JP2676110B2 - Fluid pressure continuously operated reciprocating actuator - Google Patents

Fluid pressure continuously operated reciprocating actuator

Info

Publication number
JP2676110B2
JP2676110B2 JP1084329A JP8432989A JP2676110B2 JP 2676110 B2 JP2676110 B2 JP 2676110B2 JP 1084329 A JP1084329 A JP 1084329A JP 8432989 A JP8432989 A JP 8432989A JP 2676110 B2 JP2676110 B2 JP 2676110B2
Authority
JP
Japan
Prior art keywords
piston
valve
chamber
fluid pressure
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1084329A
Other languages
Japanese (ja)
Other versions
JPH02261911A (en
Inventor
清二 木村
Original Assignee
相生精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 相生精機株式会社 filed Critical 相生精機株式会社
Priority to JP1084329A priority Critical patent/JP2676110B2/en
Publication of JPH02261911A publication Critical patent/JPH02261911A/en
Application granted granted Critical
Publication of JP2676110B2 publication Critical patent/JP2676110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reciprocating Pumps (AREA)
  • Actuator (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流体圧駆動連続作動型往復動アクチュエー
タに関し、特に加圧エアや油圧の供給を受けて出力ロッ
ドを連続的に往復駆動するアクチュエータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid pressure driven continuously operating reciprocating actuator, and more particularly to an actuator for continuously reciprocating an output rod by receiving supply of pressurized air or hydraulic pressure. Regarding

〔従来技術〕(Prior art)

従来、この種の流体圧駆動連続作動型往復動アクチュ
エータとしては、ハウジング内にバネ復帰型単動流体圧
シリンダを組込み、シリンダの作動室に対して流体圧供
給口と排出口とを方向切換弁機構の切換作動により択一
的に連通可能にし、作動室と供給口が連通されると供給
された流体圧(通常は圧縮空気)によりピストンと出力
ロッドが復帰バネに抗して進出駆動され、また作動室が
排出口に連通されるとピストンと出力ロッドが復帰バネ
により後退駆動され、且つピストンに連動連結された制
御弁機構により制御用流体圧流路が切換えられて方向切
換弁機構を切換作動させるように構成したものが知られ
ている。
Conventionally, as a fluid pressure driven continuous operation type reciprocating actuator of this type, a spring return type single acting fluid pressure cylinder is incorporated in a housing, and a fluid pressure supply port and a discharge port are connected to a direction switching valve with respect to the working chamber of the cylinder. When the working chamber and the supply port are communicated with each other, the piston and the output rod are driven to advance against the return spring by the fluid pressure (usually compressed air) when the mechanism is switched. When the working chamber communicates with the discharge port, the piston and the output rod are driven backward by the return spring, and the control fluid pressure flow passage is switched by the control valve mechanism linked to the piston to switch the directional switching valve mechanism. It is known to be configured so as to cause it.

本願出願人は、特公昭55−40761号公報に示すよう
に、従来装置の諸欠点を解消して小型・計量にして比較
的安価に製作でき且つ作動確実性と耐久性に優れたもの
を実用化した。
The applicant of the present application, as disclosed in Japanese Patent Publication No. 55-40761, puts into practical use a device that can be manufactured at a relatively low cost by eliminating various drawbacks of the conventional device, making it compact and weighing, and being relatively reliable. Turned into

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記往復動アクチュエータは、作動室に供給される流
体圧でピストンと出力ロッドを進出駆動させ、また復帰
バネでピストンと出力ロッドを復帰作動させる構成とな
っていたので、次のような諸欠点が残っている。
The reciprocating actuator has a structure in which the piston and the output rod are driven to advance by the fluid pressure supplied to the working chamber, and the piston and the output rod are reset by the return spring. Remaining.

上記往復動アクチュエータをプランジャ型油圧ポンプ
駆動用のアクチュエータに適用した場合を例にして説明
すると、復帰バネを収容する為にピストンの往復動スト
ロークと最大圧縮状態の復帰バネの長さの合計長さ以上
のバネ収容室を設けなければならないのでアクチュエー
タが大型化すること、出力アップつまり油圧ポンプの吐
出量増加の為にピストンの往復動サイクルを高速化する
と復帰バネが追従不能となり復帰バネが破損してしまう
ので高速化に限界があること、油圧ポンプの吐出量増加
の為にピストン及び出力ロッドのストロークを大きくす
ると、復帰バネのバネ長が大きくなるので大型の復帰バ
ネが必要となり全体として大型化してしまうこと、復帰
バネの追従性を高める為に復帰バネのバネ力を強くする
と1サイクル当りの出力が低下し油圧ポンプの吐出圧を
低下してしまうこと及び低圧の流体圧で駆動できなくな
って油圧ポンプの汎用性が低下すること、など種々の問
題がある。
The case where the above reciprocating actuator is applied to an actuator for driving a plunger type hydraulic pump will be described as an example. The total length of the reciprocating stroke of the piston for accommodating the return spring and the length of the return spring in the maximum compression state will be described. Since the above spring accommodating chamber must be provided, the actuator becomes larger, and if the reciprocating cycle of the piston is accelerated to increase the output, that is, the discharge amount of the hydraulic pump, the return spring becomes unable to follow and the return spring is damaged. Since there is a limit to speeding up, and if the stroke of the piston and output rod is increased to increase the discharge rate of the hydraulic pump, the spring length of the return spring increases, so a large return spring is required and the overall size increases. If the spring force of the return spring is increased in order to improve the followability of the return spring, The versatility of the hydraulic pump force can not be driven by and low pressure of the fluid pressure decreases the discharge pressure of the hydraulic pump lowers decreases, there are various problems such as.

本発明は、復帰バネに代えて流体圧によりピストンを
復帰駆動し得るような流体圧駆動連続作動型往復動アク
チュエータを提供することを目的とする。
An object of the present invention is to provide a fluid pressure driven continuous operation type reciprocating actuator capable of returning and driving a piston by fluid pressure instead of a return spring.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係る流体圧駆動連続作動型往復動アクチュエ
ータは、ハウジング内にピストンとこのピストンに固着
された出力ロッドとを有する複動流体圧シリンダを設
け、この流体圧シリンダにピストンを流体圧で進出駆動
する往動作動室とピストンを流体圧で後退駆動する復動
作動室を設け、上記往動作動室を流体圧供給口に接続す
る供給位置と排出口に接続する排出位置とに択一的に切
換えられる切換弁体と、この切換弁体を供給位置に付勢
する付勢手段と、その付勢力に抗して切換弁体を流体圧
で排出位置に切換える弁作動室とを備えた切換弁機構を
設け、上記ピストンから延び切換弁体に挿通された弁部
材を介して、ピストンが後退限位置にあるときは弁作動
室を排出口に接続し且つピストンが後退限位置と進出限
位置の間にあるときは弁作動室を封止し且つピストンが
進出限位置にあるときは弁作動室を流体圧供給口に接続
する制御弁機構を設け、上記ピストンの進出作動時、復
動作動室内の流体圧が第1設定圧より高いときに開弁し
て復動作動室を排出口に接続するリリーフ弁機構を設
け、上記ピストンの後退作動時、復動作動室内の流体圧
が第1設定圧以下の第2設定圧未満のときに開弁して復
動作動室を流体圧供給口に接続する供給弁機構を設けた
ものである。
A fluid pressure driven continuous operation type reciprocating actuator according to the present invention is provided with a double acting fluid pressure cylinder having a piston and an output rod fixed to the piston in a housing, and the piston is fluidly advanced to the fluid pressure cylinder. A forward motion moving chamber to be driven and a backward motion moving chamber to drive the piston backward by fluid pressure are provided, and the forward motion moving chamber is selectively provided as a supply position connecting to the fluid pressure supply port and a discharge position connecting to the discharge port. A switching valve body that can be switched to a switch position, a biasing means that biases the switching valve body to the supply position, and a valve working chamber that switches the switching valve body to the discharge position by fluid pressure against the biasing force. A valve mechanism is provided, and the valve working chamber is connected to the discharge port when the piston is at the backward limit position and the piston is at the backward limit position and the forward limit position through the valve member that extends from the piston and is inserted into the switching valve body. When it is between A control valve mechanism is provided which seals the working chamber and connects the valve working chamber to the fluid pressure supply port when the piston is at the advance limit position. A relief valve mechanism is provided that opens when the pressure is higher than the set pressure and connects the return motion chamber to the discharge port. When the piston moves backward, the fluid pressure in the return motion chamber is set to the second set pressure which is equal to or lower than the first set pressure. A supply valve mechanism that opens the valve when the pressure is less than the pressure and connects the return motion chamber to the fluid pressure supply port is provided.

