JP2676974B2 - 1 ▲ cm ▼ Ionization chamber for deep dose equivalent detection - Google Patents

1 ▲ cm ▼ Ionization chamber for deep dose equivalent detection

Info

Publication number
JP2676974B2
JP2676974B2 JP2104846A JP10484690A JP2676974B2 JP 2676974 B2 JP2676974 B2 JP 2676974B2 JP 2104846 A JP2104846 A JP 2104846A JP 10484690 A JP10484690 A JP 10484690A JP 2676974 B2 JP2676974 B2 JP 2676974B2
Authority
JP
Japan
Prior art keywords
ionization chamber
film
radiation
synthetic resin
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2104846A
Other languages
Japanese (ja)
Other versions
JPH044549A (en
Inventor
馨 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2104846A priority Critical patent/JP2676974B2/en
Publication of JPH044549A publication Critical patent/JPH044549A/en
Application granted granted Critical
Publication of JP2676974B2 publication Critical patent/JP2676974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【産業上の利用分野】 本発明は、内部に空気が充填されかつ放射線を検出し
てこの検出結果に応じた放射線検出信号を出力する空知
式電離箱、特に、放射線検出信号に対して補正処理を加
えなくてもこの放射線検出信号がそのまま放射線の1cm
深部線量当量(以後、この線量当量をH1cmということが
ある。)を表すことになる電離箱に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aerial ionization chamber which is filled with air and detects radiation and outputs a radiation detection signal corresponding to the detection result, and more particularly, a correction process for the radiation detection signal. This radiation detection signal is 1 cm of radiation without adding
Regarding the ionization chamber that represents the deep dose equivalent (hereinafter, this dose equivalent may be referred to as H1cm).

【従来の技術】[Prior art]

第7図は従来の空気式電離箱1の要部縦断面図であ
る。図において2は内面にカーボン系導電膜3が設けら
れたポリカーボネート樹脂製の有底円筒状容器本体、4
は一端面4aを除く全表面にカーボン系導電膜5が設けら
れた円柱状の集電極、6は端面4aに一端が固定されかつ
図示していない手段で導電膜5と電気的に接続されたピ
ン状の出力端子7が気密に貫設されることによって集電
極4を固定的に支持するようにした高い電気絶縁性を有
する円板状の第1部材で、8は集電極4が容器本体2内
に位置しかつこの本体2と同軸になるようにして第1部
材6と本体2の開口端とを固定的に結合して、部材6及
び本体2と共に気密容器としての電離箱容器9を形成す
るようにした円環状の合成樹脂製第2部材である。10は
容器本体2の開口端に気密に貫設されたピン状の高圧端
子で、この場合、端子10は導電膜3に図示していない手
段で電気的に接続されており、また、電離箱容器9内に
は空気11が充填されている。そうして上述した空気式電
離箱1は上述の各部で構成されている。 電離箱1は上述のように構成されているので、放射線
12が容器本体2等を透過して容器9内に入射するとこの
放射線によって空気11が電離され、したがって、この
時、端子7,10間に電圧が印加されていると端子7,10間に
放射線12の照射線量率Aに応じた電流値Iの電離電流が
流れることになって、電離箱1の場合I/A=Sで定義さ
れる電離箱1の放射線検出感度Sの放射線12のエネルギ
ーEに対する依存性(以後、この依存性を電離箱1の放
射線検出感度対放射線エネルギー特性または電離箱1の
エネルギー特性または検出感度Sのエネルギー特性など
ということがある。)が、感度SをE=1〔MeV〕の時
を基準にした相対感度Dで表した時、第8図に示した特
性線13のようになる(以後、相対感度DとEとの関係も
エネルギー特性ということにする。)。そうして、この
特性線13は、第8図には示していないが、GM管やシンチ
レーション検出器等の他の放射線検出器の場合に比べて
平坦な特性であって、したがって、電離箱1には、この
電離箱を用いて照射線量率Aの測定を行うのに先立つ特
性線13の校正の際、上記した他の放射線検出器の場合に
比べてエネルギーEの校正点が少なくてすむという利点
がある。
FIG. 7 is a longitudinal sectional view of a main part of a conventional pneumatic ionization chamber 1. In the figure, 2 is a bottomed cylindrical container body made of polycarbonate resin having a carbon-based conductive film 3 provided on its inner surface, 4
Is a columnar collector having a carbon-based conductive film 5 provided on the entire surface except one end face 4a, and 6 has one end fixed to the end face 4a and electrically connected to the conductive film 5 by means not shown. A disk-shaped first member having a high electrical insulation property in which a pin-shaped output terminal 7 is airtightly provided so as to support the collector electrode 4 in a fixed manner. 2, the first member 6 and the open end of the main body 2 are fixedly coupled so as to be coaxial with the main body 2, and the ionization chamber container 9 as an airtight container is formed together with the member 6 and the main body 2. It is the annular second member made of synthetic resin so as to be formed. Reference numeral 10 is a pin-shaped high-voltage terminal that is provided in an airtight manner at the open end of the container body 2. In this case, the terminal 10 is electrically connected to the conductive film 3 by means not shown, and the ionization chamber The container 9 is filled with air 11. Thus, the pneumatic ionization chamber 1 described above is composed of the above-mentioned components. Since the ionization chamber 1 is configured as described above, radiation
When 12 penetrates the container body 2 and enters the container 9, the radiation 11 ionizes the air 11. Therefore, if a voltage is applied between the terminals 7 and 10 at this time, the radiation is generated between the terminals 7 and 10. An ionization current having a current value I corresponding to the irradiation dose rate A of 12 flows, and in the case of the ionization chamber 1, the energy E of the radiation 12 of the radiation detection sensitivity S of the ionization chamber 1 defined by I / A = S. (Hereinafter, this dependency may be referred to as the radiation detection sensitivity vs. radiation energy characteristic of the ionization chamber 1 or the energy characteristic of the ionization chamber 1 or the energy characteristic of the detection sensitivity S, etc.). When represented by relative sensitivity D based on [MeV], the characteristic line 13 shown in FIG. 8 is obtained (hereinafter, the relationship between relative sensitivity D and E is also referred to as energy characteristic). . Although not shown in FIG. 8, the characteristic line 13 has a flat characteristic as compared with other radiation detectors such as a GM tube and a scintillation detector, and therefore the ionization chamber 1 In the calibration of the characteristic line 13 prior to the measurement of the irradiation dose rate A using this ionization chamber, the number of calibration points of the energy E is smaller than that of the other radiation detectors described above. There are advantages.

