn raw material in the method, it is possible to grow a good quality thin crystal film on a large area and on a large number of thin films. Also, by doping impurities, it has a desired light emitting property and conductivity, and has a device-level crystal quality. The point is to provide a high-purity organozinc compound that achieves reproducibility with high reproducibility. The organozinc compound of the present invention comprises a mixture of dialkylzinc and dialkylsulfur, and is represented by the general formula R 2 Zn-S in which excess components thereof are not present.
It is characterized by comprising an adduct represented by R 2 (wherein R represents an alkyl group). Specifically, in order to ensure high-purity and reproducible physical properties of the adduct, R 2 Zn-obtained by removing unnecessary components after the reaction and aging by mixing excessively low-boiling components out of them It is an adduct of SR 2 . As a highly pure and reproducible method for producing the same, low-boiling components are generally mixed in an excess amount, and reaction conditions vary depending on the combination of individual alkyl groups, but the range is from 0 ° C to 40 ° C. It comprises a step of reacting at 10 ° C. for 10 minutes to 3 hours, gradually raising the temperature, aging at 30 ° C. to 80 ° C. for 10 minutes to 2 hours, and then distilling off excess components. Although R2Zn and R2S applicable to the present invention are summarized in Table 1, it is obvious that the present invention is not limited to this. [Table 1] The adduct of R2Zn and R2S includes R2Zn as an electron acceptor and R2S as an electron donor.
It is obtained as a result of a one-to-one acid-base reaction, and has the structure of the formula (4) R2Zn-SR2 (4). As a method for producing the adduct, it is possible in principle to mix each component in equimolar amounts,
(Proceedings of the 45th JSAP Academic Lecture Meeting P633 (1
984) Lecture No. 12P-S-4), the following steps are required to complete the reaction and produce an adduct having high purity and reproducible physical properties. R2Zn and R2S are mixed in a low boiling point component in an excessive amount, preferably in a low boiling point component to a high boiling point component at a ratio of 1.1 to 1.2 equivalents to obtain a low boiling point component. Below the boiling point of the component, approximately 0 ℃ ~ 40 ℃ 10 minutes ~
Sufficiently react for 3 hours, preferably 10 to 35 ° C. for 1 to 2 hours. After that, in order to complete the reaction, the temperature is gradually raised to 30 minutes to 80 ° C. for 10 minutes to 2 hours, preferably 10 minutes.
The temperature is raised at a rate of 15 ° C./hour and 30 minutes to 1 at 30 to 70 ° C.
Let it mature for hours. Finally, excess components are removed by distillation. The formation of the adduct can be confirmed by the following facts. (1) Heat is generated by mixing the two. (2) The vapor pressure-temperature curve of the produced adduct is different from that of the starting materials R2Zn and R2S. (3) The reaction takes place at a ratio of R2Zn and R2S of 1: 1 due to the charged amount of the raw materials, the amount of the product and the excess distillate component. (4) Analysis by NMR The organozinc compound according to the present invention and the method for producing the same will be described below with reference to Examples. EXAMPLES Example 1 (CH3) 2Zn-S (C2H5) 2 S (C2H5) 2 109.
5 g (1.2166 mol) was charged, and 122.0 g (1.279 mol) of (CH3) 2Zn was added dropwise with stirring with a dropping funnel to react. The reaction was exothermic and the exotherm was large. The reaction temperature was controlled at 10 to 15 ° C. and the reaction was carried out for 1 hour. After that, the temperature was gradually raised at a rate of 10 ° C./hour and aged at 38 ° C. for 30 minutes. After that, unnecessary excess was distilled off by distillation. The product was 227 g. FIG. 1 shows the vapor pressure-temperature characteristics of the obtained adduct. The horizontal axis 1 is temperature and the vertical axis 2 is vapor pressure. Solid line 3
Is the adduct, and broken lines 4 and 5 are the raw materials S, respectively.
2 shows vapor pressure characteristics of (C2H5) 2 and (CH3) 2Zn. FIG. 2 shows the product (CH3) 2 by NMR.
The signal by the proton of the methyl group of Zn is shown. The chemical shift of the product is δ = -0.6
0 ppm, and for a single component of (CH3) 2Zn δ =
Since it is -0.67 ppm, (CH3) 2Zn-S
Formation of (C2H5) 2 adduct was observed. The variation between lots having different physical properties such as vapor pressure characteristics was less than the detection. In addition, from the result of NMR, the presence of a single component of (CH3) 2Zn as a raw material was not recognized, and the purity was extremely high. (Example 2) (C2H5) 2Zn-S (C2H5) 2 In the same manner as in Example 1, a 300 ml round bottom flask was charged with S.
56.3 g (0.6255 mol) of (C2H5) 2 was charged, and with stirring, (C2H5) Zn 75.4 g
(0.611 mol) was added dropwise to react. The reaction was exothermic and the amount of heat generated was large. The reaction temperature was controlled at 35 to 40 ° C. and the reaction was carried out for 2 hours. After that, the temperature is gradually raised to 45 ° C.,
Aged for 1 hour in the natural state. Next, unnecessary excess was distilled off by distillation. The product was 130 g. FIG. 1 shows the vapor pressure of the adduct obtained by the solid line 6. The broken lines 4 and 7 are S (C2H), which is the raw material, respectively.
5) shows vapor pressures of 2 and (C2H5) 2Zn. (Example 3) (CH3) 2Zn-S (CH3) 2 In the same manner, (CH3) which is approximately equivalent to or less than S (CH3) 2 is used.
The above-mentioned adduct was produced by the dropwise reaction of 2Zn. A solid line 8 in FIG. 1 shows the vapor pressure of the adduct, and a broken line 9 and a broken line 5 show the vapor pressures of S (CH3) 2 and (CH3) 2Zn, which are the respective raw materials. (Example 4) (C2H5) 2Zn-S (CH3) 2 In the same manner, the above adduct was produced using S (CH3) 2 and (C2H5) 2Zn. The solid line 10 in FIG. 1 shows the vapor pressure of the adduct. Table 2 exemplifies the vapor pressures of the organozinc compounds comprising the adduct of R2Zn and R2S according to the present invention with respect to typical temperatures. [Table 2] Next, using the adduct obtained in the above embodiment, a ZnS crystal thin film was formed into a G by using a MO-CVD apparatus under normal pressure.
When formed on the aAS and GaP substrates, good quality single crystal thin films were obtained with any of the adducts. The flow of white turbid particles due to the pre-reaction of R2Zn and H2S in the gas phase, which occurred at the same time as the conventional mixing, and the deposition of particles upstream of the thin film growth substrate were not observed. And H2S were mixed in advance using He gas as a carrier and then introduced into the reaction tube, and ZnS single crystal having a smooth surface state on a GaAs and GaP single crystal substrate placed at a position 200 mm away from the introduction port. Since the thin film was obtained, it became clear that the adduct according to the present invention suppressed the pre-reaction and had a great effect in terms of productivity. Also, A
By doping a donor impurity such as l, Ga, Cl, or I, n-type conductivity with a specific resistance of 0.1 to 1 Ωcm was obtained after the growth. In addition, the xenon lamp has a wavelength of 250
Strong blue emission of 470 nm was obtained by ultraviolet irradiation up to 350 nm. These facts show that the crystal formed by using the organozinc compound according to the present invention has high quality. Further, the adduct according to the present invention has the following effects as compared with the conventional adduct obtained by simply mixing the same molar amount. (1) Using the same bubbler, the physical properties of the crystal thin film, in particular, the specific resistance, the emission wavelength, and the production of device characteristics such as emission wavelength and intensity in the production of a light emitting diode using the crystal. There was almost no change with time, and the variation was extremely small. (2) Even if the different adducts between lots were used, the variation was extremely small. As described above, according to the present invention, an organozinc compound comprising an adduct of R2Zn and R2S with high purity and reproducibility of physical constants such as vapor pressure is provided. to provide
Can be . From this, it is convinced that the role of the present invention is great for manufacturing not only blue light but also visible light emitting diodes, semiconductor lasers, thin film EL elements and the like.