〔作用〕[Action]

本発明に係る流体圧駆動連続作動型往復動アクチュエ
ータにおいては、流体圧供給口に圧力流体が供給されて
いる状態で、ピストンが後退限位置にあるときには制御
弁機構によって弁作動室が排出口に接続されているの
で、切換弁体は付勢手段により供給位置に保持され、圧
力流体が流体圧供給口から往動作動室へ供給され、ピス
トンは往動作動室内の流体圧によって復動作動室内の流
体圧に抗して進出駆動される。ピストンが後退限位置か
ら進出限位置に達するまでは制御弁機構によって弁作動
室が流体圧排出状態で封止されるので切換弁体は供給位
置に保持される。従って、上記のように往動作動室に圧
力流体が供給され、ピストンは進出駆動される。この間
復動作動室内の流体は加圧され、第1設定圧より高くな
るとリリーフ弁機構によりリリーフされるので第1設定
圧に保持される。
In the fluid pressure driven continuous operation type reciprocating actuator according to the present invention, when the piston is in the retracted limit position while the pressure fluid is being supplied to the fluid pressure supply port, the valve working chamber is set to the discharge port by the control valve mechanism. Since it is connected, the switching valve body is held at the supply position by the biasing means, the pressure fluid is supplied from the fluid pressure supply port to the forward movement moving chamber, and the piston is returned to the backward movement moving chamber by the fluid pressure in the forward movement moving chamber. Driven forward against the fluid pressure of. The control valve mechanism seals the valve working chamber in the fluid pressure discharge state until the piston reaches the retreat limit position and the advance limit position, so that the switching valve body is held at the supply position. Therefore, as described above, the pressure fluid is supplied to the forward motion chamber, and the piston is driven to advance. During this time, the fluid in the return motion chamber is pressurized, and when it becomes higher than the first set pressure, the fluid is relieved by the relief valve mechanism, so that the fluid is held at the first set pressure.

その後、ピストンが進出限位置に達すると、制御弁機
構により弁作動室が流体圧供給口に接続され、切換弁体
は弁作動室内の流体圧により付勢手段の付勢力に抗して
排出位置に切換えられるので、往動作動室は排出口に接
続され、復動作動室内の第1設定圧の圧力流体によりピ
ストンは後退駆動を開始する。ピストンが進出限位置か
ら後退限位置に達するまでは弁作動室が流体圧充填状態
で封止されるので切換弁体は排出位置に保持される。上
記ピストンの後退に応じて復動作動室内の流体圧が第1
設定圧以下の第2設定圧より低下したときには供給弁機
構が開いて復動作動室へ圧力流体が供給されるので第2
設定圧に保持され、ピストンは後退していく。こうし
て、ピストンが後退限位置に達すると、制御弁機構によ
り弁作動室が排出口に接続され、切換弁体が供給位置に
切換えられ、以下前記同様に繰返し、ピストンは往復駆
動されることになる。
After that, when the piston reaches the advance limit position, the valve working chamber is connected to the fluid pressure supply port by the control valve mechanism, and the switching valve body is displaced by the fluid pressure in the valve working chamber against the biasing force of the biasing means. The forward movement moving chamber is connected to the discharge port, and the piston starts the backward drive by the pressure fluid having the first set pressure in the backward movement moving chamber. Since the valve working chamber is sealed in the fluid pressure filled state until the piston reaches the retracted limit position from the advanced limit position, the switching valve body is held at the discharge position. As the piston moves backward, the fluid pressure in the homeward moving chamber becomes the first
When the pressure drops below the second set pressure below the set pressure, the supply valve mechanism opens and the pressure fluid is supplied to the return operation chamber.
The set pressure is maintained and the piston moves backward. Thus, when the piston reaches the backward limit position, the valve operating chamber is connected to the discharge port by the control valve mechanism, the switching valve body is switched to the supply position, and the piston is reciprocally driven in the same manner as above. .

本発明の往復動アクチュエータにおいては、復動作動
室内に第1設定圧以下且つ第2設定圧以上の流体圧を保
持し、その流体圧でピストンを後退駆動するように構成
したので、復帰バネを省略することが可能となり、往復
動サイクルを高速化して往復動アクチュエータの出力ア
ップを実現出来、ピストンの往復動のストロークを必要
に応じて自由に大きく或いは小さく設計することが出
来、復動作動室はピストンの往復動ストロークに必要な
だけの小型の作動室に形成できるため、往復動アクチュ
エータの小型化を図ることが出来る。しかも、第1設定
圧及び第2設定圧は必要に応じて調節可能にも構成し得
るので往復動アクチュエータの汎用性を向上させること
も可能である。
In the reciprocating actuator of the present invention, since the fluid pressure equal to or lower than the first set pressure and equal to or higher than the second set pressure is held in the backward movement chamber and the piston is driven backward by the fluid pressure, the return spring is provided. It can be omitted, the output of the reciprocating actuator can be increased by speeding up the reciprocating cycle, and the reciprocating stroke of the piston can be freely designed to be large or small as required. Can be formed in a working chamber as small as required for the reciprocating stroke of the piston, so that the reciprocating actuator can be downsized. Moreover, since the first set pressure and the second set pressure can be configured to be adjustable as needed, the versatility of the reciprocating actuator can be improved.

〔発明の効果〕〔The invention's effect〕

本発明に係る流体圧駆動連続作動型往復動アクチュエ
ータによれば、上記〔作用〕の項で説明したように、リ
リーフ弁機構と供給弁機構とによってピストンの位置に
拘らず復動作動室内の圧力流体を所定の範囲の圧力に保
持し、その圧力流体によりピストンを後退駆動するよう
に構成したことにより、復帰バネを省略できること、往
復動サイクルの高速化つまり出力アップを実現し得るこ
と、ピストンの往復動ストロークを必要に応じて自由に
大きく或いは小さく設計することが出来ること、復動作
動室を小型化して往復動アクチュエータを小型化し得る
こと、往復動アクチュエータの汎用性を向上し得るこ
と、などの効果が得られる。
According to the fluid pressure driven continuous operation type reciprocating actuator according to the present invention, as described in the above [Operation], the pressure in the reciprocating motion chamber can be adjusted by the relief valve mechanism and the supply valve mechanism regardless of the position of the piston. By holding the fluid in a predetermined range of pressure and driving the piston backward by the pressure fluid, the return spring can be omitted, the reciprocating cycle can be speeded up, that is, the output can be increased. The reciprocating stroke can be freely designed to be large or small as required, the reciprocating chamber can be downsized to reduce the reciprocating actuator, and the versatility of the reciprocating actuator can be improved. The effect of is obtained.