【発明が解決しようとする課題】[Problems to be solved by the invention]

電離箱1は上述のようなエネルギー特性を有している
が、近来、法令の改訂に伴い、放射線12を検出して出力
する放射線検出信号が放射線12の1cm深部線量等量H1cm
をそのまま表することになる、第4図の特性線14で示し
たエネルギー特性(以後、このエネルギー特性を基準エ
ネルギー特性またはH1cm特性ということがある。)を有
する放射線検出器の出現が要求されていて、この場合、
第8図と第4図とを比較してわかるように特性線13と14
が大幅に異なることが明らかである。したがって、電離
箱1を用いて放射線12のH1cmを検出しようとした場合、
まず放射線12のエネルギーEを求め、しかる後放射線検
出信号に対してエネルギーEに応じた補正演算をする必
要があるので、前述した電離箱1にはH1cmの検出を容易
に行えないという問題てがあることになる。 そうして、また、電離箱1は上述のように構成されて
いて電離箱容器9がそれぞれ比較的厚い厚さを有する部
材2,6,8で形成されているので、放射線12がβ線である
場合このβ線が容器9内に入射することは殆ど不可能
で、したがって、電離箱1には、β線検出が必要な場合
別の放射線検出器を用意しなければならないため、放射
線12がγ線とβ線とを含む場合などにおいて使い勝手が
悪いという問題点もある。 本発明の目的は、空気式電離箱のエネルギー特性がH1
cm特性にできるだけ近くなるようにして、容易にH1cmを
検出することができる空気式電離箱を得ることにある。 そうして、また、同じ電離箱でβ線とγ線との双方が
検出できるようにして、β線とγ線とを含む放射線の検
出などの際に使い勝手のよいH1cm検出要電離箱を得るこ
とにある。
The ionization chamber 1 has the energy characteristics as described above, but the radiation detection signal that detects and outputs the radiation 12 is 1 cm deep dose equivalent H1 cm
The appearance of a radiation detector having the energy characteristic shown by the characteristic line 14 in FIG. 4 (hereinafter, this energy characteristic may be referred to as the reference energy characteristic or the H1cm characteristic) is required. In this case,
As can be seen by comparing FIG. 8 and FIG. 4, characteristic lines 13 and 14
Is clearly different. Therefore, when trying to detect H1cm of the radiation 12 using the ionization chamber 1,
First, it is necessary to obtain the energy E of the radiation 12 and then to perform a correction calculation on the radiation detection signal according to the energy E. Therefore, the above-mentioned ionization chamber 1 cannot easily detect H1cm. There will be. Then, again, since the ionization chamber 1 is configured as described above and the ionization chamber container 9 is formed of the members 2, 6 and 8 each having a relatively large thickness, the radiation 12 is a β ray. In some cases, it is almost impossible for this β-ray to enter the container 9. Therefore, if the ionization chamber 1 needs to be provided with another radiation detector when β-ray detection is required, the radiation 12 is emitted. There is also a problem in that it is not easy to use when including γ rays and β rays. The object of the present invention is that the energy characteristic of the pneumatic ionization chamber is H1.
The aim is to obtain a pneumatic ionization chamber that can easily detect H1cm by making it as close as possible to the cm characteristic. By doing so, it is also possible to detect both β rays and γ rays in the same ionization chamber, and obtain a convenient H1cm detection required ionization chamber for detection of radiation including β rays and γ rays. Especially.

【課題を解決するたの手段】[Means for solving the problem]