【図面の簡単な説明】 【図1】有機亜鉛化合物の蒸気圧−温度特性図。 【図2】生成物のメチル基のプロトンによるシグナル
図。 【符号の説明】 1・・温度 2・・蒸気圧 3・・(CH3)2−S(C2H5)2 4・・(C2H5)2S 5・・(CH3)2Zn 6・・(C2H5)2Zn−S8C2H5)2 7・・(C2H5)2Zn 8・・(CH3)2Zn−S(CH3)2 9・・(CH3)2S 10・(C2H5)2Zn−S(CH3)2 11・TMS 12・生成物 13・ケミカルシフト 14・シグナル強度
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vapor pressure-temperature characteristic diagram of an organozinc compound. FIG. 2 is a signal diagram of a methyl group proton of a product. [Explanation of symbols] 1 ... Temperature 2 ... Vapor pressure 3 ... (CH3) 2-S (C2H5) 2 4 ... (C2H5) 2S 5 ... (CH3) 2Zn 6 ... ) 2 7 ·· (C2H5) 2Zn 8 ·· (CH3) 2Zn—S (CH3) 2 9 ·· (CH3) 2S 10 · (C2H5) 2Zn—S (CH3) 2 11 · TMS 12 · Product 13 · Chemical shift 14, signal strength