〔実施例〕〔Example〕

以下、本発明の実施例について図面に基いて説明す
る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本実施例は、圧縮空気(以下、加圧エアという)駆動
連続作動型往復動アクチュエータによりプランジャを駆
動するようにしたエア駆動式油圧ポンプに本発明を適用
した場合の一例である。
The present embodiment is an example in which the present invention is applied to an air-driven hydraulic pump in which a plunger is driven by a compressed air (hereinafter, referred to as pressurized air) driven continuous operation type reciprocating actuator.

第1図に示すように、この油圧ポンプHPは往復動アク
チュエータACとポンプ本体部PCとを備え、往復動アクチ
ュエータACのハウジング10は、上部ハウジング11と中間
ハウジング12と下部ハウジング13とを複数のコモンボル
ト14で一体的に連結して構成されている。
As shown in FIG. 1, the hydraulic pump HP includes a reciprocating actuator AC and a pump main body PC, and a housing 10 of the reciprocating actuator AC includes an upper housing 11, an intermediate housing 12, and a lower housing 13. It is configured by integrally connecting with a common bolt 14.

ハウジング10内の下半部内には複動エアシリンダ20が
設けられ、このエアシリンダ20のシリンダ孔21内にはピ
ストン22が装着され、ピストン22の下端から延びる出力
ロッド23の下部にプランジャ24が形成され、シリンダ孔
21のうちのピストン22の上側には往動作動室25がまたピ
ストン22の下側には復動作動室26が夫々形成されてい
る。
A double-acting air cylinder 20 is provided in the lower half of the housing 10, a piston 22 is mounted in a cylinder hole 21 of the air cylinder 20, and a plunger 24 is provided below the output rod 23 extending from the lower end of the piston 22. Formed and cylinder hole
A forward motion chamber 25 is formed on the upper side of the piston 22 of the 21, and a backward motion chamber 26 is formed on the lower side of the piston 22.

下部ハウジング13内にはプランジャ孔15が設けられ、
プランジャ24がプランジャ孔15内に進退駆動され、吸入
口16から吸入チェック弁17を介してプランジャ孔15に吸
入された油はプランジャ24により圧縮され、吐出チェッ
ク弁18を介して吐出口19へ吐出される。
A plunger hole 15 is provided in the lower housing 13,
The plunger 24 is driven into and out of the plunger hole 15, and the oil sucked into the plunger hole 15 from the suction port 16 via the suction check valve 17 is compressed by the plunger 24 and discharged to the discharge port 19 via the discharge check valve 18. To be done.

上記ハウジング10の上部の側部には外部の加圧エア供
給源から加圧エア(例えば、5.0kg/cm2G)が供給される
加圧エア供給口3が設けられ、ハウジング10の上端部内
には排気口としてのマフラ4を介して大気中に連通する
排気室5が形成されている。
A pressurizing air supply port 3 to which pressurizing air (for example, 5.0 kg / cm 2 G) is supplied from an external pressurizing air supply source is provided on an upper side portion of the housing 10, and inside the upper end portion of the housing 10. An exhaust chamber 5 communicating with the atmosphere via a muffler 4 serving as an exhaust port is formed therein.

次に、切換弁機構30について説明する。 Next, the switching valve mechanism 30 will be described.

中間ハウジング12の仕切壁31の上面には中間ハウジン
グ12内に収容された環状部材32が固着され、環状部材32
の外周側には加圧エア供給口3に連なる加圧エア供給路
33が形成され、仕切壁31の凹部34と環状部材32の内側に
は切換弁体35が装着され、切換弁体35の下端部の下部ピ
ストン部36が凹部34に気密摺動自在に装着されるととも
に、切換弁体35の中段部には環状かつ鍔状の切換弁部37
が形成され、切換弁体35の上端部の上部ピストン部38は
環状部材32のシリンダ孔39に気密摺動自在に内嵌され、
切換弁部37と下部ピストン36との間で切換弁体35の外周
部には排気路40により排気室5に連なる環状排気路41が
形成され、切換弁部37の外周側には通路42aにより往動
作動室25に連なる環状通路42が形成されている。環状部
材32には切換弁部37の上面の環状の第1弁面43が当接す
る第1弁座44が形成され、仕切壁31には切換弁部37の下
面の環状の第2弁面45が当接する第2弁座46が形成さ
れ、第1弁面43と上部ピストン部38との間で切換弁体35
の外周側には通路47により加圧エア供給路33に連なる環
状の受圧室48が形成され、切換弁体35はスプリング49で
下方へ弾性付勢されている。
An annular member 32 housed in the intermediate housing 12 is fixed to the upper surface of the partition wall 31 of the intermediate housing 12, and the annular member 32
On the outer peripheral side of the pressurizing air supply path connected to the pressurizing air supply port 3
33 is formed, a switching valve body 35 is mounted inside the recess 34 of the partition wall 31 and the annular member 32, and a lower piston portion 36 at the lower end of the switching valve body 35 is mounted in the recess 34 in a hermetically slidable manner. In addition, in the middle part of the switching valve body 35, an annular and flanged switching valve portion 37
Is formed, the upper piston portion 38 of the upper end portion of the switching valve body 35 is fitted in the cylinder hole 39 of the annular member 32 in a hermetically slidable manner,
An annular exhaust passage 41 is formed between the switching valve portion 37 and the lower piston 36 on the outer peripheral portion of the switching valve body 35 by the exhaust passage 40 and is connected to the exhaust chamber 5. An annular exhaust passage 41 is formed on the outer peripheral side of the switching valve portion 37 by the passage 42a. An annular passage 42 that communicates with the forward movement moving chamber 25 is formed. The annular member 32 is formed with a first valve seat 44 on which the annular first valve surface 43 of the upper surface of the switching valve portion 37 abuts, and the partition wall 31 is the annular second valve surface 45 of the lower surface of the switching valve portion 37. A second valve seat 46 against which the switching valve element 35 is formed between the first valve surface 43 and the upper piston portion 38.
An annular pressure-receiving chamber 48 connected to the pressurized air supply passage 33 is formed on the outer peripheral side by the passage 47, and the switching valve body 35 is elastically biased downward by a spring 49.

上記切換弁体35の第2弁面45が第2弁座46に当接した
ときに第1弁面43と第1弁座44間が開き、往動作動室25
は通路42a、環状通路42、受圧室48、通路47及び加圧エ
ア供給路33により加圧エア供給口3に連通される。従っ
て、このときの切換弁体35の位置を供給位置という。
When the second valve surface 45 of the switching valve element 35 comes into contact with the second valve seat 46, the space between the first valve surface 43 and the first valve seat 44 is opened, and the forward movement moving chamber 25
Is communicated with the pressurized air supply port 3 through the passage 42a, the annular passage 42, the pressure receiving chamber 48, the passage 47 and the pressurized air supply passage 33. Therefore, the position of the switching valve element 35 at this time is referred to as a supply position.

上記切換弁体35の第1弁面43が第1弁座44に当接した
ときには第2弁面45た第2弁座46間が開き、往動作動室
25は通路42a、環状通路42、環状排気路41及び排気路40
により排気室5に連通される。従って、このときの切換
弁35の位置を排出位置という。
When the first valve surface 43 of the switching valve element 35 abuts on the first valve seat 44, the second valve seat 45 and the second valve seat 46 are opened, and the forward movement moving chamber
25 is a passage 42a, an annular passage 42, an annular exhaust passage 41 and an exhaust passage 40.
To communicate with the exhaust chamber 5. Therefore, the position of the switching valve 35 at this time is called a discharge position.

上記切換弁体35の下部ピストン36と凹部34とで弁作動
室50が形成され、弁作動室50に加圧エアが供給されない
ときには、切換弁体35は受圧室48の加圧エアとスプリン
グ49とで供給位置に付勢され、弁作動室50に後述のよう
に加圧エアが供給されたときには、切換弁体35は排出位
置へ切換えられる。
When the valve operating chamber 50 is formed by the lower piston 36 and the recess 34 of the switching valve body 35, and the pressurized air is not supplied to the valve operating chamber 50, the switching valve body 35 presses the pressurized air in the pressure receiving chamber 48 and the spring 49. When the valve working chamber 50 is urged to the supply position by and the pressurized air is supplied to the valve operating chamber 50 as described later, the switching valve body 35 is switched to the discharging position.

次に、制御弁機構60について説明する。 Next, the control valve mechanism 60 will be described.

上記ピストン22の中心部に固着されたロッド上の弁部
材61は、仕切壁31の摺動孔62と切換弁体35の挿通孔63と
を挿通して上方へ延び、弁部材61の途中部には小径部64
が形成され、摺動孔62の内周部には弁部材61の外周面に
気密状に圧接される上下1対のOリング65・66が装着さ
れ、挿通孔63の上端部の内周部には弁部材61の外周面に
気密状に圧接されるOリング67が装着され、仕切壁31に
は加圧エア供給口3に連なる加圧エア通路68がOリング
65・66の外側まで形成されている。
The valve member 61 on the rod fixed to the central portion of the piston 22 extends upward by inserting through the sliding hole 62 of the partition wall 31 and the insertion hole 63 of the switching valve body 35, and the middle portion of the valve member 61. Has a small diameter part 64
A pair of upper and lower O-rings 65 and 66, which are airtightly pressed against the outer peripheral surface of the valve member 61, are attached to the inner peripheral portion of the sliding hole 62, and the inner peripheral portion of the upper end of the insertion hole 63 is formed. An O-ring 67, which is pressed against the outer peripheral surface of the valve member 61 in an airtight manner, is attached to the partition wall 31, and a pressurized air passage 68 communicating with the pressurized air supply port 3 is attached to the partition wall 31.
It is formed up to the outside of 65 and 66.

上記ピストン22が第1図に図示の後退限位置にあると
きには、小径部64によりOリング67の封止が解除され、
弁作動室50が挿通孔63の弁部材61の外側の環状隙間69に
より排気室5に連通され、またピストン22が第2図の図
示の進出限位置にあるときにはOリング67により環状隙
間69が封止されるとともに小径部64によりOリング65の
封止が解除されて加圧エア通路68が弁作動室50に連通さ
れ、またピストン22が後退限位置と進出限位置の間にあ
るときには両Oリング65・67により弁作動室50は封止さ
れる。
When the piston 22 is in the retracted limit position shown in FIG. 1, the small-diameter portion 64 releases the O-ring 67,
The valve working chamber 50 is communicated with the exhaust chamber 5 through an annular gap 69 outside the valve member 61 of the insertion hole 63, and when the piston 22 is at the advance limit position shown in FIG. When the O-ring 65 is sealed and the O-ring 65 is unsealed by the small-diameter portion 64, the pressurized air passage 68 communicates with the valve working chamber 50, and when the piston 22 is between the retreat limit position and the advance limit position, both The valve working chamber 50 is sealed by the O-rings 65 and 67.

次に、リリーフ弁機構80と供給弁機構81について説明
する。
Next, the relief valve mechanism 80 and the supply valve mechanism 81 will be described.

この往復動アクチュエータACは、往動作動室25に供給
された加圧エアによりピストン22と出力ロッド23を進出
駆動させ、また復動作動室26内に常時収容されている第
1設定圧(例えば、0.5kg/cm2G)以下且つ第2設定圧
(例えば、0.4kg/cm2G)以上の加圧エアによりピストン
22と出力ロッド23を後退駆動させるように構成されてい
る。その為、ピストン22の進出作動時復動作動室26内の
加圧エアの圧力が第1設定圧より高いときにリリーフ作
動するリリーフ弁機構80と、ピストン22の後退作動時復
動作動室26内の加圧エアの圧力が第2設定圧未満のとき
に加圧エアを供給する供給弁機構81が次のように設けら
れている。
This reciprocating actuator AC drives the piston 22 and the output rod 23 to advance by the pressurized air supplied to the forward movement moving chamber 25, and the first set pressure (for example, the first set pressure always stored in the backward movement moving chamber 26). , 0.5 kg / cm 2 G) or less and a second set pressure (eg 0.4 kg / cm 2 G) or more pressurized piston
22 and the output rod 23 are configured to drive backward. Therefore, the relief valve mechanism 80 that performs a relief operation when the pressure of the pressurized air in the backward movement moving chamber 26 of the piston 22 is higher than the first set pressure, and the backward movement moving chamber 26 of the backward movement of the piston 22 A supply valve mechanism 81 for supplying pressurized air when the pressure of the pressurized air therein is less than the second set pressure is provided as follows.

中間ハウジング12内において環状部材32には環状の供
給弁体83が気密摺動自在に外嵌され、この供給弁体83の
上方において上部ハウジング11には環状のリリーフ弁体
84が気密摺動自在に内嵌され、リリーフ弁体84の下面に
は環状の第3弁面85が形成され、供給弁体83の上端部に
は第3弁面85が当接する第3弁座86が形成され、供給弁
体83の中断外周段部の上面には環状の第4弁面87が形成
され、上部ハウジング11の鍔部89の下面には第4弁面87
が当接する第4弁座88が形成され、鍔部89の上面にはリ
リーフ弁体84の下限位置を規制する第1規制部90が形成
され、環状部材32の外周部には供給弁体83の下限位置を
規制する第2規制部91が形成されている。
An annular supply valve element 83 is fitted on the annular member 32 in the intermediate housing 12 so as to be slidable in an airtight manner, and an annular relief valve element is provided on the upper housing 11 above the supply valve element 83.
84 is fitted in a hermetically slidable manner, an annular third valve surface 85 is formed on the lower surface of the relief valve body 84, and the third valve surface 85 is in contact with the upper end portion of the supply valve body 83. A seat 86 is formed, an annular fourth valve surface 87 is formed on the upper surface of the interrupted outer peripheral step portion of the supply valve body 83, and a fourth valve surface 87 is formed on the lower surface of the collar portion 89 of the upper housing 11.
Is formed on the upper surface of the flange portion 89, and a first restricting portion 90 for restricting the lower limit position of the relief valve element 84 is formed on the upper surface of the collar portion 89. The supply valve element 83 is provided on the outer peripheral portion of the annular member 32. A second restricting portion 91 that restricts the lower limit position of is formed.

上記上部ハウジング11とリリーフ弁体84と供給弁体83
間には環状受圧室92が形成され、供給弁体83と環状部材
32間には連通孔93aにより環状受圧室92に連通された環
状の背圧室93が形成され、環状受圧室92は通路94、ボル
ト孔と共通の環状通路95及び中間ハウジング12の下端の
孔96により復動作動室26に連通されている。
The upper housing 11, the relief valve body 84, and the supply valve body 83
An annular pressure receiving chamber 92 is formed between the supply valve body 83 and the annular member.
An annular back pressure chamber 93 communicated with the annular pressure receiving chamber 92 by a communication hole 93a is formed between the 32, and the annular pressure receiving chamber 92 includes a passage 94, an annular passage 95 common to the bolt holes, and a hole at the lower end of the intermediate housing 12. It is communicated with the return motion chamber 26 by 96.

更に、リリーフ弁体84は第1設定圧を設定する為の圧
縮コイルスプリングからなる第1スプリング97で下方へ
弾性付勢され、供給弁体83は第1スプリング97と協働し
て第2設定圧を設定する為の圧縮コイルスプリングから
なる第2スプリング98で上方へ弾性付勢されている。
Further, the relief valve body 84 is elastically biased downward by the first spring 97 which is a compression coil spring for setting the first set pressure, and the supply valve body 83 cooperates with the first spring 97 to set the second set pressure. A second spring 98, which is a compression coil spring for setting pressure, is elastically biased upward.