上記目的を達成するため、本発明によれば、内面の少
なくとも一部にカーボン系導電膜が設けられかつ外面の
少なくとも一部またはこの外面と前記内面との間にあっ
て前記内面をとり囲む部分の少なくとも一部に低エネル
ギー放射線を吸収する金属製フィルタが設けられかつ内
部に空気が充填された合成樹脂製の電離箱容器と、この
電離箱容器内に配置されかつ電極本体表面の少なくとも
一部に含ニッケル合成樹脂または純ニッケルからなる膜
状の第1導電領域が形成されると共に前記表面の前記第
1導電領域を除く残部に含カーボン合成樹脂からなる膜
状の第2導電領域が形成された集電極とを備え、前記フ
ィルムが設けられた位置で前記電離箱容器を透過してこ
の電離箱容器内に入射した放射線1cm深部線量当量を直
接的に表す放射線検出信号を前記集電極から出力するよ
うに、前記第1導電領域が占める前記集電極の前記表面
の面積に対する前記電離箱容器の内容積の比及び前記含
ニッケル合成樹脂のニッケル含有率と、前記フィルタの
材質及び厚さとを設定して1cm深部線量当量検出用電離
箱を構成し、そうして、また、上記の1cm深部線量当量
検出用電離箱において、電離箱容器の一部を、この電離
箱容器の内部に対向するように配置されかつ前記内部に
対向する一面にカーボン系導電膜が形成された合成樹脂
製の膜体と、この膜体の他面側において該膜体を被うよ
うにして該膜体の支持機構に着脱自在にとりつけられか
つ金属製フィルタが内面または外面または前記内面と前
記外面との間に設けられた合成樹脂製の蓋とで形成して
1cm深部線量当量検出用電離箱を構成する。
To achieve the above object, according to the present invention, a carbon-based conductive film is provided on at least a part of the inner surface and at least a part of the outer surface or at least a portion between the outer surface and the inner surface and surrounding the inner surface. An ionization chamber container made of a synthetic resin in which a metal filter that absorbs low-energy radiation is partially provided and filled with air, and an ionization chamber container that is arranged in the ionization chamber container and is included in at least a part of the surface of the electrode body. A film-shaped first conductive region made of a nickel synthetic resin or pure nickel is formed, and a film-shaped second conductive region made of a carbon-containing synthetic resin is formed on the rest of the surface except the first conductive region. Radiation detection that includes an electrode and directly penetrates the ionization chamber container at a position where the film is provided and that is incident on the ionization chamber container at a depth of 1 cm. Signal from the collector electrode, the ratio of the inner volume of the ionization chamber container to the area of the surface of the collector electrode occupied by the first conductive region, the nickel content of the nickel-containing synthetic resin, and the filter. The ionization chamber for 1 cm deep dose equivalent detection is configured by setting the material and thickness of the ionization chamber, and in the above ionization chamber for 1 cm deep dose equivalent detection, a part of the ionization chamber container is A synthetic resin film body, which is disposed so as to face the inside of the container and has a carbon-based conductive film formed on one surface facing the inside, and the other side of the film body is covered with the film body. And a metal filter formed by an inner surface or an outer surface or a synthetic resin lid provided between the inner surface and the outer surface.
An ionization chamber for 1 cm deep dose equivalent detection is constructed.

【作 用】[Operation]

上記のように構成すると、電離箱容器を透過した放射
線としてのγ線が該容器内の空気を電離するほか、該容
器を透過したγ線が集電極における第1導電領域のニッ
ケルに入射することによってこのニッケルから叩き出さ
れた電子がさらに電離箱容器の空気を電離するので、集
電極に第1導電領域が設けられていない従来の電離箱に
おけるよりも放射線検出信号の値が一般に大きくなり、
かつ、フィルタによってこのフィルタを透過して電 離
箱容器内に入射しようとする低エネルギー のγ線が吸
収されるので電離箱容器に入射する放射線の低エネルギ
ー領域では放射線検出信号の値が小さくなって、結局、
電離箱のエネルギー特性がH1cm特性に近似した特性にな
るため放射線のH1cmを容易に検出し得る電離箱が得られ
ることになる。 そうして、また、上記のように構成すると、膜体をβ
線を容易に透過させ得る厚さにしておくことによって、
蓋を膜体の支持機構からとり外すとβ線検出用電離箱が
直ちに得られることは明らかであり、また、蓋を膜体の
支持機構にとりつけると直ちにγ線のH1cm検出用電離箱
が得られることは明らかであるから、β線とγ線とを含
む放射線の検出などの際に使い勝手のよいH1cm検出用電
離箱が得られることになる。
With the above structure, the γ-rays as the radiation transmitted through the ionization chamber container ionize the air in the container, and the γ-rays transmitted through the container are incident on the nickel in the first conductive region of the collector electrode. Since the electrons knocked out from this nickel further ionize the air in the ionization chamber container, the value of the radiation detection signal generally becomes larger than that in the conventional ionization chamber in which the first conductive region is not provided in the collector electrode,
Moreover, the low energy γ-rays that pass through this filter and enter the ionization chamber container are absorbed by the filter, so the value of the radiation detection signal becomes small in the low energy region of the radiation incident on the ionization chamber container. And in the end,
Since the energy characteristic of the ionization chamber is similar to the H1cm characteristic, an ionization chamber that can easily detect H1cm of radiation will be obtained. Then, again, with the above configuration,
By keeping the thickness of the wire easily permeable,
It is clear that the ionization chamber for β-ray detection can be obtained immediately by removing the lid from the support mechanism of the membrane body, and the ionization chamber for H1cm detection of γ rays can be obtained immediately by attaching the lid to the support mechanism of the membrane body. It is clear that the ionization chamber for H1cm detection is easy to use when detecting radiation including β rays and γ rays.