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下林 隆 長野県諏訪市大和3丁目3番5号 株式 会社諏訪精工舎内 (72)発明者 水本 照之 長野県諏訪市大和3丁目3番5号 株式 会社諏訪精工舎内 (72)発明者 藤沢 正男 山口県防府市大字勝間3丁目1番 (72)発明者 市川 昭宏 山口県徳山市大字徳山287番155号 審査官 脇村 善一 (56)参考文献 JOURNAL DE CHIMIE PHYSIQUE ET DE PH YSICO−CHIMIE BIOLO GIQUE,1972,69(4),601−604   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Takashi Shimobayashi               Shares 3-3-5 Yamato, Suwa City, Nagano Prefecture               Inside the company Suwa Seikosha (72) Inventor Teruyuki Mizumoto               Shares 3-3-5 Yamato, Suwa City, Nagano Prefecture               Inside the company Suwa Seikosha (72) Inventor Masao Fujisawa               3-1-1 Katsuma, Hofu-shi, Yamaguchi Prefecture (72) Inventor Akihiro Ichikawa               No.287-155 Tokuyama, Tokuyama City, Yamaguchi Prefecture                    Examiner Zenichi Wakimura                (56) References JOURNAL DE CHIMIE                 PHYSIQUE ET DE PH               YSICO-CHIMIE BIOLO               GIQUE, 1972, 69 (4), 601-604

Claims (1)

(57)【特許請求の範囲】 1.ジアルキル亜鉛とジアルキル硫黄とが混合されてな
り,それらの過剰成分が存在しない一般式R2Zn−S
2(式中,Rはアルキル基を示す)で示される付加体
からなることを特徴とする有機亜鉛化合物。
(57) [Claims] Dialkyl zinc and dialkyl sulfur are mixed
The general formula R 2 Zn-S in which these excess components do not exist
An organozinc compound comprising an adduct represented by R 2 (wherein R represents an alkyl group).
JP6243109A 1994-10-06 1994-10-06 Organozinc compound Expired - Lifetime JP2678737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6243109A JP2678737B2 (en) 1994-10-06 1994-10-06 Organozinc compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6243109A JP2678737B2 (en) 1994-10-06 1994-10-06 Organozinc compound

Publications (2)

Publication Number Publication Date
JPH08143575A JPH08143575A (en) 1996-06-04
JP2678737B2 true JP2678737B2 (en) 1997-11-17

Family

ID=17098935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6243109A Expired - Lifetime JP2678737B2 (en) 1994-10-06 1994-10-06 Organozinc compound

Country Status (1)

Country Link
JP (1) JP2678737B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100350910C (en) * 2003-09-10 2007-11-28 深圳市立国药物研究有限公司 Method for preparing freeze dried cefathiamidine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO−CHIMIE BIOLOGIQUE,1972,69(4),601−604

Also Published As

Publication number Publication date
JPH08143575A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
US5456207A (en) Synthesis of triisopropylindium diisopropyltelluride adduct and use for semiconductor materials
US7238596B2 (en) Method for preparing Ge1-x-ySnxEy (E=P, As, Sb) semiconductors and related Si-Ge-Sn-E and Si-Ge-E analogs
US4010045A (en) Process for production of III-V compound crystals
Singh et al. Organotellurium precursors for metal organic chemical vapour deposition (MOCVD) of mercury cadmium telluride (MCT)
US4062706A (en) Process for III-V compound epitaxial crystals utilizing inert carrier gas
JP2678737B2 (en) Organozinc compound
JP2678736B2 (en) Organozinc compound
US7026228B1 (en) Methods of fabricating devices and semiconductor layers comprising cadmium mercury telluride, mercury telluride, and cadmium telluride
JPH0742296B2 (en) Method for producing organozinc compound
JPH0742295B2 (en) Method for producing organozinc compound
US5882805A (en) Chemical vapor deposition of II/VI semiconductor material using triisopropylindium as a dopant
JPH04320038A (en) Method for crystal growing n-type ii-vi compound semiconductor
Irvine et al. Epitaxial photochemical deposition of II–VI semiconductors
JP2706337B2 (en) Method for manufacturing compound semiconductor thin film
JP2650635B2 (en) Method for producing II-VI compound semiconductor thin film
JPS61224332A (en) Manufacture of semiconductor device
JPS6360536A (en) Manufacture of semiconductor superlattice
JPS6324683A (en) Manufacture of light-emitting element
JP3557295B2 (en) Method for producing p-type II-VI compound semiconductor thin film
JPS6247174A (en) Manufacture of semiconductor light emitting device
JPS61224331A (en) Manufacture of semiconductor device
JPS61232627A (en) Manufacture of semiconductor thin film
JPH1051031A (en) Formation of p-type ii-vi compound semiconductor
JPS63220528A (en) Compound semiconductor film and manufacture thereof
WO1999012939A1 (en) Lanthanide chalcogenolates and lanthanide doped chalcogenide matrices and their room temperature synthesis

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970603

EXPY Cancellation because of completion of term