復動作動室26内の加圧エアの圧力が第1設定圧以下且
つ第2設定圧以上のときにリリーフ弁体84と供給弁体83
は第1図に図示の状態を保持し、第3弁面85と第3弁座
86間及び第4弁面87と第4弁座88間が夫々閉じられてい
る。
The relief valve element 84 and the supply valve element 83 are provided when the pressure of the pressurized air in the reciprocating motion chamber 26 is less than or equal to the first set pressure and greater than or equal to the second set pressure.
Holds the state shown in FIG. 1, and the third valve face 85 and the third valve seat
86 and the fourth valve face 87 and the fourth valve seat 88 are closed.

ピストン22の進出作動時、復動作動室26内の加圧エア
の圧力が第1設定圧より高くなると、環状受圧室92の加
圧エアによりリリーフ弁体84が上方へ移動し、第3弁面
85が第3弁座86から離れて加圧エアがリリーフされるの
で、復動作動室26の圧力は第1設定圧に維持される。ピ
ストン22の後退作動時、復動作動室26内の加圧エアの圧
力が第2設定圧より低くなると、第1スプリング97のバ
ネ力でリリーフ弁体84が第2スプリング98に抗して供給
弁体83を下方へ押動するので第4弁面87が第4弁座88か
ら離れ、加圧エア供給路33から環状受圧室92へ加圧エア
が供給されるので、復動作動室26の圧力は第2設定圧に
維持される。
When the pressure of the pressurized air in the return motion chamber 26 becomes higher than the first set pressure during the advancing operation of the piston 22, the relief valve body 84 moves upward due to the pressurized air in the annular pressure receiving chamber 92, and the third valve surface
Since the pressurized air is relieved by moving 85 away from the third valve seat 86, the pressure in the return motion chamber 26 is maintained at the first set pressure. When the pressure of the pressurized air in the reciprocating motion chamber 26 becomes lower than the second set pressure during the backward movement of the piston 22, the relief valve body 84 supplies the second spring 98 against the second spring 98 by the spring force of the first spring 97. Since the valve body 83 is pushed downward, the fourth valve face 87 separates from the fourth valve seat 88, and pressurized air is supplied from the pressurized air supply passage 33 to the annular pressure receiving chamber 92, so that the return motion chamber 26 Is maintained at the second set pressure.

尚、上記第1〜第4弁面43・45・85・87には耐摩耗性
に優れる合成樹脂部材が埋込まれている。
A synthetic resin member having excellent wear resistance is embedded in the first to fourth valve faces 43, 45, 85, 87.

次に、上記往復動アクチュエータACの作動について説
明する。
Next, the operation of the reciprocating actuator AC will be described.

加圧エア供給口3に加圧エアが供給されている状態
で、ピストン22が後退限位置にあるときには制御弁機構
60によって弁作動室50が排気室5に接続されているの
で、切換弁体35は受圧室48の加圧エアとスプリング49の
付勢力により供給位置に保持され、加圧エアが加圧エア
供給口3から往動作動室25へ供給され、ピストン22は往
動作動室25内の加圧エアによって復動作動室26内の加圧
エアに抗して進出駆動される。ピストン22が後退限位置
から進出限位置に達するまでは制御弁機構60によって弁
作動室50がエア圧排出状態で封止されるので切換弁体35
は供給位置に保持される。従って、上記のように往動作
動室25に加圧エアの供給が継続され、ピストン22は進出
駆動される。この間復動作動室26内のエアは加圧され、
第1設定圧より高くなるとリリーフ弁機構80によりリリ
ーフされるので第1設定圧に保持される。
When the piston 22 is at the backward limit position while the pressurized air is being supplied to the pressurized air supply port 3, the control valve mechanism
Since the valve operating chamber 50 is connected to the exhaust chamber 5 by 60, the switching valve body 35 is held at the supply position by the pressurized air in the pressure receiving chamber 48 and the urging force of the spring 49, and the pressurized air is supplied by the pressurized air. The piston 22 is supplied from the port 3 to the forward movement moving chamber 25, and the piston 22 is driven forward by the pressurized air in the forward movement moving chamber 25 against the pressurized air in the backward movement moving chamber 26. The control valve mechanism 60 seals the valve working chamber 50 in the air pressure exhausted state until the piston 22 reaches the retreat limit position and the advance limit position.
Are held in the feed position. Therefore, as described above, the supply of the pressurized air to the outward motion chamber 25 is continued, and the piston 22 is driven to advance. During this time, the air in the return motion chamber 26 is pressurized,
When the pressure becomes higher than the first set pressure, the relief valve mechanism 80 relieves the pressure so that the first set pressure is maintained.

その後、ピストン22が進出限位置に達すると、制御弁
機構60により弁作動室50が加圧エア供給口3に接続さ
れ、切換弁体35は弁作動室50内の加圧エアにより受圧室
48の加圧エアとスプリング49の付勢力に抗して排出位置
に切換えられるので、往動作動室25は排気室5に接続さ
れ、復動作動室26内の第1設定圧の加圧エアによりピス
トン22は後退駆動を開始する。ピストン22が進出限位置
から後退限位置に達するまでは弁作動室50が加圧エア充
填状態で封止されるので切換弁体35は排出位置に保持さ
れる。上記ピストン22の後退に応じて復動作動室26内の
エア圧が第1設定圧以下の第2設定圧より低下したとき
には供給弁機構81が開いて復動作動室26へ加圧エアが供
給されるので第2設定圧に保持され、ピストン22の後退
が継続される。こうして、ピストン22が後退限位置に達
すると、制御弁機構60により弁作動室50が排気室5に接
続され、切換弁体35が供給位置に切換えられ、以下前記
同様に繰返し、ピストン22は往復駆動されることにな
る。
After that, when the piston 22 reaches the advance limit position, the valve working chamber 50 is connected to the pressurized air supply port 3 by the control valve mechanism 60, and the switching valve body 35 is pressurized by the pressurized air in the valve working chamber 50.
Since the pressurizing air of 48 and the urging force of the spring 49 can be switched to the discharge position, the forward moving chamber 25 is connected to the exhaust chamber 5, and the compressed air of the first set pressure in the backward moving chamber 26 is pressed. This causes the piston 22 to start backward drive. Since the valve working chamber 50 is sealed in the pressurized air filled state until the piston 22 reaches the retracted limit position from the advanced limit position, the switching valve body 35 is held at the discharge position. When the air pressure in the reciprocating motion chamber 26 drops below the second set pressure that is less than or equal to the first set pressure in response to the retreat of the piston 22, the supply valve mechanism 81 opens to supply pressurized air to the reciprocating motion chamber 26. Therefore, the second set pressure is maintained, and the retreat of the piston 22 is continued. Thus, when the piston 22 reaches the retreat limit position, the valve operating chamber 50 is connected to the exhaust chamber 5 by the control valve mechanism 60, the switching valve body 35 is switched to the supply position, and the same operation is repeated thereafter, and the piston 22 reciprocates. Will be driven.

以上の説明から明らかなように、往復動アクチュエー
タACにおいて、ピストン22の往復作動に同期して切換弁
機構30と制御弁機構60によって、往動作動室25へ加圧エ
アが供給・排出され、またリリーフ弁機構80と供給弁機
構81によって復動作動室26内には常時第1設定圧以下且
つ第2設定圧以上の加圧エアが保持されるので、ピスト
ン22は往復動を連続的に繰返し、出力ロッド23の先端の
プランジャ24はプランジャ孔15内で往復動を連続的に繰
返すことになる。従って、油圧ポンプ本体部PCにおいて
は、油の吸入と圧縮・吐出とを連続的に繰返すことにな
る。
As is clear from the above description, in the reciprocating actuator AC, the switching valve mechanism 30 and the control valve mechanism 60 supply / exhaust the pressurized air to / from the forward moving chamber 25 in synchronization with the reciprocating operation of the piston 22. Further, the relief valve mechanism 80 and the supply valve mechanism 81 constantly hold the pressurized air below the first set pressure and above the second set pressure in the backward motion chamber 26, so that the piston 22 continuously reciprocates. Repeatedly, the plunger 24 at the tip of the output rod 23 continuously repeats the reciprocating motion within the plunger hole 15. Therefore, in the hydraulic pump main body PC, oil suction and compression / discharge are continuously repeated.

このように、本実施例の油圧ポンプHPにおいては、加
圧エアによりピストン22を後退駆動するように構成され
ているので、ピストン22を後退駆動させるための復帰バ
ネを省略することが可能となり、往復動サイクルを高速
化して往復動アクチュエータACの出力アップを図ること
が出来、ピストン22の往復動のストロークを必要に応じ
て自由に大きく或いは小さく設計することが出来、復動
作動室26はピストン22の往復動ストロークに必要なだけ
の小型に形成できるため、油圧ポンプHP自体の小型化を
図ることが出来る。
As described above, in the hydraulic pump HP of the present embodiment, since the piston 22 is configured to be driven backward by the pressurized air, it is possible to omit the return spring for driving the piston 22 backward. The reciprocating cycle can be speeded up to increase the output of the reciprocating actuator AC, and the reciprocating stroke of the piston 22 can be freely designed to be large or small as necessary. Since the size can be made as small as necessary for the reciprocating stroke of 22, the hydraulic pump HP itself can be downsized.

次に、前記実施例の変形例について、第3図〜第6図
に基いて説明する。尚、前記実施例と同一の機構には同
一符号を付してその説明を省略する。
Next, a modified example of the above embodiment will be described with reference to FIGS. The same mechanisms as those in the above embodiment are designated by the same reference numerals, and the description thereof will be omitted.

<変形例1> 前記実施例の制御弁機構60のOリング67に代えて、第
3図に図示のような制御弁機構60Aを用いる。
<Modification 1> Instead of the O-ring 67 of the control valve mechanism 60 of the above embodiment, a control valve mechanism 60A as shown in FIG. 3 is used.

切換弁体35Aには筒部100が設けられ、筒部100には弁
孔101を開閉する第2弁部材102が装着され、マフラ4に
は圧縮コイルバネからなる閉弁バネ103が取付けられ、
第2弁部材102は閉弁バネ103により下方に弾性付勢さ
れ、第2弁部材102の下方にあって、ピストン22の中心
部に固着されたロッド状の弁部材61Aは、前記実施例の
弁部材61の小径部64の下端よりも上方の部分を取り除い
たものである。
The switching valve body 35A is provided with a tubular portion 100, the tubular portion 100 is provided with a second valve member 102 for opening and closing the valve hole 101, and the muffler 4 is provided with a valve closing spring 103 composed of a compression coil spring.
The second valve member 102 is elastically biased downward by the valve closing spring 103, and the rod-shaped valve member 61A, which is below the second valve member 102 and fixed to the center of the piston 22, is the same as that of the above-described embodiment. The portion above the lower end of the small diameter portion 64 of the valve member 61 is removed.

尚、制御弁機構60Aのその他の部分は前記実施例と同
様なので説明を省略する。
The other parts of the control valve mechanism 60A are the same as those in the above-mentioned embodiment, and the description thereof will be omitted.

上記制御弁機構60Aにおいて、ピストン22が図示のよ
うに後退限位置にあるときは、弁部材61Aが閉弁バネ103
にバネ力に抗して第2弁部材102を突上げ弁孔101を開孔
するので、弁作動室50は環状隙間69と弁孔101と筒部100
の通路を介して排気室5に接続されるので、切換弁体35
Aは供給位置に保持され、またピストン22が進出限位置
にあるときには、第2弁部材102は閉弁バネ103により下
降して弁孔101を閉じるとともに弁部材61Aの上端部がO
リング66の下方まで下降するので、加圧エア通路68が弁
作動室50に連通され、弁作動室50に加圧エアが充填され
て、切換弁体35Aは排出位置に切換えられる。その他の
作動は前記実施例と同様なので説明を省略する。
In the control valve mechanism 60A, when the piston 22 is at the retracted limit position as shown, the valve member 61A causes the valve closing spring 103
Since the second valve member 102 is pushed up against the spring force to open the valve hole 101, the valve working chamber 50 has the annular gap 69, the valve hole 101, and the tubular portion 100.
Since it is connected to the exhaust chamber 5 via the passage of
When A is held at the supply position and the piston 22 is at the advance limit position, the second valve member 102 is lowered by the valve closing spring 103 to close the valve hole 101 and the upper end portion of the valve member 61A becomes O.
As it descends below the ring 66, the pressurized air passage 68 communicates with the valve working chamber 50, the valve working chamber 50 is filled with pressurized air, and the switching valve body 35A is switched to the discharge position. The other operations are the same as those in the above-mentioned embodiment, so that the description thereof will be omitted.

<変形例2> 前記実施例の切換弁体35の切換弁部37に代えて、第4
図に図示のように切換弁機構30Aにおいて環状のシール
部材110を有する切換弁部37Bを切換弁体35Bに設ける。
第4図に図示のように切換弁体35Bが供給位置にあると
きは、シール部材110が第2弁座46Bの内周面に当接し、
往動作動室25は通路42a、環状通路42、環状隙間111、受
圧室48、通路47及び加圧エア供給路33により加圧エア供
給口3に連通される。
<Modification 2> Instead of the switching valve portion 37 of the switching valve body 35 of the above embodiment, a fourth
As shown in the figure, in the switching valve mechanism 30A, a switching valve portion 37B having an annular seal member 110 is provided in the switching valve body 35B.
As shown in FIG. 4, when the switching valve body 35B is at the supply position, the seal member 110 contacts the inner peripheral surface of the second valve seat 46B,
The forward motion chamber 25 communicates with the pressurized air supply port 3 through the passage 42a, the annular passage 42, the annular gap 111, the pressure receiving chamber 48, the passage 47, and the pressurized air supply passage 33.

一方、切換弁体35Bが排出位置に切換えられると、シ
ール部材110が第1弁座44Bの内周面に当接するととも
に、環状隙間111は環状排気路41に連通した状態にな
り、往動作動室25は通路42a、環状通路42、環状隙間11
1、環状排気路41及び排気路40により排気室5に連通さ
れる。その他の作動は前記実施例と同様なのでその説明
を省略する。
On the other hand, when the switching valve body 35B is switched to the discharge position, the seal member 110 abuts on the inner peripheral surface of the first valve seat 44B, and the annular gap 111 is in communication with the annular exhaust passage 41, and the forward movement is performed. The chamber 25 includes the passage 42a, the annular passage 42, and the annular gap 11
1. The exhaust chamber 5 is communicated with the annular exhaust passage 41 and the exhaust passage 40. The other operations are the same as those in the above-mentioned embodiment, and the description thereof will be omitted.

<変形例3> 前記実施例のリリーフ弁機構80と供給弁機構81を省略
し、それらに代えてリリーフ弁機構80Cと供給弁機構81C
を下部ハウジング13のコーナ部13a・13bに設ける。
<Modification 3> The relief valve mechanism 80 and the supply valve mechanism 81 of the above embodiment are omitted, and instead of them, the relief valve mechanism 80C and the supply valve mechanism 81C.
Are provided at corners 13a and 13b of the lower housing 13.

リリーフ弁機構80Cについて説明すると、第5図に図
示のようにコーナ部13aの下端面からリリーフ弁室121が
凹設され、復動作動室26の底部からはリリーフ弁室121
に連通する排気孔122が形成され、コーナ部13aの上部に
はボルト孔と共通の環状通路95をリリーフ弁室121に連
通する排気通路123が形成され、上部ハウジング11には
環状通路95と排気室5とを連通する排気通路124が形成
されている。
Explaining the relief valve mechanism 80C, as shown in FIG. 5, the relief valve chamber 121 is recessed from the lower end surface of the corner portion 13a, and the relief valve chamber 121 is provided from the bottom of the return motion chamber 26.
An exhaust hole 122 communicating with the relief valve chamber 121 is formed in the upper portion of the corner portion 13a, and an annular passage 95 common to the bolt hole is formed in the upper portion of the corner portion 13a. An exhaust passage 124 communicating with the chamber 5 is formed.

リリーフ弁室121の下部にはネジ部材125が下部ハウジ
ング13に螺着して設けられ、ネジ部材125にはアジャス
ト・スクリュ126が螺合され、アジャスト・スクリュ126
のリリーフ弁室121内に位置する上部には凹部127が形成
され、アジャスト・スクリュ16の下端部には溝128が形
成されている。上記凹部127には、第1設定圧を設定す
る為の圧縮コイルバネからなる第1スプリング129が設
けられ、第1スプリング129の上部には排気孔122を内方
より開閉する弁子130が設けられ、弁子130は第1スプリ
ング129により上方に弾性付勢されている。
A screw member 125 is provided in the lower portion of the relief valve chamber 121 by being screwed to the lower housing 13, and an adjust screw 126 is screwed into the screw member 125 to adjust the screw 126.
A recess 127 is formed in the upper part of the relief valve chamber 121, and a groove 128 is formed in the lower end of the adjusting screw 16. A first spring 129, which is a compression coil spring for setting a first set pressure, is provided in the recess 127, and a valve 130 for opening and closing the exhaust hole 122 from the inside is provided above the first spring 129. The valve element 130 is elastically biased upward by the first spring 129.

次に、供給弁機構81Cについて説明すると、第6図に
図示のように下部ハウジング13のコーナ部13aと相隔っ
た別のコーナ部13bには、その下端面から供給弁室141が
凹設され、復動作動室26の底部からは供給弁室141に連
通する供給孔142が形成され、コーナ部13bの上部には環
状通路95を供給弁室141に連通する供給通路143が形成さ
れ、中間ハウジング12の上部には環状通路95を加圧エア
供給33に連通する供給通路144が形成されている。
Next, the supply valve mechanism 81C will be described. As shown in FIG. 6, a supply valve chamber 141 is recessed from the lower end surface of another corner portion 13b separated from the corner portion 13a of the lower housing 13. A supply hole 142 that communicates with the supply valve chamber 141 is formed from the bottom of the return motion chamber 26, and a supply passage 143 that communicates the annular passage 95 with the supply valve chamber 141 is formed at the top of the corner 13b. A supply passage 144 that connects the annular passage 95 to the pressurized air supply 33 is formed in the upper portion of the housing 12.

供給弁室141の下部にはネジ部材145が下部ハウジング
13に螺着して設けられ、ネジ部材145にはアジャスト・
スクリュ146が螺合し、アジャスト・スクリュ146の供給
弁室141内に位置する上部には凹部147が形成され、アジ
ャスト・スクリュ146の下端部には溝148が形成されてい
る。上記凹部147には第2設定圧を設定する為の圧種コ
イルバネからなる第2スプリング149が設けられ、第2
スプリング149の上部には供給通路143を開閉する弁子15
0が設けられ、弁子150は第2スプリング149により上方
に弾性付勢されている。
A screw member 145 is provided in the lower housing at the lower part of the supply valve chamber 141.
It is provided by screwing on 13 and the screw member 145
The screw 146 is screwed, and a recess 147 is formed in the upper portion of the adjusting screw 146 located inside the supply valve chamber 141, and a groove 148 is formed in the lower end portion of the adjusting screw 146. The recess 147 is provided with a second spring 149 composed of a pressure seed coil spring for setting a second set pressure.
A valve 15 for opening and closing the supply passage 143 is provided above the spring 149.
0 is provided, and the valve element 150 is elastically biased upward by the second spring 149.

このように構成されたリリーフ弁機構80C・供給弁機
構81Cにおいて、復動作動室26内の加圧エアの圧力が第
1設定以下且つ第2設定圧以上のときには、弁子130・1
50は第5図・第6図に図示の状態を保持し、弁子130は
排気孔122を封止し弁子150は供給通路143を封止してい
る。
In the relief valve mechanism 80C and the supply valve mechanism 81C configured as described above, when the pressure of the pressurized air in the return motion chamber 26 is equal to or lower than the first setting and equal to or higher than the second setting pressure, the valve element 130.
The valve 50 holds the state shown in FIGS. 5 and 6, the valve element 130 seals the exhaust hole 122, and the valve element 150 seals the supply passage 143.

ピストン22の進出作動時、復動作動室26内の加圧エア
の圧力が第1設定圧より高くなると、そのエア圧により
弁子130が下方に移動し、弁子130による排気孔122の封
止が解除されて加圧エアが排気孔122、排気通路123、環
状通路95及び排気通路124により排気室5にリリーフさ
れるので復動作動室26は第1設定圧に維持される。ピス
トン22の後退作動時、復動作動室26内の加圧エアの圧力
が第2設定圧より低くなると、加圧エア供給路33からの
エア圧により弁子150が下方に移動し、弁子150による供
給通路143の封止が解除され、復動作動室26に加圧エア
が供給されるので、復動作動室26の圧力は第2設定圧に
維持される。
When the pressure of the pressurized air in the reciprocating motion chamber 26 becomes higher than the first set pressure during the advancing operation of the piston 22, the valve 130 moves downward due to the air pressure, and the valve 130 seals the exhaust hole 122. Since the stop is released and the pressurized air is relieved to the exhaust chamber 5 through the exhaust hole 122, the exhaust passage 123, the annular passage 95 and the exhaust passage 124, the return motion chamber 26 is maintained at the first set pressure. When the pressure of the pressurized air in the backward movement chamber 26 becomes lower than the second set pressure during the backward movement of the piston 22, the valve element 150 moves downward due to the air pressure from the pressurized air supply passage 33, and the valve element 150 moves downward. Since the supply passage 143 is unsealed by the 150 and pressurized air is supplied to the return movement chamber 26, the pressure in the return movement chamber 26 is maintained at the second set pressure.

また、アジャスト・スクリュ126・146の夫々の溝128
・148をスクリュドライバなどの工具で操作することに
より第1スプリング129、第2スプリング149のバネ力を
調節することが出来、第1設定圧と第2設定圧の設定を
変えることが出来る。更に、前記実施例のリリーフ弁機
構80・供給弁機構81を構成する比較的大型な部材である
供給弁体83、リリーフ弁体84、第1スプリング97及び第
2スプリング98にかえて、下部ハウジング13を有効利用
してリリーフ弁機構80C・供給弁機構81Cをコンパクトに
構成出来るので、往復動アクチュエータAC自体を小型・
軽量にすることが出来る。
Also, the grooves 128 of the adjust screws 126 and 146, respectively.
By operating 148 with a tool such as a screw driver, the spring force of the first spring 129 and the second spring 149 can be adjusted, and the setting of the first set pressure and the second set pressure can be changed. Further, in place of the supply valve body 83, the relief valve body 84, the first spring 97, and the second spring 98, which are relatively large members configuring the relief valve mechanism 80 and the supply valve mechanism 81 of the above-described embodiment, the lower housing is replaced. Since the relief valve mechanism 80C and supply valve mechanism 81C can be made compact by effectively using 13, the reciprocating actuator AC itself can be made compact.
It can be lightweight.

尚、本実施例において加圧エアに代えて油圧を用いて
もよく、また本発明は油圧ポンプの他に、油圧増圧ポン
プ、ガス増圧ポンプなど往復駆動を利用する各種装置に
適用することが出来る。
In the present embodiment, hydraulic pressure may be used instead of the pressurized air, and the present invention is applicable to various devices using reciprocating drive such as a hydraulic pressure boosting pump and a gas pressure boosting pump, in addition to the hydraulic pump. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第6図は本発明の実施例を示すもので、第1図
はピストンが後退限位置にあるときの油圧ポンプの縦断
面図、第2図はピストンが進出限位置にあるときの油圧
ポンプの縦断面図、第3図〜第6図は本実施例の変形例
を示すもので、第3図は制御弁機構の変形例を示す油圧
ポンプの部分縦断面図、第4図は切換弁部の変形例を示
す油圧ポンプの部分縦断面図、第5図はリリーフ弁機構
の変形例を示す油圧ポンプの縦断面図、第6図は供給弁
機構の変形例を示す油圧ポンプの縦断面図である。 AC……往復動アクチュエータ、3……加圧エア供給口、
5……排気室、10……ハウジング、20……複動エアシリ
ンダ、 22……ピストン、23……出力ロッド、 25……往動作動室、26……復動作動室、 30……切換弁機構、35・35B……切換弁体、49……スプ
リング、50……弁作動室、60・60A……制御弁機構、61
……弁部材、80・80C……リリーフ弁機構、 81・81C……供給弁機構。
1 to 6 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of the hydraulic pump when the piston is at the backward limit position, and FIG. 2 is when the piston is at the forward limit position. 3 to 6 show a modified example of the present embodiment, and FIG. 3 is a partial vertical sectional view of a hydraulic pump showing a modified example of the control valve mechanism, FIG. Is a partial vertical sectional view of a hydraulic pump showing a modified example of a switching valve portion, FIG. 5 is a vertical sectional view of a hydraulic pump showing a modified example of a relief valve mechanism, and FIG. 6 is a hydraulic pump showing a modified example of a supply valve mechanism. FIG. AC ... Reciprocating actuator, 3 ... Pressurized air supply port,
5 ... Exhaust chamber, 10 ... Housing, 20 ... Double acting air cylinder, 22 ... Piston, 23 ... Output rod, 25 ... Forward working chamber, 26 ... Return working chamber, 30 ... Switching Valve mechanism, 35 / 35B …… Switching valve element, 49 …… Spring, 50 …… Valve working chamber, 60 ・ 60A …… Control valve mechanism, 61
…… Valve member, 80 ・ 80C …… Relief valve mechanism, 81 ・ 81C …… Supply valve mechanism.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ハウジング内にピストンとこのピストンに
固着された出力ロッドとを有する複動流体圧シリンダを
設け、この流体圧シリンダにピストンを流体圧で進出駆
動する往動作動室とピストンを流体圧で後退駆動する復
動作動室を設け、 上記往動作動室を流体圧供給口に接続する供給位置と排
出口に接続する排出位置とに択一的に切換えられる切換
弁体と、この切換弁体を供給位置に付勢する付勢手段
と、その付勢力に抗して切換弁体を流体圧で排出位置に
切換える弁作動室とを備えた切換弁機構を設け、 上記ピストンから延び切換弁体に挿通された弁部材を介
して、ピストンが後退限位置にあるときは弁作動室を排
出口に接続し且つピストンが後退限位置と進出限位置の
間にあるときは弁作動室を封止し且つピストンが進出限
位置にあるときは弁作動室を流体圧供給口に接続する制
御弁機構を設け、 上記ピストンの進出作動時、復動作動室内の流体圧が第
1設定圧より高いときに開弁して復動作動室を排出口に
接続するリリーフ弁機構を設け、 上記ピストンの後退作動時、復動作動室内の流体圧が第
1設定圧以下の第2設定圧未満のときに開弁して復動作
動室を流体圧供給口に接続する供給弁機構を設けたこと
を特徴とする流体圧駆動連続作動型往復動アクチュエー
タ。
1. A double-acting fluid pressure cylinder having a piston and an output rod fixed to the piston is provided in a housing, and a forward-moving moving chamber for advancing and driving the piston by fluid pressure is provided in the fluid pressure cylinder. A return motion chamber that is driven backward by pressure is provided, and a switching valve body that can be selectively switched between a supply position that connects the forward motion chamber to the fluid pressure supply port and a discharge position that connects to the discharge port, and this switching valve body. A switching valve mechanism including a biasing means for biasing the valve body to the supply position and a valve working chamber for switching the switching valve body to the discharge position by fluid pressure against the biasing force is provided, and the switching valve mechanism extends from the piston and switches. The valve working chamber is connected to the discharge port when the piston is at the backward limit position through the valve member inserted through the valve body, and the valve working chamber is opened when the piston is between the backward limit position and the forward limit position. Sealed and piston is in the advanced position Control valve mechanism that connects the valve working chamber to the fluid pressure supply port, and when the piston moves forward, the valve opens when the fluid pressure in the return movement chamber is higher than the first set pressure. A relief valve mechanism for connecting the chamber to the discharge port is provided, and the valve is opened to return when the fluid pressure in the return operation chamber is less than the second set pressure below the first set pressure during the backward movement of the piston. A fluid pressure driven continuous operation type reciprocating actuator, characterized in that a supply valve mechanism for connecting the fluid pressure supply port to the fluid pressure supply port is provided.
JP1084329A 1989-04-03 1989-04-03 Fluid pressure continuously operated reciprocating actuator Expired - Fee Related JP2676110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1084329A JP2676110B2 (en) 1989-04-03 1989-04-03 Fluid pressure continuously operated reciprocating actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1084329A JP2676110B2 (en) 1989-04-03 1989-04-03 Fluid pressure continuously operated reciprocating actuator

Publications (2)

Publication Number Publication Date
JPH02261911A JPH02261911A (en) 1990-10-24
JP2676110B2 true JP2676110B2 (en) 1997-11-12

Family

ID=13827477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1084329A Expired - Fee Related JP2676110B2 (en) 1989-04-03 1989-04-03 Fluid pressure continuously operated reciprocating actuator

Country Status (1)

Country Link
JP (1) JP2676110B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147442B2 (en) * 2003-05-22 2006-12-12 Kuo-Chung Yeh Automatic oil pump, with a valved pumping piston and a valved driving piston unit

Also Published As

Publication number Publication date
JPH02261911A (en) 1990-10-24

Similar Documents

Publication Publication Date Title
EP0589485B1 (en) Pneumatic powered fastener device
KR101398930B1 (en) Energy-saving valve
GB1446096A (en) Impact actuator
KR20140108860A (en) Hydraulic Power Cylinder with Booser Pump Equipment
US6691994B2 (en) Hydraulic lock device
SE8803868D0 (en) PRESSURE AIR PUMP DEVICE
DE69926508D1 (en) SHOCK DEVICE
JPH0570722B2 (en)
JP2676110B2 (en) Fluid pressure continuously operated reciprocating actuator
JP2852953B2 (en) Fluid pressure piston mover
AU2002340982B2 (en) Percussion device with a control valve for two alternately striking pistons
JPH0749041Y2 (en) Fluid pressure continuously operated reciprocating actuator
JP2676111B2 (en) Fluid pressure continuously operated reciprocating actuator
CN101298135A (en) Driving tool and head valve assembly for a driving tool
EP0428406A1 (en) Reciprocating actuator
JP3342929B2 (en) High pressure fluid generator
JP3290804B2 (en) Intensifier
RU2046223C1 (en) Fluid-pressure intensifier
JPH0223832Y2 (en)
JPH0110451Y2 (en)
SU1498988A1 (en) Power cylinder
SU601509A1 (en) Valve for hydraulic pulsed drive
JPH0223831Y2 (en)
JPS6029427Y2 (en) Reciprocating device
SE0201510D0 (en) Breakers

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees