JP2675694B2 - Ratio differential relay - Google Patents

Ratio differential relay

Info

Publication number
JP2675694B2
JP2675694B2 JP3201343A JP20134391A JP2675694B2 JP 2675694 B2 JP2675694 B2 JP 2675694B2 JP 3201343 A JP3201343 A JP 3201343A JP 20134391 A JP20134391 A JP 20134391A JP 2675694 B2 JP2675694 B2 JP 2675694B2
Authority
JP
Japan
Prior art keywords
current
output
ratio
differential
inrush
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3201343A
Other languages
Japanese (ja)
Other versions
JPH0530636A (en
Inventor
康明 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3201343A priority Critical patent/JP2675694B2/en
Publication of JPH0530636A publication Critical patent/JPH0530636A/en
Application granted granted Critical
Publication of JP2675694B2 publication Critical patent/JP2675694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電力系統における発電
機、変圧器、母線、送配電線の保護に用いられる比率差
動継電装置、特に変流器が飽和した時の不要動作防止対
策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ratio differential relay device used for protecting generators, transformers, buses and distribution lines in a power system, and more particularly to measures for preventing unnecessary operation when a current transformer is saturated. .

【0002】[0002]

【従来の技術】図7は発電機保護比率差動リレー装置
(以下単にリレー装置GPと称す)の外部接続図、図8
はリレー装置GPに使用される比率差動手段87Gの内
部ブロック図、図9はリレー装置GPの動作原理説明図
である。図7においてBUSは電力系統の母線、Gは被
保護発電機、TRは被保護発電機Gと同一の母線に接続
された変圧器、Lは変圧器TRの負荷、CB1 、C
2、CB3 は遮断器、CT1 、CT2 は変流器、GP
はリレー装置、IE は変圧器TRを遮断器CB2 により
無負荷投入した時のインラッシュ、I1 、I2 は変流器
CT1 、CT2 の2次側電流である。
2. Description of the Related Art FIG. 7 is an external connection diagram of a generator protection ratio differential relay device (hereinafter simply referred to as a relay device GP).
Is an internal block diagram of the ratio differential means 87G used in the relay device GP, and FIG. 9 is an explanatory diagram of the operating principle of the relay device GP. In FIG. 7, BUS is a bus of the electric power system, G is a protected generator, TR is a transformer connected to the same bus as the protected generator G, L is a load of the transformer TR, CB 1 and C.
B 2 and CB 3 are circuit breakers, CT 1 and CT 2 are current transformers, GP
Is a relay device, I E is an inrush when the transformer TR is turned on by a circuit breaker CB 2 , and I 1 and I 2 are secondary currents of the current transformers CT 1 and CT 2 .

【0003】また、図8においてID は差動電流(I1
−I2 )、C1 、C2 、C3 は比率差動手段87Gの入
力端子、TRCは抑制電流IR =(I1 +I2 ))を導入
する抑制入力トランス、TOCは差動電流ID を導入する
差動入力トランス、CMは比率差動特性を得るための比
較手段で抑制電流IR に対する差動電流ID の比率が一
定値以上の時、 すなわちK=差動電流/抑制電流 =ID /IR =I1 −I2 /I1 +I2 >KS 例えばKS=0.1で動作する。
Further, in FIG. 8, I D is a differential current (I 1
-I 2 ), C 1 , C 2 , C 3 are input terminals of the ratio differential means 87G, T RC is a suppression input transformer for introducing a suppression current I R = (I 1 + I 2 )), and T OC is differential. The differential input transformer for introducing the current I D , CM is a comparison means for obtaining a ratio differential characteristic, and when the ratio of the differential current I D to the suppression current I R is a certain value or more, that is, K = differential current / suppression current = I D / I R = I 1 -I 2 / I 1 + I 2> operating in KS e.g. KS = 0.1.

【0004】このように構成された従来のリレー装置G
Pの動作を説明する。 (1)外部故障F2発生時 図9(a)、(c)参照 変流器CT1 、CT2 の2次側電流において 流入電流I1F2 =流出電流I2F2 抑制電流IR と差動電流ID を比較手段CMで比較 K2F=差動電流/抑制電流=(I1F2 −I2F2 )/(I1F2 +I2F2 ) =0/I1F2 =0<KS=0.1 で比率差動手段87Gは不動作
A conventional relay device G having such a configuration
The operation of P will be described. (1) When an external failure F2 occurs Refer to FIGS. 9 (a) and 9 (c) In the secondary side current of the current transformers CT 1 and CT 2 , the inflow current I 1F2 = outflow current I 2F2 suppression current I R and differential current I. D is compared by the comparison means CM K2F = differential current / suppression current = ( I1F2- I2F2 ) / ( I1F2 + I2F2 ) = 0 / I1F2 = 0 <KS = 0.1 and the ratio differential means 87G Is not working

【0005】(2)内部故障F1発生時 図9(b)、(c)参照 流入電流I1 =I1F1 、流出電流I2 =0、 抑制電流=差動電流IR =ID =I1F11F=差動電流/抑制電流=(I1F1 −I2F1 )/(I1F1 +I2F1 ) =I1F1 /I1F1 =1>KS=0.1 で比率差動手段87Gは動作(2) When internal failure F1 occurs See FIGS. 9 (b) and 9 (c). Inflow current I 1 = I 1F1 , outflow current I 2 = 0, suppression current = differential current I R = ID = I 1F1 K 1F = differential current / suppression current = (I 1F1 −I 2F1 ) / (I 1F1 + I 2F1 ) = I 1F1 / I 1F1 = 1> KS = 0.1 and the ratio differential means 87G operates.

