JP2676251B2 - Temperature controller for semiconductor devices - Google Patents

Temperature controller for semiconductor devices

Info

Publication number
JP2676251B2
JP2676251B2 JP8844389A JP8844389A JP2676251B2 JP 2676251 B2 JP2676251 B2 JP 2676251B2 JP 8844389 A JP8844389 A JP 8844389A JP 8844389 A JP8844389 A JP 8844389A JP 2676251 B2 JP2676251 B2 JP 2676251B2
Authority
JP
Japan
Prior art keywords
temperature control
temperature
thin film
semiconductor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8844389A
Other languages
Japanese (ja)
Other versions
JPH02266552A (en
Inventor
崇記 斉藤
茂 衣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP8844389A priority Critical patent/JP2676251B2/en
Publication of JPH02266552A publication Critical patent/JPH02266552A/en
Application granted granted Critical
Publication of JP2676251B2 publication Critical patent/JP2676251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高速かつ高精度な温度制御が可能という薄
膜吸発熱体がもつ性質を利用した半導体素子用温度制御
装置に関する。この制御装置は、半導体レーザ、ホトダ
イオード、IC等の半導体素子の温度制御に利用され、例
えば、半導体レーザに利用した場合、温度制御によりレ
ーザ光の周波数と光強度の変調や安定化の行える光源が
実現できる。
Description: TECHNICAL FIELD The present invention relates to a temperature control device for a semiconductor device, which utilizes the property of a thin film heat sink / heater capable of high-speed and highly accurate temperature control. This control device is used for temperature control of semiconductor elements such as semiconductor lasers, photodiodes, and ICs.For example, when used for semiconductor lasers, a light source that can modulate or stabilize the frequency and light intensity of laser light by temperature control is used. realizable.

[従来の技術] 半導体レーザは、周囲温度が変動することによりレー
ザ光の周波数と光強度の両方が変動し、その変動率は周
波数がマイナス数GHz/Kであり、光強度がマイナス数10
μW/Kである。
[Prior Art] In a semiconductor laser, both the frequency and the light intensity of the laser light fluctuate due to fluctuations in the ambient temperature, and the fluctuation rate is a frequency of minus several GHz / K and a light intensity of minus several tens.
It is μW / K.

また、ホトダイオードの場合では、感度に温度依存性
がある。このように、半導体素子には様々な温度依存現
象が存在し、このため数々の温度制御装置が考案され利
用されてきた。
In the case of a photodiode, the sensitivity has temperature dependence. As described above, various temperature-dependent phenomena exist in the semiconductor element, and therefore various temperature control devices have been devised and used.

従来の技術での半導体素子の温度制御は、任意の温度
に安定させることが主体であり、温度を変えるようなこ
とは、行われていなかった。これはペルチェ素子にバル
ク形状のものを用いているので、高精度に温度を制御す
る場合、必然的に素子形状が大きくなり、従って熱容量
の値も大きくなり、熱応答時間としては数秒から数分も
かかってしまうために実用的な温度の可変が不可能であ
ったためである。このことは、多段型ペルチェ素子を用
いても同様であった。また、素子の駆動には数アンペア
(A)以上の注入電流が必要であるが、注入電流が大き
くなればなるほど電流変動も大きくなり、その電流変動
が温度制御精度の低下を引き起こしていた。
In the conventional technique, the temperature control of the semiconductor element is mainly to stabilize at an arbitrary temperature, and the temperature has not been changed. Since a bulk Peltier element is used, when controlling temperature with high accuracy, the element shape inevitably becomes large, and therefore the value of heat capacity also becomes large, and the thermal response time is from a few seconds to a few minutes. This is because it is also impossible to change the temperature practically. This was the same even when using a multi-stage Peltier device. Further, although an injection current of several amperes (A) or more is required to drive the element, the larger the injection current, the larger the current fluctuation, and the current fluctuation causes the deterioration of the temperature control accuracy.

[発明が解決しようとする課題] 従って、本発明においては、半導体素子の温度を熱容
量の小さな薄膜吸発熱体によって高速、かつ、高精度に
制御することにより、従来の技術における下記の課題を
解決することを目的とする。
[Problems to be Solved by the Invention] Therefore, in the present invention, the following problems in the conventional technique are solved by controlling the temperature of a semiconductor element at high speed and with high accuracy by a thin film heat-absorbing body having a small heat capacity. The purpose is to do.

半導体素子の温度制御を従来の温度制御素子で行おう
とすると、 (1) 高精度な制御を行おうとするほど熱容量のより
大きな温度制御素子が必要になり、装置が大型になる。
If the conventional temperature control element is used to control the temperature of the semiconductor element, (1) a temperature control element having a larger heat capacity is required to perform highly accurate control, and the apparatus becomes large.

(2) 熱容量の大きな温度制御素子を使用すると、熱
応答時間が数秒から数分もかかり、高速な制御ができな
い。
(2) When a temperature control element having a large heat capacity is used, the thermal response time takes several seconds to several minutes, and high-speed control cannot be performed.

(3) 熱容量の大きな温度制御素子を駆動させるに
は、一般には数アンペア(A)程度の精密に制御された
電流を注入することが必要であり、その電流源としては
大型のものが必要であった。
(3) In order to drive a temperature control element having a large heat capacity, it is generally necessary to inject a precisely controlled current of about several amperes (A), and a large current source is required. there were.

(4) 注入電流が大きくなるほど電流変動も大きくな
り、温度制御の精度を悪くしていた。
(4) The larger the injected current, the larger the current fluctuation, which deteriorates the accuracy of temperature control.

[課題を解決するための手段及び作用] 本発明では、上記の課題に対して、半導体素子の周囲
温度を、大きな温度変化ができる温度制御素子と、熱応
答の高速な薄膜吸発熱体とによる二段構成の温度制御装
置で制御することにより実現するものである。特に二段
目の素子として、吸熱と発熱とが電流の流れる方向で変
えることのできる熱電効果(ペルチェ効果)を採用し、
この効果を有する異種導電性をもつ導体の接合体を薄膜
で形成し、その接合体を温度制御をすべき半導体に当接
する構造を採用する。
[Means and Actions for Solving the Problems] In the present invention, in order to solve the above problems, a temperature control element capable of changing the ambient temperature of a semiconductor element by a large temperature and a thin film absorbing / heating element having a high thermal response are provided. This is realized by controlling with a two-stage temperature control device. Especially as the second stage element, the thermoelectric effect (Peltier effect) that can change the heat absorption and heat generation in the direction of current flow is adopted.
A structure is adopted in which a bonded body of conductors having different conductivity having this effect is formed of a thin film, and the bonded body is brought into contact with a semiconductor whose temperature is to be controlled.

(1) 薄膜吸発熱体は非常に小さいものなので、温度
制御装置を小型にすることができる。
(1) Since the thin film absorbing / heating element is very small, the temperature control device can be downsized.

(2) 薄膜吸発熱体の熱容量は非常に小さいので熱応
答時間が10-4秒以下と高速であるため、半導体素子の周
囲温度もそれと同程度に高速な制御が実現できる。
(2) Since the heat capacity of the thin-film absorbing / heating element is very small, the thermal response time is as fast as 10 −4 seconds or less, so that the ambient temperature of the semiconductor element can be controlled as fast as that.

(3) 薄膜吸発熱体は、数10ミリアンペア(mA)程度
の注入電流で駆動できるので、電流源を小型にすること
ができる。
(3) Since the thin film absorption / heating element can be driven with an injection current of about several tens of milliamperes (mA), the current source can be downsized.

(4) 薄膜吸発熱体への注入電流が小さくて済むので
電流変動も小さくなり、温度制御の精度が向上できる。
(4) Since the injection current into the thin film absorption / heating element can be small, the current fluctuation is small and the temperature control accuracy can be improved.

[実施例] 本発明の構成要素を示したのが第1図である。温度制
御素子1の上面に電気的絶縁体層2を介して薄膜吸発熱
体3が設置されている。
Example FIG. 1 shows the components of the present invention. On the upper surface of the temperature control element 1, a thin film heat sink 3 is provided via an electrical insulator layer 2.

薄膜吸発熱体3は異種の導電性を持つ導電体で作られ
るもので、例えばp形半導体または半金属の膜4、n形
半導体または半金属の膜5、pn接合部6とから構成さ
れ、その両端には電流供給用端子7、7aが取り付けてあ
る。
The thin film heat sink 3 is made of a conductor having different conductivity, and is composed of, for example, a p-type semiconductor or semi-metal film 4, an n-type semiconductor or semi-metal film 5, and a pn junction 6. Current supply terminals 7 and 7a are attached to both ends thereof.

温度制御をしたい半導体素子、例えば半導体レーザ
(図示せず)は、薄膜吸発熱体3の上面に置かれる。
A semiconductor element whose temperature is desired to be controlled, for example, a semiconductor laser (not shown) is placed on the upper surface of the thin film absorption / heating element 3.

薄膜吸発熱体3の材料としては、大きなゼーベック係
数を持つBi2Te3合金、PbTe、Bi-Sb合金、Si-Ge合金など
があげられる。これらの材料に組成調整を行うことによ
ってp形導電体(半導体または半金属)とn形導電体
(半導体または半金属)となるようにし、これらを例え
ば、CVD法あるいは蒸着法により基板の上に薄膜上に堆
積する。p形導電体薄膜4とn形導電体薄膜5の間に金
属を蒸着してpn接合させる。ペルチェ効果により、n形
半導体薄膜5からp形半導体薄膜4に電流を注入すると
pn接合部6に発熱が起こり、逆方向に電流を注入すると
吸熱が起こる。この吸発熱により半導体素子は温度制御
される。
Examples of the material of the thin film heat absorption / heating element 3 include Bi 2 Te 3 alloy, PbTe, Bi—Sb alloy, and Si—Ge alloy, which have a large Seebeck coefficient. By adjusting the composition of these materials, it becomes a p-type conductor (semiconductor or semimetal) and an n-type conductor (semiconductor or semimetal), and these are deposited on the substrate by, for example, the CVD method or the vapor deposition method. Deposit on thin film. A metal is deposited between the p-type conductor thin film 4 and the n-type conductor thin film 5 to form a pn junction. When a current is injected from the n-type semiconductor thin film 5 into the p-type semiconductor thin film 4 due to the Peltier effect
Heat is generated in the pn junction 6 and heat is absorbed when a current is injected in the opposite direction. The temperature of the semiconductor element is controlled by this heat absorption and heat generation.

次に本発明を実際に使用した場合について述べる。従
来の技術の項で述べたとおり、半導体レーザのレーザ光
強度は、マイナス数10μW/K程度の温度依存性を有す
る。そこで、この依存性を利用し光強度の変動を温度に
負帰還させることによって光強度を安定にする光強度安
定化光源に本発明を利用した場合の一実施例を第2図に
示す。
Next, a case where the present invention is actually used will be described. As described in the section of the conventional technique, the laser light intensity of the semiconductor laser has a temperature dependence of about minus several tens of μW / K. Therefore, FIG. 2 shows an embodiment in which the present invention is applied to a light intensity stabilizing light source which stabilizes the light intensity by negatively feeding back the fluctuation of the light intensity to the temperature by utilizing this dependency.

半導体レーザ8の上には半導体レーザ用端子9が、下
には極板10ともう一方の半導体レーザ用端子9aが設置さ
れ、半導体レーザ用電流源11から半導体レーザ用端子
9、9aに電流Isを注入することにより半導体レーザ8は
レーザ光を発光する。半導体レーザ8からのレーザ光を
ビームスプリッタ12により2方向に分岐する。光の進路
を二本の実線で成る矢印で示してある。ビームスプリッ
タ12によって分岐された一方のレーザ光強度を光電変換
器13によって出力電圧Vに変換する。出力電圧Vはレー
ザ光の光強度に比例しているので、可変の直流電圧源14
による基準電圧Vsと出力電圧Vを比較すれば光強度の変
動分ΔPを検出することができる。基準電圧Vsと出力電
圧Vの電圧差(Vs−V)を比較器15で検出し、比較器15
からの出力信号を薄膜吸発熱体用電流源16に負帰還させ
る。薄膜吸発熱体用電流源16は、この負帰還信号を検出
し、それに対応した電流を薄膜吸発熱体3に注入し、薄
膜吸発熱体3からの吸発熱によって半導体レーザ8の温
度を制御する。即ち、光強度の変動分ΔPがゼロとなる
ように半導体レーザ8の周囲温度を制御するわけであ
る。半導体レーザ8の薄膜吸発熱体3の間には、それぞ
れに流れている電流の短絡を防ぐために、電気的絶縁基
板17が置かれている。薄膜吸発熱体3は、微小温度変化
を高速に制御することはできるが、大きな温度変化をさ
せることは困難であるので、薄膜吸発熱体3の下に電気
的絶縁体層2を介して温度制御素子1を装着し、温度制
御素子1によって大きな温度制御を行う。すなわち、温
度制御素子1により温度を設定したい温度に±数mk程度
まで近づけ、薄膜吸発熱体3によって設定温度に微調す
るわけである。このとき、温度制御素子1の熱応答時間
は数秒から数分と非常にゆっくりしたものであるが、薄
膜吸発熱体3のそれは10-4秒以下であるため、半導体レ
ーザもそれと同程度に高速な温度制御ができる。
A semiconductor laser terminal 9 is installed above the semiconductor laser 8, and a pole plate 10 and the other semiconductor laser terminal 9a are installed below the semiconductor laser 8, and a current I from the semiconductor laser current source 11 to the semiconductor laser terminals 9 and 9a. The semiconductor laser 8 emits laser light by injecting s . A laser beam from the semiconductor laser 8 is split into two directions by a beam splitter 12. The path of light is shown by an arrow consisting of two solid lines. One of the laser light intensities branched by the beam splitter 12 is converted into an output voltage V by a photoelectric converter 13. Since the output voltage V is proportional to the light intensity of the laser light, the variable DC voltage source 14
By comparing the reference voltage V s with the output voltage V, the variation ΔP of the light intensity can be detected. The voltage difference (V s −V) between the reference voltage V s and the output voltage V is detected by the comparator 15, and the comparator 15
The output signal from is negatively fed back to the current source 16 for the thin film absorption / heating element. The current source 16 for thin-film heat-absorbing body detects this negative feedback signal, injects a current corresponding to the negative feedback signal into the thin-film heat-absorbing body 3, and controls the temperature of the semiconductor laser 8 by heat-absorbing heat from the thin-film heat-absorbing body 3. . That is, the ambient temperature of the semiconductor laser 8 is controlled so that the variation ΔP of the light intensity becomes zero. An electrically insulating substrate 17 is placed between the thin film heat absorbing and heating elements 3 of the semiconductor laser 8 in order to prevent a short circuit of the current flowing therethrough. Although the thin-film heat-absorbing body 3 can control a minute temperature change at high speed, it is difficult to make a large temperature change. The control element 1 is mounted, and the temperature control element 1 performs large temperature control. That is, the temperature control element 1 brings the temperature close to the temperature to be set up to about ± several mk, and the thin film absorption / heating element 3 finely adjusts the temperature. At this time, the thermal response time of the temperature control element 1 is very slow, from a few seconds to a few minutes, but that of the thin film absorption / heating element 3 is 10 -4 seconds or less, so the semiconductor laser is as fast as that. Temperature control.

第3図に上記光強度安定化光源の実測の光強度を示し
た。
FIG. 3 shows the actually measured light intensity of the light intensity stabilizing light source.

(a)は従来のバルク形状ペルチェ素子を、(b)は本
発明の温度制御装置を用いたときの半導体レーザの周囲
温度Tと光強度Pの経時変化である。(a)では周囲温
度Tを高速に制御できないため光強度Pに短周期のノイ
ズが残っている。しかし(b)では周囲温度Tを短時間
で変えられるので光強度Pのノイズをほとんど除去する
ことができた。すなわち(b)において、非制御状態の
光強度の経時変化を示すPFは、本発明の温度制御装置を
適用することによって、Pの状態とすることができた。
これを(a)の従来の技術と比較すれば、効果は顕著で
ある。なお、(a),(b)における曲線Tは半導体レ
ーザの温度をあらわしている。これからも明らかなよう
に、本発明においては、半導体素子の温度変化がすばや
く追従している。
(A) is a time-dependent change of ambient temperature T and light intensity P of a semiconductor laser when a conventional bulk Peltier device is used and (b) is the temperature control device of the present invention. In (a), since the ambient temperature T cannot be controlled at high speed, short-period noise remains in the light intensity P. However, in (b), since the ambient temperature T can be changed in a short time, most of the noise of the light intensity P can be removed. That is, in (b), P F showing the change over time of the light intensity in the non-controlled state could be brought to the P state by applying the temperature control device of the present invention.
Comparing this with the conventional technique of (a), the effect is remarkable. The curve T in (a) and (b) represents the temperature of the semiconductor laser. As is apparent from this, in the present invention, the temperature change of the semiconductor element quickly follows.

半導体レーザは、周囲温度の他に注入電流によっても
レーザ光の周波数と光強度を制御することができる2入
力(周囲温度、注入電流)2出力(周波数、光強度)の
性能を持った素子であるが、従来の技術では高速な温度
制御が不可能であったため、例えば、同一出願人等によ
る(特願平1-53722号)「周波数安定化光源」の場合で
は温度を一定値に固定した1入力(注入電流)1出力
(周波数)の素子として利用してきた。しかし上記の実
施例を用いれば、温度で光強度を、注入電流で周波数を
制御すること、その一例として安定にすること、ができ
る。
A semiconductor laser is an element with two inputs (ambient temperature, injection current) and two outputs (frequency, light intensity) that can control the frequency and light intensity of laser light by injection current in addition to ambient temperature. However, since the conventional technology cannot perform high-speed temperature control, for example, in the case of "Frequency-stabilized light source" by the same applicant (Japanese Patent Application No. 1-53722), the temperature was fixed to a constant value. It has been used as an element with one input (injection current) and one output (frequency). However, by using the above-described embodiment, it is possible to control the light intensity with temperature and the frequency with the injection current, and to stabilize it as an example.

[発明の効果] 以上、述べたように、本発明による半導体素子用温度
制御装置は、温度制御素子として、従来形式の温度制御
素子に加えて薄膜吸発熱体を併用することにより、次に
示すような固有の効果を有する。
[Effects of the Invention] As described above, the temperature control device for a semiconductor device according to the present invention uses a thin film absorbing / heating element in combination with a conventional temperature control device as a temperature control device, thereby providing the following. It has such an inherent effect.

(1) 熱容量の小さい薄膜吸発熱体により、半導体レ
ーザの温度制御のような高速性が必要なものでも充分に
対応できた。
(1) The thin film absorbing / heating element having a small heat capacity was able to sufficiently cope with a semiconductor laser that requires high speed such as temperature control.

(2) 高精度な温度制御時においても、熱容量の大き
な温度制御素子を必要としないため、装置の小型化が実
現できた。
(2) Since a temperature control element having a large heat capacity is not required even during highly accurate temperature control, the device can be downsized.

(3) 薄膜吸発熱体の注入電流は数10ミリアンペア
(mA)以下であるため、その電流源も小型のものが使え
る。
(3) Since the injection current of the thin film absorption / heating element is several tens of milliamperes (mA) or less, a small current source can be used.

(4) 注入電流が小さくてすむので、その電流源から
発生する電流変動も小さくなり電流変動による温度制御
精度の低下がすくなくなるので、10-2mk以下の高精度で
温度制御が実現できた。
(4) Since the injected current can be small, the fluctuation of the current generated from the current source is also small and the deterioration of the temperature control accuracy due to the fluctuation of the current is small. Therefore, the temperature control can be realized with high accuracy of 10 -2 mk or less. .

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明に係る「半導体素子用温度制御装置」
の一実施例の構成を示す図である。 第2図は、本発明を利用した光強度安定化光源装置の一
実施例の構成を示す図である。 第3図は、実施例で述べた光強度安定化光源に従来のバ
ルク形状ペルチェ素子を用いたとき(a)と本発明によ
る温度制御装置を用いたとき(b)の半導体レーザの周
囲温度Tと光強度Pの経時変化を示したものである。ま
た、PFはは温度制御を行わない状態での光強度である。 図において、1は温度制御素子、2は電気的絶縁体層、
3は薄膜吸発熱体、7と7aは電流供給用端子、8は半導
体レーザ、9と9aは半導体レーザ用端子、10は極板、11
は半導体レーザ用電流源、12はビームスプリッタ、13は
光電変換器、14は直流電圧源、15は比較器、16は薄膜吸
発熱体用電流源、17は電気的絶縁基板、18は温度制御素
子用電流源をそれぞれ示す。
FIG. 1 shows a "temperature control device for semiconductor elements" according to the present invention.
FIG. 2 is a diagram illustrating a configuration of one embodiment. FIG. 2 is a diagram showing a configuration of an embodiment of a light intensity stabilizing light source device utilizing the present invention. FIG. 3 shows the ambient temperature T of the semiconductor laser when the conventional bulk-shaped Peltier device is used for the light intensity stabilizing light source described in the embodiment (a) and when the temperature control device according to the present invention is used (b). And shows the change with time of the light intensity P. Further, P F is the light intensity without temperature control. In the figure, 1 is a temperature control element, 2 is an electrical insulator layer,
Reference numeral 3 is a thin film heat sink, 7 and 7a are current supply terminals, 8 is a semiconductor laser, 9 and 9a are semiconductor laser terminals, 10 is an electrode plate, 11
Is a current source for a semiconductor laser, 12 is a beam splitter, 13 is a photoelectric converter, 14 is a DC voltage source, 15 is a comparator, 16 is a current source for a thin film absorption / heating element, 17 is an electrically insulating substrate, and 18 is temperature control. The respective current sources for the device are shown.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】温度制御素子(1)と、 該温度制御素子の表面に設けられた電気的絶縁体層
(2)と、 該電気的絶縁体層上に温度制御すべき半導体素子に当接
する面を備えた異種の導電体接合で成る薄膜吸発熱体
(3)と、 該薄膜吸発熱体の両端に設けられた電流供給用端子(7,
7a)とからなる半導体素子用温度制御装置。
1. A temperature control element (1), an electrical insulator layer (2) provided on the surface of the temperature control element, and a semiconductor element to be temperature-controlled on the electrical insulator layer. A thin film absorbing / heating element (3) having a surface and made of different kinds of conductors, and current supply terminals (7, 7) provided at both ends of the thin film absorbing / heating element.
7a) A semiconductor element temperature control device comprising:
JP8844389A 1989-04-07 1989-04-07 Temperature controller for semiconductor devices Expired - Lifetime JP2676251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8844389A JP2676251B2 (en) 1989-04-07 1989-04-07 Temperature controller for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8844389A JP2676251B2 (en) 1989-04-07 1989-04-07 Temperature controller for semiconductor devices

Publications (2)

Publication Number Publication Date
JPH02266552A JPH02266552A (en) 1990-10-31
JP2676251B2 true JP2676251B2 (en) 1997-11-12

Family

ID=13942947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8844389A Expired - Lifetime JP2676251B2 (en) 1989-04-07 1989-04-07 Temperature controller for semiconductor devices

Country Status (1)

Country Link
JP (1) JP2676251B2 (en)

Also Published As

Publication number Publication date
JPH02266552A (en) 1990-10-31

Similar Documents

Publication Publication Date Title
US6725669B2 (en) Thermoelectric cooler temperature control
US2778956A (en) Semiconductor signal translating devices
US3308271A (en) Constant temperature environment for semiconductor circuit elements
US3812717A (en) Semiconductor diode thermometry
JPH0680853B2 (en) Optical transmission device
US6679064B2 (en) Wafer transfer system with temperature control apparatus
US10826270B2 (en) Heater-on-heatspreader
EP0762567B1 (en) Temperature-controlled semiconductor laser apparatus and temperature control method therefor
US2889499A (en) Bistable semiconductor device
US5225663A (en) Heat process device
US6829263B1 (en) Semiconductor laser
Sclar et al. On diode thermometers
JP2676251B2 (en) Temperature controller for semiconductor devices
Moore Acoustoelectric current saturation in CdS as a fluctuation process
JP2725012B2 (en) Semiconductor light emitting device
GB2180985A (en) Laser device with stabilised power output
Okuto Junction temperatures under breakdown condition
US3397370A (en) Delay line having a thermoelectric generator responsive to rate of heat transfer
Mizsei et al. Thermal-electronic devices and thermal-electronic logic circuits (TELC)
US3953878A (en) Constant temperature control for transferred electron devices
FR2507353A1 (en) THERMAL COUPLING CELL BETWEEN A HEAT ELEMENT AND A THERMO-SENSITIVE ELEMENT AND THERMOSTATED ENCLOSURE FOR PIEZOELECTRIC CRYSTAL COMPRISING SUCH A CELL
JPH07206585A (en) Carbon molecular beam source cell
US3742314A (en) Semiconductor oscillating element
US3634653A (en) Thermostat circuit for electronic compartments
Kressel et al. Stimulated emission at 300° K and simultaneous lasing at two wavelengths in epitaxial Al x Ga lx As injection lasers