【実施例】【Example】

第1図は本発明の一実施例としてのH1cm検出用電離箱
15の要部縦断面図で、本図の第7図と異なるところは、
有底円筒状容器本体2の底部2a及び側壁の各外面にこれ
らの各部をすべて被うように厚さt〔mm〕のアルミニウ
ム製フィルタ16が設けられていることと、集電極4の他
端面4bと集電極4の側面のうちの端面4bに連なる該側面
の円筒状の一部の部分とからなる面積B〔cm2〕の部分
に、ニッケルを90%〔%〕以上含む合成樹脂導電塗料に
よる塗膜17が集電極4の表面の面積Bの部分を除く表面
に設けた含カーボン合成樹脂からなるカーボン系導電膜
25に電気的に導通するようにして形成されていることで
ある。以下に電離箱15が上述のように構成されている理
由を説明する。すなわち、第2図は、内部積が650〔c
m3〕の電離箱容器9を有する第1図の電離箱15からフィ
ルタ16をとり外した構成のフィルタなし電離箱で、上記
した面積Bを第2図図示のように変えて該フィルタなし
電離箱のエネルギー特性を測定した本発明者の実験結果
説明図で、第2図におけるイ,ロ,ハの各特性線はそれ
ぞれの特性線に対応して図示した面積Bの範囲内での代
表的特性線である。そうして、また、第3図は、エネル
ギー特性が第2図図示の特性線ロを呈する上述のフィル
タなし電離箱にアルミニウム製をフィルタ16を設けて第
1図の電離箱15と同じ構成にしたフィルタ付き電離箱に
ついて、前述のフィルタ厚さtを第3図図示のように変
えて該フィルタ付き電離箱のエネルギー特性を測定した
本発明者の実験結果説明図で、本図はt=0.5、t=1
のそれぞれの場合の特性線ニ,ホのほかに第2図に示し
た特性線ロも以下の説明の便宜上あわせて示してある。
そうして、第2図は、電離箱容器9を透過したγ線が空
気11を電離するほか、容器9を透過したγ線が塗膜17中
のニッケルを照射することによってこのニッケルから叩
き出された電子がさらに空気11を電離するので、塗膜17
を設けると、この塗膜17が設けられていない第7図の電
離箱1のエネルギー特性線13に比べて上方に突出した形
状のエネルギー特性線が得られて、かつこのエネルギー
特性線の極大値が面積Bが増える程大きくなることを示
しており、また、第3図は、電離箱容器9内に入射しよ
うとするとγ線のうちの低エネルギーのものがアルミニ
ウムフィルタ16によって吸収されるため、フィルタ付き
電離箱においてはフィルタなし電離箱の場合に比べてE
の低エネルギー領域で相対感度Dが小さくなってエネル
ギー特性線が垂れ下がることを示している。 前述した第4図は第3図に示した特性線ホを上述のH1
cm特性線14と共に示した上述のフィルタ付き電離箱のエ
ネルギー特性説明図で、第4から、E=〔keV〕付近以
下では特性線ホが特性線14によく一致しており、また、
E=80〔keV〕付近以上でも特性線ホは10〔%〕の誤差
範囲内で特性線14一致していることが明らかである。こ
のため、第1図の電離箱15では、電離箱容器9の内容積
Vが650〔cm3〕である場合、塗膜17を設けた面積Bが15
〜25〔cm3〕範囲内の面積になっており、かつアルミニ
ウムフィルタ16の厚さtが1〔mm〕になっている。した
がって、V=650〔cm3〕の電離箱15では、、エネルギー
特性が第3図及び第4図に示した特性線ホになるので、
端子7、10間に所定の電圧を印加すると容器9を透過し
てこの容器9内に入射した放射線のH1cmを直接的に表わ
す放射線検出信号15aが集電極4から出力されることに
なり、この結果、信号15aによって放射線12のH1cmを容
易に検出することができることになる。 さて、電離箱容器9の内容積Vを650〔cm3〕とした電
離箱15では、塗膜17が占める集電極4の表面の面積B及
びこの塗膜17を形成する含ニッケル合成樹脂導電塗料の
ニッケル含有率Gと、フィルタ16の材質及びその厚さt
とをそれぞれ上記のように設定した。ところが、第2図
に示したエネルギー特性線が第8図の特性線13と比べて
上方に突出するのは上述したように塗膜17のニッケルか
ら出射された電子に起因するから、第1図の構成の電離
箱15からフィルタ16を取り外した構成のフィルタなし電
離箱ではそのエネルギー特性線の突出態様が面積Bと容
積Vとの比B/Vと含有率Gとに依存することが明らかで
あり、また、第3図に示した特性線ニ,ホが特性線ロに
比べてEの低エネルギー領域で垂れ下がるのはフィルタ
16によるγ線の吸収にもとづくのであるから、電離箱15
ではそのエネルギー特性線の低エネルギー領域における
態様がフィルタ16の材質及び厚さに依存することが明ら
かである。このため、本発明では、電離箱15において放
射線検出信号15aがH1cmを直接的に表す信号になるよう
に、容器9の内容積Vに応じた比B/Vとニッケル含有率
Gとフィルタ16の材質及び厚さtとを設定すればよく
て、したがって、本発明ではフィルタ16を上述した1
〔mm〕の厚さのアルミニウム以外の第5図に示した厚さ
を有す材質で形成してもよいことが明らかである。 なお、電離箱15ではフィルタ16を容器本体2の開口端
側を除く全外面にわたって設けられたので、電離箱15
は、容器本体2の開口端側を除いて、放射線12のH1cmを
検出する機能が無指向性となっているが、本発明ではフ
ィルタ16を容器本体2の開口端側を除く全外面の一部に
設けることによって電離箱15のH1cm検出機能が有指向性
となるようにしてもよい。また上述した本発明の各実施
例では、すべて、フィルタ16が容器本体2の外面に設け
られるものとしたが、本発明ではフィルタ16が容器本体
2の壁対内に埋めこまれたようになっていてもよい。そ
うして、また、上述したそれぞれの本発明実施例では集
電極4の面積Bの部分に塗膜17が形成されているものと
したが、本発明では、この塗膜17のかわりにニッケルメ
ッキの層が設けられていてもよい。 第6図は第1図に示した本発明実施例とは異なる本発
明実施例としてのH1cm検出用電離箱18の要部縦断面図
で、本図の第1図と異なる所は、本体容器2の底部2aに
面積の広い貫通孔2bが設けられていることと、ポリエス
テルフィルム19とこのフィルム19を支持する合成樹脂製
の枠体20とからなるβ線入射窓21が、フィルム19で貫通
孔2bを塞ぐようにして、容器本体2に図示していない手
段で取り外し可能に固定されていることと、一面側に厚
さ1〔mm〕のアルミニウム製板状フィルタ22が図示して
いない手段で固定された容器本体2と同じ厚さでかつ同
じ材質の合成樹脂製の板状の本体部23と前記フィルタ22
とからなる蓋24が、フィルタ22でフィルム19の外面側か
ら該フィルム19を被うようにして、枠体20に着脱自在に
とりつけられていることで、この場合、フィルム19の内
面には容器本体2の内面におけるのと同じ材質のカーボ
ン系導電膜3が設けられている。そうして、第6図は蓋
23を枠体20から取り外した状態を示している。 電離箱18は上述のように構成されているうえ、さら
に、フィルム19がβ線の透過可能な厚さに形成されてい
る。したがって、電離箱18において蓋24を枠体20から取
り外すと直ちにβ線検出用電離箱が得られることが明ら
かである。そうして、また、電離箱18では、蓋24を枠体
20にとり付けた状態で蓋本体部23、フィルタ22、フィル
ム19を順次透過して電離箱容器9内に入射するγ線に対
するエネルギー特性ができるだけH1cm特性に一致するよ
うに、前述したB/V及びGが設定されている。故に、電
離箱19によれば、蓋24を枠体20にとり付けると直ちに有
指向性のH1cm検出用電離箱が得られるので、β線とγ線
とが混在する放射線の検出などの際に使い勝手がよいと
いう便利さが得られることになる。 電離箱18ではフィルタ22をアルミニウム製としたが、
この場合、フィルタ22を第5図に示した材質及び厚さの
材料で形成してもよいことは自ら明らかである。
FIG. 1 shows an ionization chamber for detecting H1cm as one embodiment of the present invention.
15 is a vertical cross-sectional view of the main part, where the difference from FIG. 7 of this drawing is
An aluminum filter 16 having a thickness t [mm] is provided on each outer surface of the bottom portion 2a and the side wall of the bottomed cylindrical container body 2 and the other end surface of the collecting electrode 4 is provided. A synthetic resin conductive paint containing 90% [%] or more of nickel in a portion having an area B [cm 2 ] consisting of 4b and a cylindrical part of the side surface of the side surface of the collector electrode 4 which is continuous with the end surface 4b. The carbon-based conductive film made of carbon-containing synthetic resin provided on the surface of the collecting electrode 4 except the area B on the surface of the collecting electrode 4.
It is formed so as to be electrically connected to 25. The reason why the ionization chamber 15 is configured as described above will be described below. That is, in FIG. 2, the internal product is 650 [c
m 3 ], which has an ionization chamber container 9 of FIG. 1 and has a structure in which the filter 16 is removed from the ionization chamber 15 of FIG. 1, and the area B is changed as shown in FIG. In the experimental result explanatory diagram of the inventor who measured the energy characteristic of the box, each characteristic line of a, b, and c in FIG. 2 is a representative within the range of the area B shown corresponding to each characteristic line. It is a characteristic line. In addition, FIG. 3 shows the same configuration as the ionization chamber 15 shown in FIG. 1 by providing the filter 16 made of aluminum in the ionization chamber without a filter having the energy characteristic shown by the characteristic line B shown in FIG. In the ionization chamber with a filter, the above-mentioned filter thickness t was changed as shown in FIG. 3 to measure the energy characteristics of the ionization chamber with a filter. , T = 1
In addition to the characteristic lines D and E in each case, the characteristic line B shown in FIG. 2 is also shown for convenience of the following description.
Then, in FIG. 2, the γ-rays transmitted through the ionization chamber container 9 ionize the air 11 and the γ-rays transmitted through the container 9 irradiate the nickel in the coating film 17 to knock out the nickel. The generated electrons further ionize the air 11, so that the coating film 17
Is provided, an energy characteristic line having a shape protruding upward as compared with the energy characteristic line 13 of the ionization chamber 1 of FIG. 7 in which this coating film 17 is not provided, and the maximum value of this energy characteristic line is obtained. Indicates that the larger the area B is, the larger the area B is. Also, FIG. 3 shows that low energy γ-rays of the γ-rays are absorbed by the aluminum filter 16 when the ions enter the ionization chamber container 9. In the ionization chamber with a filter, E
It is shown that the relative sensitivity D decreases and the energy characteristic line hangs in the low energy region of. In the above-mentioned FIG. 4, the characteristic line E shown in FIG.
In the energy characteristic explanatory view of the above-described ionization chamber with a filter, which is shown together with the cm characteristic line 14, the characteristic line E closely matches the characteristic line 14 in the vicinity of E = [keV] or less from the fourth.
It is clear that the characteristic line E coincides with the characteristic line 14 within an error range of 10% even when E = 80 [keV] or more. Therefore, in the ionization chamber 15 of FIG. 1, when the inner volume V of the ionization chamber container 9 is 650 [cm 3 ], the area B where the coating film 17 is provided is 15
The area is within the range of 25 [cm 3 ] and the thickness t of the aluminum filter 16 is 1 [mm]. Therefore, in the ionization chamber 15 of V = 650 [cm 3 ], the energy characteristic becomes the characteristic line E shown in FIG. 3 and FIG.
When a predetermined voltage is applied between the terminals 7 and 10, a radiation detection signal 15a that directly expresses H1 cm of the radiation that has passed through the container 9 and has entered the container 9 is output from the collector electrode 4. As a result, H1 cm of the radiation 12 can be easily detected by the signal 15a. Now, in the ionization chamber 15 in which the inner volume V of the ionization chamber container 9 is 650 [cm 3 ], the surface area B of the collector electrode 4 occupied by the coating film 17 and the nickel-containing synthetic resin conductive paint forming this coating film 17 Content G of nickel, the material of the filter 16 and its thickness t
And were set as above. However, the energy characteristic line shown in FIG. 2 projects upward as compared with the characteristic line 13 in FIG. 8 because it is due to the electrons emitted from the nickel of the coating film 17 as described above. In the ionization chamber without a filter having the configuration in which the filter 16 is removed from the ionization chamber 15 having the above configuration, it is clear that the protruding form of the energy characteristic line depends on the ratio B / V between the area B and the volume V and the content rate G. Also, the characteristic lines D and E shown in FIG. 3 hang down in the low energy region of E as compared with the characteristic line B in the filter.
Ionization chamber 15 because it is based on the absorption of γ rays by 16
Then, it is clear that the form of the energy characteristic line in the low energy region depends on the material and thickness of the filter 16. Therefore, in the present invention, the ratio B / V, the nickel content G, and the filter 16 corresponding to the internal volume V of the container 9 are set so that the radiation detection signal 15a in the ionization chamber 15 becomes a signal that directly represents H1 cm. It suffices to set the material and the thickness t. Therefore, in the present invention, the filter 16 has
Obviously, it may be formed of a material having a thickness shown in FIG. 5 other than aluminum having a thickness of [mm]. In addition, in the ionization chamber 15, since the filter 16 is provided over the entire outer surface of the container body 2 except the opening end side, the ionization chamber 15
The function of detecting H1 cm of the radiation 12 is omnidirectional except for the open end side of the container body 2. However, in the present invention, the filter 16 has one outer surface except for the open end side of the container body 2. The H1cm detection function of the ionization chamber 15 may be directional by providing the ionization chamber 15. Further, in all the embodiments of the present invention described above, the filter 16 is provided on the outer surface of the container body 2, but in the present invention, the filter 16 is embedded in the wall pair of the container body 2. May be. Further, in each of the above-described embodiments of the present invention, the coating film 17 is formed on the area B of the collector electrode 4. However, in the present invention, the coating film 17 is replaced by nickel plating. Layers may be provided. FIG. 6 is a longitudinal sectional view of an essential part of an ionization chamber 18 for H1cm detection as an embodiment of the present invention different from the embodiment of the present invention shown in FIG. 1. The difference from FIG. The through-hole 2b having a large area is provided in the bottom portion 2a of 2 and the β-ray incident window 21 including the polyester film 19 and the synthetic resin frame 20 supporting the film 19 penetrates through the film 19. It is detachably fixed to the container body 2 by means not shown so as to close the hole 2b, and the aluminum plate filter 22 having a thickness of 1 mm on one surface side is not shown. Plate-like body portion 23 made of synthetic resin and having the same thickness and the same material as the container body 2 fixed by
The lid 24 composed of and is detachably attached to the frame body 20 by covering the film 19 from the outer surface side of the film 19 with the filter 22, and in this case, the inner surface of the film 19 is a container. A carbon-based conductive film 3 of the same material as that on the inner surface of the main body 2 is provided. Then, Fig. 6 shows the lid.
23 shows a state in which 23 is removed from the frame body 20. The ionization chamber 18 is configured as described above, and further, the film 19 is formed to have a thickness capable of transmitting β rays. Therefore, it is apparent that the β-ray detecting ionization chamber can be obtained immediately by removing the lid 24 from the frame body 20 in the ionization chamber 18. Then, again, in the ionization box 18, the lid 24 is a frame body.
In such a state that the energy characteristics for γ-rays that are sequentially transmitted through the lid main body 23, the filter 22, and the film 19 and are incident on the ionization chamber container 9 in the state of being attached to 20, match the above-mentioned B / V and G is set. Therefore, according to the ionization box 19, since a directional H1cm detection ionization box can be immediately obtained by attaching the lid 24 to the frame body 20, it is easy to use when detecting radiation in which β rays and γ rays are mixed. The convenience of being good is obtained. Although the filter 22 is made of aluminum in the ionization chamber 18,
In this case, it is obvious that the filter 22 may be made of the material and the thickness shown in FIG.

【発明の効果】【The invention's effect】

上述の説明から明らかなように、電離箱容器を透過し
た放射線としてのγ線が該容器内の空気を電離するほ
か、該容器を透過したγ線が集電極における第1導電領
域のニッケルに入射することによってこのニッケルから
叩き出された電子さらに電離箱容器内の空気を電離する
ので、集電極に第1導電領域が設けられていない従来の
電離箱におけるよりも放射線検出信号の値が一般に大き
くなり、かつ、フィルタによってこのフィルタを透過し
て電離箱容器内に入射しようとする低エネルギーのγ線
が吸収されるので電離箱容器に入射する放射線の低エネ
ルギー領域では放射線検出信号の値が小さくなって、結
局、本発明には、電離箱のエネルギー特性がH1cm特性に
近似した特性になるため放射線のH1cmを容易に検出し得
る電離箱が得られる効果がある。 そうして、また、上記のように構成すると、膜体β線
を容易に透過させ得る厚さにしておくことによって、蓋
を膜体の支持機構からとり外すとβ線検出用電離箱が直
ちに得られることは明らかであり、また、蓋を膜体の支
持機構にとりつけると直ちにγ線のH1cm検出用電離箱が
得られることは明らかであるから、本発明には、β線と
γ線とを含む放射線の検出などの際に使い勝手のよいH1
cm検出用電離箱が得られる効果がある。さらに、電極本
体表面に、含ニッケル合成樹脂塗料を塗布するかあるい
はニッケルメッキを施すことにより膜状の第1導電領域
を形成するとと共に残部の膜状の第2導電領域を形成す
るようにしているので、所望の特性をもった集電極を容
易に製作することができる。加えて、電極本体を樹脂製
のものにすれば、製作コストを安価にすることが可能に
なる。
As is apparent from the above description, the γ-rays as the radiation that have passed through the ionization chamber container ionize the air in the container, and the γ-rays that have passed through the container are incident on the nickel in the first conductive region of the collector electrode. By doing so, the electrons knocked out from the nickel and the air in the ionization chamber container are ionized, so that the value of the radiation detection signal is generally larger than that in the conventional ionization chamber in which the first conductive region is not provided in the collecting electrode. In addition, since the low energy γ-rays that pass through this filter and enter the ionization chamber container are absorbed by the filter, the value of the radiation detection signal is small in the low energy region of the radiation entering the ionization chamber container. Therefore, in the end, the present invention has an effect that an ionization chamber capable of easily detecting H1 cm of radiation can be obtained because the energy characteristics of the ionization chamber become characteristics similar to the H1 cm characteristic. That. Then, when configured as described above, the thickness for allowing the β-rays of the membrane to be easily transmitted allows the ionization chamber for β-ray detection to be immediately performed when the lid is removed from the support mechanism of the membrane. It is clear that it can be obtained, and it is clear that the ionization chamber for H1cm detection of γ-rays can be immediately obtained by attaching the lid to the support mechanism of the membrane body, and therefore, in the present invention, β-rays and γ-rays Easy-to-use H1 for detecting radiation including
The ionization chamber for cm detection is effective. Further, a nickel-containing synthetic resin coating material or nickel plating is applied to the surface of the electrode body to form a film-shaped first conductive region and at the same time form a remaining film-shaped second conductive region. Therefore, a collector electrode having desired characteristics can be easily manufactured. In addition, if the electrode body is made of resin, the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の要部縦断面図、 第2図及び第3図はそれぞれ異なる実験結果説明図、 第4図は第1図に示した本発明実施例のエネルギー特性
説明図、 第5図は第1図に示した要部の構成説明図、 第6図は第1図の実施例とは異なる本発明実施例の構成
説明図、 第7図は従来の空気式電離箱の要部縦断面図、 第8図は第7図に示した電離箱のエネルギー特性説明図
である。 3……カーボン系導電膜、4……集電極、9……電離箱
容器、11……空気、12……放射線、15,18……1cm深部線
量当量検出用電離箱、15a……放射線検出信号、16,22…
…フィルタ、17……塗膜(第1導電領域)、19……ポリ
エステルフィルム(膜体)、20……枠体(膜体支持機
構)、24……蓋、25……カーボン系導電膜(第2導電領
域)。
FIG. 1 is a longitudinal sectional view of an essential part of an embodiment of the present invention, FIGS. 2 and 3 are diagrams for explaining different experimental results, and FIG. 4 is an explanation of energy characteristics of the embodiment of the present invention shown in FIG. 5 and 5 are explanatory views of the configuration of the main part shown in FIG. 1, FIG. 6 is an explanatory view of the configuration of an embodiment of the present invention different from the embodiment of FIG. 1, and FIG. 7 is a conventional pneumatic ionization system. FIG. 8 is a longitudinal sectional view of a main part of the box, and FIG. 8 is an explanatory view of energy characteristics of the ionization box shown in FIG. 3 ... Carbon-based conductive film, 4 ... Collection electrode, 9 ... Ionization chamber container, 11 ... Air, 12 ... Radiation, 15, 18 ... Ionization chamber for detecting deep dose equivalent, 15a ... Radiation detection Signal, 16,22 ...
... filter, 17 ... coating film (first conductive region), 19 ... polyester film (membrane), 20 ... frame (membrane support mechanism), 24 ... lid, 25 ... carbon conductive film ( Second conductive region).

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内面の少なくとも一部にカーボン系導電膜
が設けられかつ外面の少なくとも一部またはこの外面と
前記内面との間にあって前記内面を取り囲む部分の少な
くとも一部に低エネルギー放射線を吸収する金属製フィ
ルタが設けられかつ内部に空気が充填された合成樹脂製
の電離箱容器と、この電離箱容器内に配置されかつ電極
本体表面の少なくとも一部に含ニッケル合成樹脂または
純ニッケルからなる膜状の第1導電領域が形成されると
共に前記表面の前記第1導電領域を除く残部に含カーボ
ン合成樹脂からなる膜状の第2導電領域が形成された集
電極とを備え、前記フィルタが設けられた位置で前記電
離箱容器を透過してこの電離箱容器内に入射した放射線
の1cm深部線量当量を直接的に表す放射線検出信号を前
記集電極から出力するように前記第1導電領域が占める
前記集電極の前記表面の面積に対する前記電離箱容器の
内容積の比及び前記含ニッケル合成樹脂のニッケル含有
率と、前記フィルタの材質及び厚さとを設定したことを
特徴とする1cm深部線量当量検出用電離箱。
1. A carbon-based conductive film is provided on at least a part of an inner surface, and at least a part of an outer surface or at least a part between the outer surface and the inner surface and surrounding the inner surface absorbs low energy radiation. A synthetic resin ionization chamber container provided with a metal filter and filled with air, and a film made of nickel-containing synthetic resin or pure nickel disposed in the ionization chamber container and at least a part of the electrode body surface. And a collector electrode on which a film-shaped second conductive region made of carbon-containing synthetic resin is formed on the remaining portion of the surface excluding the first conductive region, and the filter is provided. A radiation detection signal that directly represents the 1 cm deep dose equivalent of the radiation that has passed through the ionization chamber container and has entered the ionization chamber container at a predetermined position is output from the collector electrode. As described above, the ratio of the inner volume of the ionization chamber container to the surface area of the collector electrode occupied by the first conductive region, the nickel content of the nickel-containing synthetic resin, and the material and thickness of the filter are set. An ionization chamber for 1 cm deep dose equivalent detection characterized by.
【請求項2】特許請求の範囲第1項に記載の電離箱にお
いて、電離箱容器の一部を、この電離箱容器の内部に対
向するように配置されかつ前記内部に対向する一面にカ
ーボン系導電膜が形成された合成樹脂製の膜体と、この
膜体の他面側において該膜体を被うようにして該膜体の
支持機構に着脱自在にとりつけられかつ金属製フィルム
が内面または外面または前記内面と外面との間にもうけ
られた合成樹脂製の蓋とで形成したことを特徴とする1c
m深部線量当量検出用電離箱。
2. The ionization chamber according to claim 1, wherein a part of the ionization chamber container is arranged so as to face the inside of the ionization chamber container, and the carbonaceous material is provided on one surface facing the inside. A synthetic resin film body on which a conductive film is formed, and a metal film which is detachably attached to a support mechanism of the film body so as to cover the film body on the other surface side of the film body 1c characterized in that it is formed by an outer surface or a lid made of synthetic resin provided between the inner surface and the outer surface.
An ionization chamber for detecting deep dose equivalents.
JP2104846A 1990-04-20 1990-04-20 1 ▲ cm ▼ Ionization chamber for deep dose equivalent detection Expired - Lifetime JP2676974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2104846A JP2676974B2 (en) 1990-04-20 1990-04-20 1 ▲ cm ▼ Ionization chamber for deep dose equivalent detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2104846A JP2676974B2 (en) 1990-04-20 1990-04-20 1 ▲ cm ▼ Ionization chamber for deep dose equivalent detection

Publications (2)

Publication Number Publication Date
JPH044549A JPH044549A (en) 1992-01-09
JP2676974B2 true JP2676974B2 (en) 1997-11-17

Family

ID=14391689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2104846A Expired - Lifetime JP2676974B2 (en) 1990-04-20 1990-04-20 1 ▲ cm ▼ Ionization chamber for deep dose equivalent detection

Country Status (1)

Country Link
JP (1) JP2676974B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821370B1 (en) * 2006-09-29 2008-04-11 한국원자력연구원 Ionization chamber for detecting radiation
JP2009098095A (en) * 2007-10-19 2009-05-07 Yasuto Ioka Ionization chamber type x-ray foreign matter detector and cylindrical ionization chamber
EP2857865A4 (en) * 2012-05-24 2016-02-17 Mitsubishi Electric Corp Actinography device
TWI823175B (en) * 2020-11-12 2023-11-21 日商住友重機械工業股份有限公司 Measuring device, measuring method, measuring system and radiotherapy system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619456B2 (en) * 1988-10-19 1994-03-16 工業技術院長 Ionization box for personal dosimeter

Also Published As

Publication number Publication date
JPH044549A (en) 1992-01-09

Similar Documents

Publication Publication Date Title
US6437513B1 (en) Ionization chamber for ion beams and method for monitoring the intensity of an ion beam
US6426504B1 (en) Gamma resistant dual range neutron detectors
US4481421A (en) Lithium-6 coated wire mesh neutron detector
US20030213917A1 (en) Gamma resistant dual range neutron detector
Curran et al. A photoelectric alpha particle detector
JP2676974B2 (en) 1 ▲ cm ▼ Ionization chamber for deep dose equivalent detection
US4197463A (en) Compensated self-powered neutron detector
US2479271A (en) Ionization chamber circuit
US5508526A (en) Dual entrance window ion chamber for measuring X-ray exposure
US6236711B1 (en) Radiation measuring device comprising an ionization chamber
US4644167A (en) Radiation dose rate measuring device
KR102040501B1 (en) Radon sensor apparatus using a polyhedron type ionization chamber
CA1115860A (en) Smoke detectors
US2666865A (en) Survey instrument
US3311770A (en) Gamma compensated neutron ion chamber
Anderson et al. A focusing gas scintillation proportional counter
US2974248A (en) Neutron-insensitive beta-gamma dosimeter
Siohan et al. Measurement of the flux of charged hadrons at sea level between 250 and 10000 GeV
US4477728A (en) Radiation detector
US4136282A (en) Directional detector of gamma rays
US2852694A (en) Ionization chamber
CA1124411A (en) Apparatus for ascertaining and/or regulating the amounts of radiation in the making of x-ray images
Hubbell Jr et al. The spherical condenser as a high transmission particle spectrometer: III. Construction and calibration
EP0874340A2 (en) Low profile ionization chamber
US4093886A (en) Aerosol detection device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 13