【0006】[0006]

【発明が解決しようとする課題】上記構成に係る従来の
比率差動継電装置の問題点を図7、図8、図9、図10
参照して説明する。図7において変圧器TRを無負荷
(遮断器CB3を開放)でCB2で投入すると図10に図
示の様な直流分IDCを含む大きなインラッシュ電流IE
が変流器CT1、CT2を貫通して流れるが、この時本来
は変流器CT1、CT2の2次側電流I1=12で差動電流
D=0となるべきであるが、直流分IDcによる磁束が
逐次積分されて変流器CT1またはCT2の少なくとも一
方、例えばCT2が飽和して出力電流I。が低下し誤差
差動電流IDが流れた場合、即ち、図9(c)にCT2
和時のインラッシュとして図示の様な領域の電流が、入
力されると比率差動手段87Gが不要に動作してCB1
トリップ出力が出力されると言う重大な不具合があっ
た。
The problems of the conventional ratio differential relay device having the above-described structure are shown in FIGS. 7, 8, 9, and 10.
Will be described with reference to. In FIG. 7, when the transformer TR is turned on with no load (the circuit breaker CB 3 is opened) with CB 2 , a large inrush current I E including the DC component I DC as shown in FIG.
Flows through the current transformers CT 1 and CT 2 , but at this time, the secondary current I 1 = 1 2 of the current transformers CT 1 and CT 2 should originally be the differential current I D = 0. However, the magnetic flux due to the direct current component I D c is sequentially integrated to saturate at least one of the current transformers CT 1 and CT 2 , for example, CT 2 , and the output current I. When the error differential current I D flows, that is, when a current in a region shown as an inrush at CT 2 saturation in FIG. 9C is input, the ratio differential means 87G is not necessary. Working on CB 1
There was a serious problem that trip output was output.

【0007】CT飽和による不具合を根本的に解決する
ためには、変流器を大容量のものを使用することが望ま
しい。しかし大型化、高コスト化には限界が有り、現実
的には直流分を含んだインラッシュの貫通時に完全に飽
和しない充分な容量の変流器を用意することはきわめて
困難である。
In order to fundamentally solve the problem caused by CT saturation, it is desirable to use a current transformer having a large capacity. However, there is a limit to increase in size and cost, and in reality, it is extremely difficult to prepare a current transformer of sufficient capacity that does not completely saturate when the inrush containing a DC component is penetrated.

【0008】この発明は上記の不具合を解決するために
なされたもので、直流分を含んだ変圧器のインラッシュ
が変流器CT1、CT2を貫通し少なくとも一方の変流器
が飽和した場合でも不要動作することのない信頼度の高
い比率差動継電装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and the inrush of a transformer containing a direct current component penetrates the current transformers CT 1 and CT 2 and at least one of the current transformers is saturated . An object of the present invention is to provide a highly reliable ratio differential relay device that does not perform unnecessary operation even in the case.

【0009】[0009]

【課題を解決するための手段】この第1の発明に係る比
率差動継電装置電力系統における被保護機器の両端に
設置した第1及び第2の変流器を通して検出した第1及
び第2電流の差である差動電流と上記第1及び第2電流
の和である抑制電流の比率に従って応動してトリップ出
力を電力系統の負荷遮断器へ出力する比率差動手段と、
上記抑制電流の基本波に対する第2高調波の比率が一定
値以上であるかを検出しインラッシュ検出信号を出力す
るインラッシュ検出手段と、上記インラッシュ検出信号
の出力有りで上記比率差動手段の出力無しの時、上記比
率差動手段の出力を一定時間阻止する出力制御手段
設けたものである。
The ratio differential relay device according to the first aspect of the present invention and the first and second current differentials detected through the first and second current transformers installed at both ends of a protected device in a power system. Ratio differential means for responding to the ratio of the differential current, which is the difference between the two currents, and the suppression current, which is the sum of the first and second currents, and outputting the trip output to the load circuit breaker of the power system,
Inrush detection means for detecting whether the ratio of the second harmonic to the fundamental wave of the suppression current is a certain value or more and outputting an inrush detection signal, and the inrush detection signal
With the output of the above and without the output of the differential means, the above ratio
And an output control means for blocking the output of the rate differential means for a certain period of time .

【0010】の第2の発明に係る比率差動継電装置
は、電力系統における被保護機器の両端に設置した第1
及び第2の変流器より検出した第l及び第2電流の差で
ある差動電流と上記第1及び第2電流の和である抑制電
流の比率に従って応動しトリップ出力を電力系統の負荷
遮断器へ出力する比率差動手段と、上記抑制電流の基本
波に対する第2高調波の比率が一定値以上であるかを検
出しインラッシュ検出信号を出力するインラッシュ検出
手段と、上記第1電流と第2電流の位相関係を検出し、
逆位相関係検出時に逆位相検出信号を出力する位相判別
手段と、上記インラッシュ検出信号と逆位相検出信号が
有意である時に、上記比率差動手段の出力を一定時間阻
止する出力制御手段を設けたものである。この第3の
発明に係る比率差動継電装置は、出力制御手段が比率差
動手段による出力を一定時間阻止中に上記比率差動手段
が内部故障判定時に、上記トリップ出力を有効にする機
能を含んだものである
[0010] The ratio differential relay apparatus according to a second aspect of this
Is the first installed on both ends of the protected equipment in the power system.
And a trip output in response to the ratio of the differential current, which is the difference between the first and second currents detected by the second current transformer, and the suppression current, which is the sum of the first and second currents, and trips the trip output. Ratio differential means for outputting to the controller, inrush detection means for detecting whether the ratio of the second harmonic to the fundamental wave of the suppression current is a certain value or more and outputting an inrush detection signal, and the first current And the phase relationship between the second current and
The phase discriminating means for outputting the anti-phase detection signal at the time of detecting the anti-phase relationship and the output of the ratio differential means for a certain period of time when the inrush detection signal and the anti-phase detection signal are significant.
And an output control means for stopping . In the ratio differential relay device according to the third aspect of the present invention , the output control means has a ratio difference.
The ratio differential means while the output from the dynamic means is blocked for a certain time
Is a device that enables the trip output when an internal failure is determined.
It includes Noh .

【0011】[0011]

【作用】この第1の発明によれば、比率差動手段の不動
作により外部故障が検出され、且つ、インラッシュ検出
手段によりインラッシュを検出すると出力手段を稼働
し、比率差動手段よりの出力を一定時間阻止すること
で、インラッシュが変流器に貫通し誤差動電流が一定時
間比率差動手段に流れ込み誤トリップ出力が出力されて
も負荷遮断器を不用意に作動することがない。
According to the first aspect of the invention, the ratio differential means does not move.
When the external failure is detected by the operation and the inrush is detected by the inrush detection means, the output means is activated, and the output from the ratio differential means is blocked for a certain time, so that the inrush penetrates the current transformer. Even if an erroneous kinetic current flows into the differential means for a certain period of time and an erroneous trip output is output, the load circuit breaker will not accidentally operate.

【0012】この第2の発明によれば、位相判別手段に
より第1電流と第2電流の位相関係が逆位相関係である
ことが判別され、且つインラッシュ検出手段によりイン
ラッシュを検出すると出力制御手段を稼動し、比率差動
手段よりの出力を一定時間阻止することでインラッシュ
が変流器に貫通し誤差動電流が一定時間比率差動手段に
流れ込み該トリップ出力が出力されても負荷遮断器を不
用意に作動することがない。この第3の発明によれば、
比率差動手段による出力を一定時間阻止中に内部故障判
定時に上記トリップ出力を有効にすることで、インラッ
シュ時に内部故障が判定されても出力制御手段によって
比率差動手段の出力が開始される。
According to the second aspect of the present invention, the output control is performed when the phase determining means determines that the phase relationship between the first current and the second current has an opposite phase relationship, and the inrush detecting means detects the inrush. By operating the means and blocking the output from the ratio differential means for a certain period of time, the inrush penetrates the current transformer and the error motion current flows into the ratio differential means for a certain period of time, and the load is cut off even if the trip output is output. Do not operate the vessel carelessly. According to the third invention,
Internal failure is detected while the output by the ratio differential means is blocked for a certain period of time.
By enabling the above trip output at fixed time,
Even if an internal failure is determined during shutdown, the output control means
The output of the ratio differential means is started.

【0013】[0013]

【実施例】尚、本発明の動作説明を行う前に、本発明の
概要を述べるならばこの発明は、インラッシュの直流分
によるCT飽和は、CTにインラッシュ印加直後に発生
するのでなく、直流分による磁束の逐次積分によりCT
鉄心が飽和に至るもので、インラッシュ印加後所定時間
経過後にCT飽和が発生するといった事実に着目するも
のである。
Before explaining the operation of the present invention, the present invention will be summarized. In the present invention, the CT saturation due to the DC component of the inrush does not occur immediately after the inrush is applied to the CT. CT by successive integration of magnetic flux due to DC
It focuses on the fact that the iron core reaches saturation and CT saturation occurs after a predetermined time has elapsed after the inrush application.

【0014】すなわち、直流分を含んだ貫通インラッシ
ュが印加されているがCTが飽和していない状態を、イ
ンラッシュ検出手段が動作しているが比率差動手段が動
作してない状態として検出して、一度この状態を検出し
たら比率差動手段の出力をロックすると共に、復帰時間
タイマーを付勢し、その後、いずれかのCTが飽和して
誤差差動電流のため比率差動手段が不要動作してもCT
飽和が回復するまでロックを継続する構成。なお、上記
のロック継続のための復帰時間タイマーの時間として
は、例えば0.2秒程度である。
That is, the state in which the through-inrush including the DC component is applied but the CT is not saturated is detected as the state in which the inrush detection means is operating but the ratio differential means is not operating. Then, once this state is detected, the output of the ratio differential means is locked and the recovery time timer is energized. After that, either CT is saturated and an error differential current causes the ratio differential means to be unnecessary. CT works
A configuration that keeps the lock until saturation is restored. The time of the recovery time timer for continuing the lock is, for example, about 0.2 seconds.

【0015】図1のこの発明の一実施例の構成図におい
てF2Hは抑制電流IR の基本波に対する第2高調波の比
率が一定値以上であることを検出するインラッシュ検出
手段で基本波パスフィルタF1P、第2高調波パスフィル
タF2P、第2高調波検出手段CMF2から構成される。I
1 は比率差動手段87Gの出力が無くインラッシュ検
出手段F2Hの出力が有りの条件でインラッシュが貫通し
ていることを検出するインヒビット手段、TREはインヒ
ビット手段IN1 に付勢され所定の復帰時間を持つ復帰
時間タイマー、IN2 は復帰時間タイマーTREの出力が
無く比率作動手段87Gの出力が有りの条件で当該リレ
ー装置GPのトリップ出力を出力するインヒビット手段
である。
In the configuration diagram of one embodiment of the present invention in FIG. 1, F 2H is a fundamental wave by an inrush detection means for detecting that the ratio of the second harmonic to the fundamental wave of the suppression current I R is a certain value or more. It comprises a pass filter F 1P , a second harmonic pass filter F 2P , and a second harmonic detecting means CM F2 . I
Urging N 1 is inhibit means for detecting that the in-rush penetrates under the condition of there is output without inrush detector F 2H output ratio rate differential hands stage 87G, T RE to inhibit means IN 1 The recovery time timer IN 2 having a predetermined recovery time is an inhibit means for outputting the trip output of the relay device GP under the condition that the recovery time timer T RE does not output and the ratio actuating means 87G outputs.

【0016】上記の様に構成されたリレー装置GPの動
作を説明する。 1.直流分を含んだインラッシユが変流器CT1 、CT
2 を貫通する場合。 図2の各部波形図により説明する。インラッシュIE
印加されると抑制電流IR =(I1 +I2 )において基
本波に対する第2高調波分の比率が一定値以上あるので
インラッシュ検出手段F2Hが出力する、一方インラッシ
ュ印加直後においては、いずれのCTも飽和していない
ので誤差動電流ID は無く比率差動手段87Gは不動作
である。
The operation of the relay device GP configured as described above will be described. 1. The inrush including the DC component is the current transformer CT 1 , CT
When penetrating 2 . This will be described with reference to the waveform chart of each part in FIG. When the inrush I E is applied, the ratio of the second harmonic component to the fundamental wave at the suppression current I R = (I 1 + I 2 ) is equal to or more than a certain value, so that the inrush detecting means F 2H outputs the inrush current. Immediately after the application, since neither CT is saturated, there is no error dynamic current I D and the ratio differential means 87G is inoperative.

【0017】従ってインヒビットIN1が出力し復帰
タイマーT RE を通して、その後のCT飽和で比率差動
手段87Gが不要動作してもリレー装置GPとしてトリ
ップに至らない様、インヒビットIN2でロックする。
なおこのロックは直流分が無くなってCT飽和が回復す
るまでの時間、復帰時間タイマーTRE(例えば約0.2
秒間)で継続される。従って、変圧器TRのインラッシ
ュが貫通して2個のCTのいずれかが飽和してもリレー
装置GPがトリップ出力を不要に出力することはない。
[0017] Therefore, when the output inhibit IN 1 return
Through the inter- timer T RE , even if the ratio differential means 87G is unnecessarily operated due to the subsequent CT saturation, the relay device GP is locked by the inhibit IN 2 so as not to trip as the relay device GP.
Note that this lock is the time until the CT saturation is restored after the DC component is lost, the recovery time timer T RE (for example, about 0.2).
Seconds). Therefore, even if the inrush of the transformer TR penetrates and one of the two CTs is saturated, the relay device GP does not unnecessarily output the trip output.

【0018】2.外部故障F2発生時図9(a)に基づき従来の技術で説明したように差動電
流I D は流れないため比率差動手段87Gは不動作であ
る。しかも、外部故障F2発生時であるためインラッシ
ュ電流は流れない。 2.1 通常の外部故障時は抑制電流I R の基本波に対
する第2高調波分の比率が、インラッシュ検出手段F 2H
を動作させてしまう検出レベル(例えば12%)以下な
ので、インヒビットIN 1 、復帰時間タイマーT RE の出
力は無い、しかも比率差動手段87Gの出力も無いため
インヒビットIN 2 からのトリップ出力は無い。 2.2 もし外部故障時で抑制電流I R の基本波に対す
る第2高調波分の比率がインラッシュ検出手段F 2H の検
出レベル(例えば12%)以上あった場合でも、インラ
ッシュ検出手段F 2H はインラッシュ電流の無に拘わらず
動作してインラッシュ検出信号をインヒビットIN 1
出力して復帰時間タイマーT RE よりインヒビットIN 2
にロック出力を出すが、このロック出力の如何に関せ
ず、比率差動手段87Gは外部故障F2発生時に不動作
なのでインヒビットIN 2 、すなわち当該リレー装置G
Pのトリップ出力は無い。
2. When an external failure F2 occurs , the differential power transfer is performed as described in the related art based on FIG.
Since the flow I D does not flow, the ratio differential means 87G does not operate.
You. In addition, there is no inrush because an external failure F2 occurs.
Current does not flow. 2.1 When a normal external failure occurs , the fundamental wave of the suppression current I R
The ratio of the second harmonic component to be generated is the inrush detection means F 2H.
Below the detection level (for example, 12%) that activates
Therefore, the inhibit IN 1 and the recovery time timer T RE are issued.
There is no power, and there is no output from the ratio differential means 87G.
There is no trip output from the inhibit IN 2 . 2.2 For the fundamental wave of the suppression current I R in case of external failure
Inspection of the ratio of the second harmonic content of the inrush detector F 2H that
Even if it is above the exit level (for example, 12%),
The rush detection means F 2H is independent of the inrush current.
Operations to an in-rush detection signal to inhibit IN 1
Output and return time timer T RE inhibit IN 2
The lock output is output to the
No, the ratio differential means 87G does not operate when an external failure F2 occurs.
Therefore, inhibit IN 2 , that is, the relay device G concerned
There is no P trip output.

【0019】3.内部故障F1発生時図9(b)に基づき従来の技術で説明したように流入電
流=差動電流で比率差動手段87Gが動作する。しか
も、内部故障F1発生時であるためインラッシュ電流は
流れない。抑制電流I R の基本波に対する第2高調波分
の比率が、 3.1 通常内部故障時は、抑制電流I R の基本波に対
する第2高調波分の比率がインラッシュ検出手段F 2H
動作させてしまう検出レベル(例えば12%)以下なの
で、インラッシュ検出手段F 2H はインラッシュ検出信号
を出力しないためインヒビットIN 1 、復帰時間タイマ
ーT RE の出力は無い。従って、インヒビットIN 2 は比
率差動手段87Gからの出力を従来と同様にトリップ出
力として出す。
3. When an internal fault F1 occurs As described in the related art based on FIG.
Flow = differential current operates the ratio differential means 87G. Only
However, since the internal failure F1 occurs, the inrush current is
Not flowing. Second harmonic component of the suppression current I R with respect to the fundamental wave
The ratio of 3.1 to the fundamental wave of the suppression current I R is normal during an internal failure .
The ratio of the second harmonic content of the inrush detector F 2H for
It is below the detection level (for example, 12%) that causes it to operate.
Then, the inrush detection means F 2H is an inrush detection signal.
Inhibit IN 1 and recovery time timer
-There is no output of T RE . Therefore, the inhibit IN 2 is
The output from the rate differential means 87G is tripped as in the conventional case.
Put out as power.

【0020】3.2 もし内部故障時で抑制電流I R
基本波に対する第2高調波分の比率がインラッシュ検出
手段F 2H の検出レベル(例えば12%)以上あった場合
でも、インラッシュ検出手段F 2H はインラッシュ電流の
無に拘わらず動作してインラッシュ検出信号を出力する
が、既に比率差動手段87Gは動作しているためインラ
ッシュ検出信号に基づくインヒビットIN 1 、復帰時間
タイマーT RE の出力を待たずに、インヒビットIN 2
比率差動手段87Gの出力によりトリップ出力を出す。
[0020] 3.2 of suppression current I R at the time of internal failure if
Inrush detection of the ratio of the second harmonic component to the fundamental wave
When the detection level of the means F 2H (for example, 12%) or more exists
However, the inrush detection means F 2H is
Operates regardless of nothing and outputs inrush detection signal
However, since the ratio differential means 87G is already operating,
Inhibit IN 1 based on the crash detection signal , recovery time
The inhibit IN 2 can be set without waiting for the output of the timer T RE.
A trip output is produced by the output of the ratio differential means 87G.

【0021】実施例2.図3に実施例2の構成を示す。
図3においてIN3 はインラッシュ検出手段F2Hに出力
が無く比率差動検出手段87Gに出力有りの条件でトリ
ップ出力を出力するインヒビット、ORはインヒビット
IN2 またはインヒビットIN3 のいずれかに出力が有
りの時当該リレー装置GPのトリップ出力を出力するO
R手段である。
Embodiment 2 FIG. FIG. 3 shows the configuration of the second embodiment.
In FIG. 3, IN 3 is an inhibit output that outputs a trip output under the condition that the inrush detection means F 2H has no output and the ratio differential detection means 87G has an output, and OR is an inhibit IN 2 or IN 3 output. Outputs the trip output of the relay device GP when there is O
R means.

【0022】実施例1においては、直流分を含んだ貫通
インラッシュを検出、または第2高調波分を含んだ外部
故障電流を検出し、一度復帰時間タイマーTREが付勢さ
れた後、復帰時間TREのカウント中に内部故障が発生し
た場合は、内部故障発生のタイミングによっては、最悪
の場合は復帰時間タイマーTREの時間(例えば約0.2
秒)だけトリップ時間が遅れる不具合があった。
In the first embodiment, the penetration inrush including the DC component is detected, or the external fault current including the second harmonic component is detected, and the recovery time timer T RE is energized once, and then the recovery is performed. When an internal failure occurs during counting of the time T RE , depending on the timing of the internal failure occurrence, in the worst case, the time of the recovery time timer T RE (for example, about 0.2).
There was a problem that the trip time was delayed by (seconds).

【0023】実施例2はこの不具合を解消する方策を提
案したもので、上記の復帰時間タイマーTREカウント中
でもインラッシュ検出手段F2Hに出力が無く比率差動手
段87Gに出力有りの条件でトリップできるルートを設
けトリップ時間の遅れを防ぐものである。
The second embodiment proposes a measure to solve this problem, and trips under the condition that the inrush detection means F 2H has no output and the ratio differential means 87G has an output even during the counting of the recovery time timer T RE. A route that can be set up is provided to prevent delay in trip time.

【0024】実施例3.図4にこの発明の実施例3の構
成図を図5に各部波形図を示し、T1 、T2 はCT1
CT2 からの入力電流I1 、I2 を個別に導入する入力
トランス、PHは入力電流I1 、I2 がお互いに逆位相
の位相関係の時出力する位相判別手段、ANはインラッ
シュ検出手段F2H、位相判別手段PHの出力が共に有り
の条件でインラッシュが貫通していることを検出するA
ND手段、TREはAND手段ANに付勢され所定の復帰
時間を持つ復帰時間タイマー、IN2 は復帰時間タイマ
ーTREの出力が無く比率差動手段87Gの出力が有りの
条件で、当該リレー装置GPのトリップ出力を出力する
インヒビットである。
Embodiment 3 FIG. FIG. 4 shows a block diagram of a third embodiment of the present invention, and FIG. 5 shows waveform diagrams of respective parts, where T 1 and T 2 are CT 1 ,
Input transformer, PH is the input current I 1, the phase determination means I 2 is outputted when the phase relation of opposite phase to each other, AN in-rush detecting means for introducing an input current I 1, I 2 from CT 2 individually It is detected that the inrush is penetrating under the condition that both the outputs of F 2H and the phase discrimination means PH are present.
ND means, T RE is a return time timer that is energized by AND means AN and has a predetermined return time, and IN 2 is a condition that the output of the return time timer T RE is absent and the output of the ratio differential means 87G is present. It is an inhibit that outputs the trip output of the device GP.

【0025】上記の様に構成されたリレー装置GPの動
作を説明する。 1.直流分を含んだインラッシュが変流器CT1 、CT
2 を貫通する場合。 図5の各部波形図により説明する。インラッシュIE
印加されると抑制電流IR =(I1 +I2 )において基
本波に対する第2高調波分の比率が一定値以上あるので
インラッシュ検出手段F2Hが出力する。
The operation of the relay device GP configured as described above will be described. 1. The inrush including the DC component is the current transformer CT 1 , CT
When penetrating 2 . This will be described with reference to the waveform chart of each part in FIG. When the inrush I E is applied, the ratio of the second harmonic component to the fundamental wave at the suppression current I R = (I 1 + I 2 ) is equal to or more than a certain value, so that the inrush detection unit F 2H outputs.

【0026】一方インラッシュIE 印加直後において
は、いずれの変流器も飽和していないので変流器CT
1 、CT2 の出力電流I1 、I2 は飽和することなく位
相も逆位相である。従って位相判別手段PHから動作出
力が出力される。インラッシュ検出手段F2Hと位相判別
手段PHが共に出力有りの条件でAND手段ANが出力
し復帰時間タイマーTREが付勢されインヒビットIN2
で比率差動手段87Gの出力をロックする。
On the other hand, immediately after the application of the inrush IE , none of the current transformers is saturated, so the current transformer CT
The output currents I 1 and I 2 of 1 and CT 2 are not saturated and their phases are opposite to each other. Therefore, the operation output is output from the phase determining means PH. The AND means AN outputs under the condition that both the inrush detection means F 2H and the phase determination means PH have outputs, and the recovery time timer T RE is activated and the inhibit IN 2 is applied.
The output of the ratio differential means 87G is locked by.

【0027】しかし、その後のいずれかのCTが飽和し
て比率差動手段87G不要動作し直流分が減衰してCT
飽和が回復するまで比率差動手段87Gの動作が継続す
るので復帰時間タイマーTREでロックを継続させる。従
って、変圧器のインラッシュIE が貫通してもリレー装
置GPがトリップ出力を不要に出力することはない。
However, one of the subsequent CTs is saturated and the ratio differential means 87G is operated unnecessarily, and the DC component is attenuated and the CT is reduced.
Since the operation of the ratio differential means 87G continues until the saturation is restored, the recovery time timer T RE keeps the lock. Therefore, even if the inrush IE of the transformer penetrates, the relay device GP does not unnecessarily output the trip output.

【0028】2.外部故障F2発生時 図9(a)において従来の場合と同様で、入力電流I
1 、I2は逆位相で差動電流ID が流れないので比率差
動手段87Gは不動作。反対に、位相判別手段PHは動
作出力を出力する。この時、抑制電流IR =(I1 +I
2 )に基本波に対する第2高調波分の比率が2.1 イ
ンラッシュ検出手段F2Hの検出レベル(例えば12%)
以上含まれていなければ、インヒビットIN1 、復帰タ
イマーTREの出力は無しである。
2. When an external failure F2 occurs In FIG. 9A, the input current I is the same as in the conventional case.
Since 1 and I 2 are in opposite phases and the differential current I D does not flow, the ratio differential means 87G does not operate. On the contrary, the phase discriminating means PH outputs an operation output. At this time, the suppression current I R = (I 1 + I
2 ) The ratio of the second harmonic component to the fundamental wave is 2.1. The detection level of the inrush detection means F 2H (for example, 12%).
If not included, the inhibit IN 1 and the return timer T RE are not output.

【0029】2.2 インラッシュ検出手段F2Hの検出
レベル(例えば12%)以上含まれていればインラッシ
ュ検出手段F2Hが出力してAND手段AN、復帰時間タ
イマーTREが出力しインヒビットIN2 にロック出力を
出力するがAND手段AN、復帰時間タイマーTREの出
力の如何に関せず、比較差動手段87Gが不動作なので
インヒビットIN2 、すなわち当該リレー装置GPのト
リップ出力は、もちろん無しである。
2.2 If the detection level of the inrush detection means F 2H (for example, 12%) or more is included, the inrush detection means F 2H outputs and the AND means AN and the recovery time timer T RE output and the inhibit IN. 2 outputs a lock output, but regardless of the outputs of the AND means AN and the recovery time timer T RE , the comparison differential means 87G does not operate, so the inhibit IN 2 , that is, the trip output of the relay device GP concerned, of course, None.

【0030】3.内部故障F1発生時 図9(b)において従来の場合と同様で、入力電流=差
動電流で比率差動手段87Gは動作。反対に、入力電流
1 に対し逆位相の電流はないので位相判別手段PHは
不動作である。
3. When internal failure F1 occurs In the same manner as in the conventional case in FIG. 9B, the ratio differential means 87G operates with the input current = the differential current. On the contrary, since there is no current having a reverse phase with respect to the input current I 1, the phase discrimination means PH is inoperative.

【0031】この時、抑制電流IR =(I1 +I2)に
基本波に対する第2高調波分の比率が 3.1 インラッシュ検出手段F2Hの検出レベル(例え
ば12%)以上含まれていなければ、インラッシュ検出
手段F2Hは出力しないし、位相判別手段PHも不動作で
AND手段AN、復帰時間タイマーTREからのロック出
力は無く、インヒビットIN2 から、従来と同様、比率
差動手段87Gの出力がトリップ出力として出力され
る。
At this time, the suppression current I R = (I 1 + I 2 ) contains the ratio of the second harmonic component to the fundamental wave of 3.1 or more (for example, 12%) of the detection level of the inrush detection means F 2H. without it, do not output the inrush detector F 2H, phase discriminating means PH also aND means aN in inactive, rather than locking the output from the return time timer T RE, from the inhibit iN 2, similarly to the conventional ratio differential The output of the means 87G is output as a trip output.

【0032】3.2 インラッシュ検出手段F2Hの検出
レベル(例えば12%)以上含まれていればインラッシ
ュ検出手段F2Hが出力するが位相判別手段PHは不動作
であるのでインヒビットIN1 、復帰時間タイマーTRE
の出力は無しで上記3.1と同様、インヒビットIN2
から、従来と同様に比率差動手段87Gの出力がトリッ
プ出力として出力される。
3.2 If the detection level of the inrush detection means F 2H (for example, 12%) or more is included, the inrush detection means F 2H outputs, but the phase determination means PH does not operate, so the inhibit IN 1 , Return time timer T RE
Inhibit IN 2 as in 3.1 above without output
Therefore, the output of the ratio differential means 87G is output as a trip output as in the conventional case.

【0033】実施例4.図6に実施例4の構成を示す。
図6においてIN3 はインラッシュ検出手段F2Hに出力
が無く比率差動検出手段87Gに出力有りの条件でトリ
ップ出力を出力するインヒビット、ORはインヒビット
IN2 またはインヒビットIN3 のいずれかに出力が有
りの時当該リレー装置GPのトリップ出力を出力するO
R手段である。この実施例4は実施例1に対する実施例
2と同様の目的で実施例3に対して提案するもので、復
帰時間タイマーTREカウント中でもインラッシュ検出手
段F2Hに出力が無く比率差動手段87Gに出力有りでト
リップできるルートを設けたものである。
Embodiment 4 FIG. FIG. 6 shows the configuration of the fourth embodiment.
In FIG. 6, IN 3 is an inhibit output which outputs a trip output under the condition that the inrush detection means F 2H has no output and the ratio differential detection means 87G has an output, and OR is output to either the inhibit IN 2 or the inhibit IN 3. Outputs the trip output of the relay device GP when there is O
R means. The fourth embodiment is proposed to the third embodiment for the same purpose as the second embodiment with respect to the first embodiment, and there is no output to the inrush detection means F 2H even during the counting of the recovery time timer T RE, and the ratio differential means 87G. It has a route that can be tripped with output.

【0034】ところで上記の説明では、この発明を発電
機保護比率差動継電装置GPに適用する場合について述
べたが、特にこれに限られたものではなく、送電線保護
比率差動継電装置、母線保護比率差動継電装置、変圧器
保護比率差動継電装置等にも同様に適用できることは言
うまでもない。
In the above description, the present invention is applied to the generator protection ratio differential relay device GP, but the invention is not limited to this, and the transmission line protection ratio differential relay device is not limited to this. Needless to say, the present invention can be similarly applied to a busbar protection ratio differential relay device, a transformer protection ratio differential relay device, and the like.

【0035】[0035]

【発明の効果】以上のように、この第1の発明によれば
第1電流或は第2電流を検出する変流器の一方にインラ
ッシュ電流が貫通して飽和状態となり、比率差動手段に
誤差動電流が流れ込みトリップ出力が出力されても、イ
ンラッシュ検出手段によるインラッシュ検出時とともに
比率差動手段の出力なしの時に出力制御手段によって比
率差動手段の出力を飽和状態解消まで阻止することで該
トリップ出力が不用意に負荷遮断器に出力されないため
誤動作を防止し得る信頼度の高い比率差動継電装置を提
供できる効果がある。
As described above, according to the first aspect of the present invention, one of the current transformers for detecting the first current or the second current is penetrated by the inrush current to be in a saturated state and the ratio differential means. to be trip output error dynamic current flows is output, together with the in-rush test digital by inrush detection means
When the output of the ratio differential means is not output, the output of the ratio differential means is prevented until the saturation state is resolved, so that the trip output is not carelessly output to the load circuit breaker. There is an effect that a high ratio differential relay can be provided.

【0036】の第2の発明によれば、第1電流或は第
2電流を検出する変流器の一方にインラッシュ電流が貫
通して飽和状態となり、比率差動手段に誤差動電流が流
れ込みトリップ出力が出力されても、インラッシュ検出
手段によるインラッシュ検出とともに位相判別手段によ
る上記各電流間の逆位相関係検出時に出力制御手段によ
って比率差動手段の出力を飽和状態解消まで阻止するこ
とで該トリップ出力が不用意に負荷遮断器に出力され
ないため第1の発明に対してより信頼度の高い比率差動
継電装置を提供できる効果がある。この第3の発明によ
れば、比率差動手段による出力を一定時間阻止中に比率
差動手段が内部故障判定時に上記トリップ出力を有効に
することで、インラッシュ時に内部故障が判定されても
出力制御手段によって比率差動手段の出力が開始される
ため、内部故障に対して即座に対応することができると
いう効果がある。
According to the second aspect of this, one of the current transformer for detecting the first current or the second current in-rush current through becomes saturated, the error dynamic current the ratio differential means also trip output flow is output, block the output of the ratio differential means by the output control means when a reverse phase relationship detection between the respective currents by phase discrimination means together with inrush detection by the inrush detection means to eliminate saturation doing, there is an effect of providing a first high percentage differential relay device of Ri reliability due to pair invention for the trip output is not output to inadvertently load breaker. According to the third aspect of the present invention, the ratio differential means outputs the ratio while blocking the output for a certain period of time.
The differential means validates the trip output when an internal failure is judged.
By doing so, even if an internal failure is determined during inrush
The output of the ratio differential means is started by the output control means.
Therefore, it is possible to immediately respond to internal failure
This has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1を示すリレー装置GPの構
成図である。
FIG. 1 is a configuration diagram of a relay device GP showing a first embodiment of the present invention.

【図2】この発明の実施例1の動作を説明する各部波形
図である。
FIG. 2 is a waveform chart of each part for explaining the operation of the first embodiment of the present invention.

【図3】この発明の実施例2を示すリレー装置GPの構
成図である。
FIG. 3 is a configuration diagram of a relay device GP showing a second embodiment of the present invention.

【図4】この発明の実施例3を示すリレー装置GPの構
成図である。
FIG. 4 is a configuration diagram of a relay device GP showing a third embodiment of the present invention.

【図5】この発明の実施例3の動作を説明する各部波形
図である。
FIG. 5 is a waveform chart for explaining various parts of the operation of the third embodiment of the present invention.

【図6】この発明の実施例4を示すリレー装置GPの構
成図である。
FIG. 6 is a configuration diagram of a relay device GP showing a fourth embodiment of the present invention.

【図7】従来のリレー装置GPの構成図である。FIG. 7 is a configuration diagram of a conventional relay device GP.

【図8】従来のリレー装置GPの比率差動手段87Gの
構成図である。
FIG. 8 is a configuration diagram of a ratio differential means 87G of a conventional relay device GP.

【図9】従来のリレー装置GPの動作原理説明図であ
る。
FIG. 9 is an explanatory diagram of an operation principle of a conventional relay device GP.

【図10】従来のリレー装置GPの動作を説明する各部
の波形図である。
FIG. 10 is a waveform diagram of each part for explaining the operation of the conventional relay device GP.

【符号の説明】[Explanation of symbols]

G 被保護発電機 TR 変圧器 BUS 母線 CT1 、CT2 変流器 I1 、I2 変流器2次側電流 IE 変圧器のインラッシュ電流 GP 発電機保護継電装置(当該リレー装
置) 87G 発電機保護用の比率差動手段 F2H インラッシュ検出手段 F1P 基本波パスフィルタ F2P 第2高調波パスフィルタ CMF2 第2高調波検出手段 TRE 復帰時間タイマー PH 位相判別手段 AN AND手段
G protected generator TR transformer BUS bus CT 1, CT 2 current transformer I 1, I-rush current GP generator protective relay device 2 current transformer secondary current I E transformer (the relay device) 87G Ratio protection means for generator protection F 2H Inrush detection means F 1P Fundamental wave pass filter F 2P Second harmonic pass filter CM F2 Second harmonic detection means T RE Recovery time timer PH Phase discrimination means AN AND means

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電力系統における被保護機器の両端に設置
した第1及び第2の変流器を通して検出した第1及び第
2電流の差である差動電流と上記第1及び第2電流の和
である抑制電流の比率に従って応動してトリップ出力を
電力系統の負荷遮断器へ出力する比率差動手段と、上記
抑制電流の基本波に対する第2高調波の比率が一定値以
上であるかを検出しインラッシュ検出信号を出力するイ
ンラッシュ検出手段と、上記インラッシュ検出信号の出
力有りで上記比率差動手段の出力無しの時、上記比率差
動手段の出力を一定時間阻止する出力制御手段とを備え
たことを特徴とする比率差動継電装置。
1. A differential current, which is a difference between first and second currents detected through first and second current transformers installed at both ends of a protected device in a power system, and the first and second currents. A ratio differential unit that outputs a trip output to the load circuit breaker of the power system in response to the ratio of the suppression current, which is the sum, and whether the ratio of the second harmonic to the fundamental wave of the suppression current is a certain value or more. Inrush detection means for detecting and outputting the inrush detection signal, and outputting the inrush detection signal .
When there is force and no output of the ratio differential means, the ratio difference
A ratio differential relay device, comprising: output control means for blocking the output of the operating means for a certain period of time .
【請求項2】電力系統における被保護機器の両端に設置
した第1及び第2の変流器より検出した第l及び第2電
流の差である差動電流と上記第1及び第2電流の和であ
る抑制電流の比率に従って応動しトリップ出力を電力系
統の負荷遮断器へ出力する比率差動手段と、上記抑制電
流の基本波に対する第2高調波の比率が一定値以上であ
るかを検出しインラッシュ検出信号を出力するインラッ
シュ検出手段と、上記第1電流と第2電流の位相関係を
検出し、逆位相関係検出時に逆位相検出信号を出力する
位相判別手段と、上記インラッシュ検出信号と逆位相検
出信号が有意である時に、上記比率差動手段の出力を一
定時間阻止する出力制御手段とを備えたことを特徴とす
る比率差動継電装置。
2. A differential current, which is the difference between the first and second currents detected by the first and second current transformers installed at both ends of the protected device in the power system, and the first and second currents. A ratio differential means that responds according to the ratio of the suppression current, which is the sum, and outputs a trip output to the load circuit breaker of the power system, and detects whether the ratio of the second harmonic to the fundamental wave of the suppression current is a certain value or more. And an inrush detection means for outputting an inrush detection signal, a phase determination means for detecting the phase relationship between the first current and the second current, and outputting an antiphase detection signal when the antiphase relationship is detected, and the inrush detection means. When the signal and the anti-phase detection signal are significant, the output of the ratio differential means is
A ratio differential relay device, comprising: output control means for blocking for a fixed time .
【請求項3】出力制御手段は、比率差動手段による出力
を一定時間阻止中に上記比率差動手段が内部故障判定時
に上記トリップ出力を有効にする機能を含んだことを特
徴とする請求項1または2に記載の比率差動継電装置。
3. The output control means outputs by the ratio differential means.
When the internal differential of the ratio differential means is judged during
Has a function to enable the trip output above.
The ratio differential relay device according to claim 1, which is a characteristic.
JP3201343A 1991-07-16 1991-07-16 Ratio differential relay Expired - Fee Related JP2675694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201343A JP2675694B2 (en) 1991-07-16 1991-07-16 Ratio differential relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201343A JP2675694B2 (en) 1991-07-16 1991-07-16 Ratio differential relay

Publications (2)

Publication Number Publication Date
JPH0530636A JPH0530636A (en) 1993-02-05
JP2675694B2 true JP2675694B2 (en) 1997-11-12

Family

ID=16439461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201343A Expired - Fee Related JP2675694B2 (en) 1991-07-16 1991-07-16 Ratio differential relay

Country Status (1)

Country Link
JP (1) JP2675694B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4375881B2 (en) * 2000-05-16 2009-12-02 株式会社高岳製作所 Protective relay using photocurrent sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142637A (en) * 1977-05-18 1978-12-12 Hitachi Ltd Protective relaying system for transformer
JPS60245423A (en) * 1984-05-18 1985-12-05 株式会社日立製作所 Ratio differential relay
JPS6356121A (en) * 1986-08-27 1988-03-10 株式会社日立製作所 Ratio differential relay

Also Published As

Publication number Publication date
JPH0530636A (en) 1993-02-05

Similar Documents

Publication Publication Date Title
JPS62144535A (en) Differential relay for power transformer
JP2675694B2 (en) Ratio differential relay
EP0169313B1 (en) Transformer protective relay
JP3305084B2 (en) Ratio actuation protection relay
JP2503972B2 (en) Busbar protection relay
JP2675207B2 (en) Ratio differential relay system
JP2000152490A (en) Differential relay for protection of parallel transformer bank
JPH08168165A (en) Protective relay for transformer
JP3562674B2 (en) Transformer protection relay
JP2744379B2 (en) Transformer differential protection relay device
JP2594682B2 (en) Transformer protection relay
JPS605131B2 (en) Transformer protection relay device
JPS596723A (en) Protecting relaying device
JP3421244B2 (en) Ratio differential relay
JP3940492B2 (en) Digital type protective relay
JP3441336B2 (en) Protection relay system
JPH0662742U (en) Consumer busbar protection device
JPS596724A (en) Transformer protecting relaying device
JP2005051860A (en) Protection relay system
JPH06294837A (en) Method and apparatus for detecting ground-fault accident of underground transmission line
JPH06245367A (en) Protective relay for transformer
JPH09308081A (en) Current differential relay device
JPH0638690B2 (en) Ground fault relay
JPH09191557A (en) Protective device for phase modifying apparatus for electric power
JPH04322121A (en) Transformer protective relay

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees