JP2675529B2 - Video coding method and apparatus thereof - Google Patents

Video coding method and apparatus thereof

Info

Publication number
JP2675529B2
JP2675529B2 JP26008594A JP26008594A JP2675529B2 JP 2675529 B2 JP2675529 B2 JP 2675529B2 JP 26008594 A JP26008594 A JP 26008594A JP 26008594 A JP26008594 A JP 26008594A JP 2675529 B2 JP2675529 B2 JP 2675529B2
Authority
JP
Japan
Prior art keywords
value
complexity
zero coefficient
block
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26008594A
Other languages
Japanese (ja)
Other versions
JPH07222154A (en
Inventor
鍾求 全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH07222154A publication Critical patent/JPH07222154A/en
Application granted granted Critical
Publication of JP2675529B2 publication Critical patent/JP2675529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/015High-definition television systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/14Coding unit complexity, e.g. amount of activity or edge presence estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/149Data rate or code amount at the encoder output by estimating the code amount by means of a model, e.g. mathematical model or statistical model
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Discrete Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は映像信号符号化方法およ
びその装置に関し、例えば複雑度の異なる映像を一定し
たビット率で符号化するために複雑度による圧縮整数を
求めて映像を量子化する際に最適な映像符号化方法およ
びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a video signal coding method and apparatus, and for example, in order to code a video having a different complexity at a constant bit rate, a compression integer depending on the complexity is obtained to quantize the video. In this case, the present invention relates to an optimal video encoding method and its apparatus.

【0002】[0002]

【従来の技術】貯蔵および通信技術は、最近のコンピュ
ーターと半導体、そしてディジタル信号の処理技術の発
展に負って急速に発展している。これに伴いディジタル
映像装置、例えばディジタルVTR、ディジタルビデオ
カメラ、ビデオフォン又はテレビジョン電話機などでは
映像情報を記録媒体に効率的に記録し再生映像の質を高
めるための技術が要求される。
2. Description of the Related Art Storage and communication technology is rapidly developing due to the recent development of computer, semiconductor and digital signal processing technology. Along with this, digital video devices, such as digital VTRs, digital video cameras, videophones or television phones, are required to have a technique for efficiently recording video information on a recording medium and improving the quality of reproduced video.

【0003】しかしながら、映像信号をディジタル方式
で記録あるいは伝送する場合、ディジタル映像信号のデ
ータ量はアナログ方式に比べて非常に膨大となるため、
記録媒体および伝送チャンネルを効率的に使用するため
には映像情報の圧縮が必要となる。映像信号圧縮と関連
して従来主に使用されてきた方式は、離散余弦変換技法
と可変長符号化技法である。図5は従来の映像信号符号
化装置の構成を示したブロック図であり、離散余弦変換
部11は時間領域のデータである一定の大きさの映像ブ
ロック、例えば8×8の映像ブロックを64個の周波数
領域の離散余弦変換係数に変換する。
However, when a video signal is recorded or transmitted in a digital system, the data amount of the digital video signal is much larger than that in the analog system.
In order to use the recording medium and the transmission channel efficiently, it is necessary to compress the video information. The methods mainly used in the past in connection with video signal compression are the discrete cosine transform technique and the variable length coding technique. FIG. 5 is a block diagram showing a configuration of a conventional video signal encoding device. The discrete cosine transform unit 11 has 64 video blocks of a certain size, for example, 8 × 8 video blocks, which are time domain data. Convert to discrete cosine transform coefficient in the frequency domain of.

【0004】量子化部12は離散余弦変換部11から出
力される離散余弦変換係数を所定の量子化間隔で量子化
する。可変長符号化部13は情報量の少ないデータ、す
なわち情報的価値の低いデータには少ない数のビットが
割り当てられ、情報量の多いデータ、すなわち情報的価
値の高いデータには多い数のビットが割り当てられるよ
うに可変長さの符号化データを生成して符号化時要求さ
れるビット数を最小化する。バッファ14は可変長符号
化部13から出力されるデータの長さが一定でないた
め、一時的に貯蔵した後一定したビット率で出力する。
The quantizing unit 12 quantizes the discrete cosine transform coefficient output from the discrete cosine transform unit 11 at a predetermined quantizing interval. The variable-length coding unit 13 allocates a small number of bits to data having a small amount of information, that is, data having a low information value, and allocates a large number of bits to data having a large amount of information, that is, data having a high information value. Coded data of variable length is generated so as to be allocated, and the number of bits required for coding is minimized. Since the length of the data output from the variable length encoding unit 13 is not constant, the buffer 14 temporarily stores the data and then outputs the data at a constant bit rate.

【0005】従来においては、離散余弦変換部11で入
力映像を8×8ブロックの小さい副映像に分けてそれぞ
れ独立的に処理し、量子化部12は離散余弦変換係数を
バッファ14の状態と現在入力映像の複雑度により求め
られた量子化間隔で量子化する。したがって、隣接する
マクロブロック間の量子化の間隔の差が大きければ隣接
マクロブロックの境界面ではブロック間の相関性が失わ
れ所謂ブロック効果が現れる。
Conventionally, the discrete cosine transform unit 11 divides the input image into small sub-images of 8 × 8 blocks and processes them independently, and the quantizing unit 12 processes the discrete cosine transform coefficients in the buffer 14 and the current state. Quantize at the quantization interval determined by the complexity of the input image. Therefore, if the difference between the quantization intervals between adjacent macroblocks is large, the correlation between the blocks is lost at the boundary surface of the adjacent macroblocks, and a so-called block effect appears.

【0006】また、各マクロブロックに対して一定の量
子化間隔で量子化する場合、1画面内でも各マクロブロ
ックに対して複雑度が異なるため画面上に不均一にエラ
ーが発生して特定部分の画質が低下するアーティファク
ト(artifact)が現れ、このようなアーティファクトが
発生しないように適した量子化間隔を決定すべきであ
り、この決定がなによりも重要である。
In addition, when quantizing each macroblock at a fixed quantization interval, since the complexity of each macroblock is different even within one screen, errors occur unevenly on the screen and a specific portion is generated. Artifacts that reduce the image quality of the image appear, and a suitable quantization interval should be determined so that such an artifact does not occur, and this determination is important above all.

【0007】一方、可変長符号化は発生するコードの長
さが可変的なので、高速サーチのような特殊再生の時再
生にくしため、発生するビット量を一定に制御する必要
がある。ビット量を決定する重要なパラメータである圧
縮整数は量子化器の量子化間隔を決定し、これにより圧
縮比が決定され画面の解像度にも影響を及ぼす。
On the other hand, in the variable-length coding, the length of the generated code is variable, so that the number of generated bits must be controlled to be constant in order to reduce the reproduction during special reproduction such as high-speed search. The compression integer, which is an important parameter that determines the bit amount, determines the quantization interval of the quantizer, which determines the compression ratio and also affects the screen resolution.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、図5に
示したようにビット量を一定に制御するためにバッファ
を利用する場合バッファの充満度により量子化間隔を制
御するため、1画面内での複雑度に適応して特定領域
(マクロブロック)に適したビット割当が困難だという
問題点があった。
However, as shown in FIG. 5, when a buffer is used to control the bit amount to be constant, the quantization interval is controlled by the fullness of the buffer, so that it is possible to change the quantization interval within one screen. There is a problem that it is difficult to allocate bits suitable for a specific area (macroblock) according to complexity.

【0009】一方、DCT変換ブロックの複雑度を検出
した後周辺のDCT変換ブロックの関係により量子化器
の量子化間隔を適応的に調整してブロッキング現象を緩
和させる映像信号符号化/復号化システムは米国特許番
号5,253,075号に開示されている。前述した装
置は周波数領域上の情報を利用して画像の複雑度を検出
して量子化間隔を調節しているが、従来の映像信号符号
化/復号化システムは空間領域上の所定ブロック(マク
ロブロック)に対して一定したビット率で符号化するた
めの手段が提供できなかった。
On the other hand, after detecting the complexity of the DCT transform block, a video signal coding / decoding system which alleviates the blocking phenomenon by adaptively adjusting the quantizing interval of the quantizer according to the relationship of the surrounding DCT transform blocks. Are disclosed in US Pat. No. 5,253,075. Although the above-described device detects the complexity of an image and adjusts the quantization interval by using the information in the frequency domain, the conventional video signal encoding / decoding system uses a predetermined block (macro) in the spatial domain. It was not possible to provide a means for encoding a block) at a constant bit rate.

【0010】本発明の目的は、所定数の単位ブロックか
ら構成される副ブロック単位で検出された複雑度に適応
して一定したビット率で映像データが符号化できる圧縮
整数を決定する映像符号化方法を提供することである。
また、本発明の他の目的は、マクロブロック単位で空間
領域および周波数領域上から検出された複雑度に適応し
て量子化間隔を調整する映像符号化方法を提供すること
である。
An object of the present invention is to provide a video coding which determines a compression integer capable of coding video data at a constant bit rate by adapting to the complexity detected in a sub-block unit composed of a predetermined number of unit blocks. Is to provide a method.
Another object of the present invention is to provide a video encoding method that adjusts the quantization interval in accordance with the complexity detected in the spatial domain and the frequency domain in units of macroblocks.

【0011】更に本発明の他の目的は、副ブロック単位
で検出された複雑度に適応して圧縮整数を求めて量子化
間隔を決定するための映像符号化装置を提供することで
ある。
Still another object of the present invention is to provide a video coding apparatus for determining a compression integer by adapting to the complexity detected in sub-block units and determining a quantization interval.

【0012】[0012]

【課題を達成するための手段】前記の目的および他の目
的を達成するために本発明による映像符号化方法は、例
えば以下の構成を備える。即ち、所定数の単位ブロック
で構成された副ブロック単位に分割される入力画像に対
して時間領域のデータである副ブロックを周波数領域の
データである離散余弦変換係数に変換する離散余弦変換
部と、前記離散余弦変換係数を圧縮整数により決定され
る所定の量子化間隔で量子化する量子化部と、量子化さ
れた係数を可変長符号化する可変長符号化部とを具備す
る映像符号化装置において、前記副ブロック単位で入力
画像のピクセル値により複雑度を計算する複雑度計算部
と、各副ブロックに対して前記複雑度を正規化する複雑
度正規化部と、前記離散余弦変換部で変換された離散余
弦変換係数で前記副ブロック単位で所定範囲内にある小
さいゼロ係数をカウントするゼロ係数カウント部と、各
副ブロックに対して前記ゼロ係数を正規化するゼロ係数
正規化部と、前記ゼロ係数と予め設定される圧縮率によ
り遷移加重値を計算する加重値計算部と、前記複雑度正
規化値、前記ゼロ係数正規化値および前記遷移加重値を
加えて前記圧縮整数を発生して前記量子化部に出力する
圧縮整数発生部とを含むことを特徴とする。
In order to achieve the above object and other objects, a video encoding method according to the present invention has the following configuration, for example. That is, a discrete cosine transform unit that transforms a sub block, which is data in the time domain, into a discrete cosine transform coefficient, which is data in the frequency domain, with respect to an input image divided into sub block units configured by a predetermined number of unit blocks. , A video coding comprising a quantizer for quantizing the discrete cosine transform coefficient at a predetermined quantization interval determined by a compressed integer, and a variable length encoder for variable length coding the quantized coefficient. In the apparatus, a complexity calculation unit that calculates complexity in pixel units of an input image in units of the sub-blocks, a complexity normalization unit that normalizes the complexity for each sub-block, and the discrete cosine transform unit. A zero coefficient counting unit that counts small zero coefficients within a predetermined range in units of the sub-blocks by the discrete cosine transform coefficients converted by the above, and normalizes the zero coefficients for each sub-block. A zero coefficient normalization unit, a weight value calculation unit that calculates a transition weight value with the zero coefficient and a preset compression ratio, and the complexity normalization value, the zero coefficient normalization value and the transition weight value are added. And a compressed integer generator for generating the compressed integer and outputting the compressed integer to the quantizer.

【0013】そして例えば、前記副ブロックはマクロブ
ロック単位であることを特徴とする。あるいは、前記ゼ
ロ係数カウント部で所定数は±1であることを特徴とす
る。
Further, for example, the sub-block is a macro block unit. Alternatively, the predetermined number in the zero coefficient counting unit is ± 1.

【0014】[0014]

【作用】以上の構成において、入力映像の空間領域上の
複雑度と周波数領域上の複雑度により一定したビット率
で符号化する圧縮整数を求めて量子化器の量子化間隔を
調整することにより、複雑度の異なる映像で構成された
画面内でも画質の劣化なく符号化できる。
In the above structure, the compression interval to be coded at a constant bit rate is calculated according to the complexity of the input image in the spatial domain and the complexity in the frequency domain to adjust the quantization interval of the quantizer. In addition, it is possible to perform coding without deterioration of image quality even in a screen composed of images of different complexity.

【0015】[0015]

【実施例】以下、添付した図面に基づき本発明に係る一
実施例を詳細に説明する。図1のAないし図1のCは、
CCIR601勧告案の4:2:2フォーマットの画像
を示し、図2のAおよび図2のBはY(回路)画面に対
してマクロブロックの構成を説明するための図面であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings. 1A to 1C are
An image in the 4: 2: 2 format of the CCIR601 recommendation is shown, and A of FIG. 2 and B of FIG. 2 are drawings for explaining the configuration of the macro block for the Y (circuit) screen.

【0016】各画像はY(図1のA)、Cr(図1の
B)、Cb(図1のC)信号で構成され、各信号はマク
ロブロックに分けられる。各マクロブロックはY信号に
4個の8×8ピクセルブロックの信号、CrおよびCb
信号に対してそれぞれ2つの8×8ピクセルブロックの
信号からなる。図2のAはY信号の1画面を示してお
り、図2のBはY信号に対して16×16ピクセルのマ
クロブロックを示している。
Each image is composed of Y (A in FIG. 1), Cr (B in FIG. 1) and Cb (C in FIG. 1) signals, and each signal is divided into macroblocks. Each macroblock contains four 8x8 pixel block signals, Cr and Cb, for the Y signal.
Each signal consists of two 8 × 8 pixel block signals. A of FIG. 2 shows one screen of the Y signal, and B of FIG. 2 shows a macro block of 16 × 16 pixels for the Y signal.

【0017】図3は本発明に係る一実施例の圧縮整数を
決定するための映像符号化方法に対する流れ図であり、
図1のAないし図2のBを参照して入力画像に対する圧
縮整数を決定する本実施例の映像符合化方法を詳細に説
明する。数式に使用される記号の定義は次の通りであ
る。Pix(k,l)はピクセル値、kは0,1,・・
・,7、lは0,1,・・・,7、Nはブロック数(本
実施例でN=4)、MBはマクロブロック数(本実施例
でMB=30×45)、iは0,1,2,3,・・・,
MBー1、jは0,1,・・・,Nー1である。
FIG. 3 is a flowchart of a video encoding method for determining a compressed integer according to an embodiment of the present invention.
The video encoding method of this embodiment for determining a compression integer for an input image will be described in detail with reference to FIGS. 1A to 2B. The definitions of the symbols used in the mathematical formulas are as follows. Pix (k, l) is a pixel value, and k is 0, 1, ...
, 7, l is 0, 1, ..., 7, N is the number of blocks (N = 4 in this embodiment), MB is the number of macroblocks (MB = 30 × 45 in this embodiment), and i is 0 , 1, 2, 3, ...,
MB-1, j is 0, 1, ..., N-1.

【0018】第1の過程として、空間領域に対する複雑
度により各マクロブロックに対する複雑度正規化値を求
めるために、入力された4:2:2フォーマット画像
(第410段階)に対してマクロブロック内の各8×8
ブロック(以下単位ブロックと称する)単位で画像の平
均複雑度を求める(第421段階)。複雑度は輝度信号
Yに対して、画像のピクセル値を利用して計算する。
As a first step, in order to obtain the complexity normalization value for each macroblock according to the complexity for the spatial domain, the input 4: 2: 2 format image (step 410) is performed in the macroblock. Each 8x8
The average complexity of the image is calculated in block (hereinafter referred to as unit block) units (step 421). The complexity is calculated for the luminance signal Y by using the pixel value of the image.

【0019】単位ブロックの平均複雑度Ayb[j] は、以
下に示す数1式により求める。
The average complexity A yb [j] of the unit block is obtained by the following equation (1).

【0020】[0020]

【数1】 (Equation 1)

【0021】マクロブロックに対して以下に示す数2式
により、単位ブロックの平均複雑度を全部合算した後、
単位ブロック数で割ってマクロブロックの平均複雑度A
yt[i] を求める(第422段階)。
After summing up all the average complexity of the unit blocks by the following equation 2 for the macroblock,
Average complexity A of macroblocks divided by the number of unit blocks
Find yt [i] (step 422).

【0022】[0022]

【数2】 (Equation 2)

【0023】ここで、Nは4である。続いて数3式によ
りマクロブロックの各単位ブロックの平均複雑度と実際
ピクセル値の間の差に対する単位ブロックの自乗平均値
σ2 BT[j] を求める(第423段階)。
Here, N is 4. Then, the root mean square value σ 2 BT [j] of the unit block with respect to the difference between the average complexity of each unit block of the macroblock and the actual pixel value is calculated by the equation (3) (step 423).

【0024】[0024]

【数3】 (Equation 3)

【0025】そして数4式により各マクロブロックの4
つのY単位ブロック(j=0〜3)に対して各単位ブロ
ックの自乗平均値のうち最小自乗平均値を求めた後1を
加え、各マクロブロックの最小自乗平均値σ2 BT min
[i]を求める(第424段階)。
Then, according to the equation 4, 4 of each macroblock
For one Y unit block (j = 0 to 3), the least mean square value of the mean square values of each unit block is calculated, and then 1 is added, and the least mean square value σ 2 BT min of each macro block is added.
Find [i] (step 424).

【0026】[0026]

【数4】σ2 BTmin [i] =MIN(σ2 BT[j] )+1 ここで1を加えることは最小自乗平均値が“0”になら
ないようにするためである。そして数5式により各マク
ロブロックに対してマクロブロックの最小自乗平均値と
平均複雑度により正規化して、マクロブロックの複雑度
正規化値NorACT[i] を求める(第425段階)。
## EQU4 ## σ 2 BTmin [i] = MIN (σ 2 BT [j]) +1 Here, 1 is added so that the least mean square value does not become "0". Then, each macroblock is normalized by the least square mean value of the macroblock and the average complexity according to the equation (5) to obtain a macroblock complexity normalization value Nor ACT [i] (step 425).

【0027】[0027]

【数5】 (Equation 5)

【0028】ここで、αは正規化のための定数である。
第2の過程として映像信号の周波数領域で各マクロブロ
ックに対するゼロ係数正規化値と遷移加重値を求めるた
めに、数6式 及び数7式に基づき 入力された4:
2:2フォーマット画像41に対して離散余弦変換を行
った係数(PixCoef f(u,v)) を求める(第431段階)。
Here, α is a constant for normalization.
As a second step, in order to obtain the zero coefficient normalization value and the transition weight value for each macroblock in the frequency domain of the video signal, the input 4 based on the equations (6) and (7):
The coefficient (Pix Coef f (u, v) ) obtained by performing the discrete cosine transform on the 2: 2 format image 41 is obtained (step 431).

【0029】[0029]

【数6】 (Equation 6)

【0030】ここで、u,v=0,1,・・・,7であ
る。
Here, u, v = 0, 1, ..., 7 are satisfied.

【0031】[0031]

【数7】 (Equation 7)

【0032】次に数8式によりマクロブロックのうちY
ブロックに対して離散余弦変換係数が±1より小さい係
数を全てカウントしてマクロブロックのゼロ係数和Z
[i] を求める(第432段階)。
Next, according to the equation (8), Y of the macroblock is
Count all coefficients with discrete cosine transform coefficients smaller than ± 1 for a block and sum zero coefficients of macroblocks Z
Find [i] (step 432).

【0033】[0033]

【数8】 (Equation 8)

【0034】そして数9式により各マクロブロックのゼ
ロ係数和を全てのマクロブロックに対して合算して全体
ゼロ係数和ZT を求める(第433段階)。
Then, the zero coefficient sum of each macroblock is added to all the macroblocks by the formula (9) to obtain the total zero coefficient sum Z T (step 433).

【0035】[0035]

【数9】 (Equation 9)

【0036】続いて数10式により 全体ゼロ係数和を
マクロブロックの数で割って、マクロブロックの平均ゼ
ロ係数和AZEROを求める(第434段階)。
Then, the total zero coefficient sum is divided by the number of macroblocks by the expression (10) to obtain the average zero coefficient sum A ZERO of the macroblocks (step 434).

【0037】[0037]

【数10】AZERO=(Zr /MB) 続いて数11式により、マクロブロックの平均ゼロ係数
和と各マクロブロックのゼロ係数和の差を自乗してマク
ロブロックのゼロ係数自乗平均値σ2 ZERO[i]を求める
(第435段階)。
## EQU10 ## A ZERO = (Zr / MB) Subsequently, the difference between the average zero coefficient sum of the macroblocks and the zero coefficient sum of each macroblock is squared by the equation 11 to calculate the zero coefficient square mean value σ 2 of the macroblocks. Calculate ZERO [i] (step 435).

【0038】[0038]

【数11】σ2 ZERO[i] =(AZERO−Z[i] )2 続いて数12式によりマクロブロック当たりゼロ係数自
乗平均値とゼロ係数和により正規化して、各マクロブロ
ックのゼロ係数正規化値NorZERO[i] を求める(第4
36段階)。
[Equation 11] σ 2 ZERO [i] = (A ZERO −Z [i]) 2 Next, the zero coefficient per macroblock is normalized by the formula 12 and the zero coefficient of each macroblock is normalized. Obtain the normalized value Nor ZERO [i] (4th
36 steps).

【0039】[0039]

【数12】 (Equation 12)

【0040】ここで、αは正規化のための定数である。
圧縮整数は画像の複雑度により可変し、量子化間隔は該
圧縮整数により決定される。ゼロ係数の発生頻度により
量子化間隔が変動されることができ、圧縮率により圧縮
整数が制御されるため、Wを圧縮整数の遷移加重値とす
れば次のように表せる。
Here, α is a constant for normalization.
The compression integer varies depending on the complexity of the image, and the quantization interval is determined by the compression integer. The quantization interval can be changed by the frequency of occurrence of the zero coefficient, and the compression integer is controlled by the compression ratio. Therefore, if W is a transition weight value of the compression integer, it can be expressed as follows.

【0041】[0041]

【数13】W=(AZEROー (β×RATIO))/γ したがって、マクロブロックの平均ゼロ係数和と圧縮し
ようとする圧縮率に応じて各マクロブロックに対する遷
移加重値Wを求める(第441段階)。ここで、β、γ
は加重値のための定数であり、RATIO は圧縮率で、該圧
縮率が予め決定される。
Equation 13] W = (A ZERO chromatography (β × RATIO)) / γ Accordingly, finding a transient weight value W for each macroblock in accordance with the compression ratio to be compressed between the average zero coefficient sum of macro blocks (No. 441 Stage). Where β, γ
Is a constant for weighting value, RATIO is a compression rate, and the compression rate is predetermined.

【0042】したがって、マクロブロック単位の圧縮整
数SF[i] は以下に示す数14にしたがって複雑度正規
化値とゼロ係数正規化値と遷移加重値との和で定められ
る(第450段階)。
Therefore, the compression integer SF [i] in macroblock units is determined by the sum of the complexity normalization value, the zero coefficient normalization value, and the transition weight value according to the following Equation 14 (step 450).

【0043】[0043]

【数14】 SF[i] =NorACT [i] +NorZERO[i] +W 圧縮整数は量子化器で量子化行列により離散余弦変換係
数の量子化間隔を決定する。すなわち、マクロブロック
の平均ゼロ係数和が大きいほど、圧縮率が小さいほど遷
移加重値Wも大きくなり、遷移加重値Wが大きくなれば
圧縮整数は大きくなり、量子化間隔は小さくなる。
SF [i] = Nor ACT [i] + Nor ZERO [i] + W The compressed integer determines the quantization interval of the discrete cosine transform coefficient by the quantization matrix in the quantizer. That is, the larger the sum of the average zero coefficients of macroblocks and the smaller the compression rate, the larger the transition weight value W. The larger the transition weight value W, the larger the compression integer and the smaller the quantization interval.

【0044】図4は本発明に係る一実施例の上述した映
像符合化処理を実行可能な映像符号化装置の構成例を示
すブロック図である。本実施例の符号化装置は、Y,C
r,Cb信号のマクロブロックに分けられる入力画像に
対して、時間領域のデータであるマクロブロックデータ
を周波数領域のデータである離散余弦変換係数に変換す
る離散余弦変換部51、離散余弦変換部51から出力さ
れる離散余弦変換係数を所定の量子化間隔で量子化する
量子化部58、情報量により可変長さの符号化データを
生成して全体的に最小限のビット数で符号化する可変長
符号化部59を具備する従来の映像符号化装置に入力映
像に対する圧縮整数を求めるための構成を更に含んでい
る。
FIG. 4 is a block diagram showing an example of the arrangement of a video coding apparatus capable of executing the above-mentioned video coding processing according to an embodiment of the present invention. The encoding device of the present embodiment uses Y, C
For an input image divided into macroblocks of r and Cb signals, a discrete cosine transform unit 51 and a discrete cosine transform unit 51 that transform macroblock data that is time domain data into discrete cosine transform coefficients that are data in the frequency domain. Quantizer 58 that quantizes the discrete cosine transform coefficient output from the unit at a predetermined quantization interval, variable that generates coded data of variable length according to the amount of information and coded with a minimum number of bits as a whole. The conventional video coding apparatus having the long coding unit 59 further includes a configuration for obtaining a compressed integer for the input video.

【0045】次いで、図5に示す従来の装置に比して付
加された構成を中心として図4を説明することにする。
複雑度計算部52は入力映像のピクセル値により複雑度
を計算し、複雑度正規化部53は各マクロブロックに対
して前記複雑度を正規化する。ゼロ係数カウント部54
は、離散余弦変換部51で変換された離散余弦変換係数
のうち±1より小さいゼロ係数をカウントし、ゼロ係数
正規化部55は各マクロブロックに対してゼロ係数を正
規化する。
Next, FIG. 4 will be described focusing on the configuration added in comparison with the conventional device shown in FIG.
The complexity calculator 52 calculates the complexity according to the pixel value of the input image, and the complexity normalizer 53 normalizes the complexity for each macroblock. Zero coefficient counting unit 54
Counts zero coefficients smaller than ± 1 among the discrete cosine transform coefficients converted by the discrete cosine transform section 51, and the zero coefficient normalization section 55 normalizes the zero coefficient for each macroblock.

【0046】加重値計算部56は、マクロブロックに対
してゼロ係数カウント部54でカウントしたゼロ係数と
圧縮率により遷移加重値を計算する。加算器57は複雑
度正規化値とゼロ係数正規化値と遷移加重値とを合算し
て圧縮整数を発生して量子化器58に出力する。離散余
弦変換係数に対する量子化間隔は圧縮整数と量子化行列
により決定される。量子化行列は全ての入力映像毎に変
化の程度、色成分の特性、解像度、応用目的などが異な
るため、それに適した量子化行列を求めるべきであり、
人間の視覚的特性と離散余弦変換係数の特性を結合した
様々な心理視覚的な実験により求められる。
The weight value calculation unit 56 calculates the transition weight value for the macroblock based on the zero coefficient counted by the zero coefficient counting unit 54 and the compression rate. The adder 57 adds the complexity normalization value, the zero coefficient normalization value, and the transition weight value to generate a compressed integer and outputs the compressed integer to the quantizer 58. The quantization interval for the discrete cosine transform coefficient is determined by the compression integer and the quantization matrix. The degree of change of the quantization matrix is different for every input image, the characteristics of the color components, the resolution, the application purpose, etc., so it is necessary to find a quantization matrix suitable for it.
It is obtained by various psychovisual experiments that combine the human visual characteristics and the characteristics of the discrete cosine transform coefficient.

【0047】量子化器58は決定された量子化間隔によ
り映像信号を量子化し、その結果値が可変長符号化器5
9を経て望むビット率の圧縮されたビットストリームが
得られる。前記実施例においてマクロブロックは一定の
ビット率で符号化したが、マクロブロック単位より拡張
されたブロック単位でも可能である。
The quantizer 58 quantizes the video signal according to the determined quantization interval, and the resulting value is the variable length coder 5.
A compressed bitstream of desired bit rate is obtained via 9. Although the macroblocks are coded at a constant bit rate in the above-described embodiment, the macroblocks may be expanded in block units.

【0048】[0048]

【発明の効果】以上説明したように本発明によれば、入
力映像の空間領域上の複雑度と周波数領域上の複雑度
(ゼロ係数の発生頻度)により一定したビット率で符号
化する圧縮整数を求めて量子化器の量子化間隔を調整す
ることにより、複雑度の異なる映像で構成された画面内
でも画質の劣化なく符号化できる。
As described above, according to the present invention, a compressed integer which is encoded at a constant bit rate depending on the complexity of the input image in the spatial domain and the complexity in the frequency domain (frequency of occurrence of zero coefficient). By adjusting the quantization interval of the quantizer in order to obtain, it is possible to perform coding without deterioration of image quality even in a screen composed of images of different complexity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】入力画像のCCIR 601 4:2:2フォ
ーマット図である。
FIG. 1 is a CCIR 601 4: 2: 2 format diagram of an input image.

【図2】図1に示したY信号に対する構成マップを示す
図である。
FIG. 2 is a diagram showing a configuration map for the Y signal shown in FIG.

【図3】本発明に係る一実施例による映像符号化方法に
よる圧縮整数を決定する処理を示すフローチャートであ
る。
FIG. 3 is a flowchart showing a process of determining a compressed integer by the video encoding method according to the embodiment of the present invention.

【図4】本発明に係る一実施例の映像符号化装置の構成
を示すブロック図である。
FIG. 4 is a block diagram showing a configuration of a video encoding device according to an embodiment of the present invention.

【図5】従来の映像符号化装置の構成を示すブロック図
である。
FIG. 5 is a block diagram showing a configuration of a conventional video encoding device.

【符合の説明】 52 複雑度計算部 53 複雑度正規化部 54 ゼロ係数カウント部 55 ゼロ係数正規化部 56 加重値計算部 57 加算器 58 量子化器 59 符号化器[Description of Signs] 52 Complexity Calculation Unit 53 Complexity Normalization Unit 54 Zero Coefficient Counting Unit 55 Zero Coefficient Normalization Unit 56 Weight Value Calculation Unit 57 Adder 58 Quantizer 59 Encoder

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 入力画像を所定数の単位ブロックで構成
された副ブロック単位に分割して分割された映像信号を
圧縮整数により決定される所定の量子化間隔に量子化し
た後符号化する映像符号化方法において、 前記入力画像に対して空間領域に対する複雑度に応じて
各副ブロックに対する複雑度の正規化値を求める段階
と、 前記入力画像に対して離散余弦変換を取り、各副ブロッ
クに対する離散余弦変換係数が所定数より小さい係数を
カウントしてゼロ係数和を求める段階と、 前記ゼロ係数和により各副ブロックに対するゼロ係数正
規化値を求める段階と、 前記ゼロ係数和と予め設定される圧縮率に応じて各副ブ
ロックに対する遷移加重値を求める段階と、 前記複雑度正規化値、前記ゼロ係数正規化値および前記
遷移加重値を加算して前記圧縮整数を求める段階とを含
むことを特徴とする映像符号化方法。
1. An image to be coded after dividing an input image into sub-block units composed of a predetermined number of unit blocks and quantizing a divided video signal into a predetermined quantization interval determined by a compression integer. In the encoding method, a step of obtaining a normalized value of the complexity for each sub-block according to the complexity of the input image in the spatial domain, and a discrete cosine transform for the input image, and for each sub-block A step of counting zero coefficients whose discrete cosine transform coefficients are smaller than a predetermined number to obtain a zero coefficient sum; a step of obtaining a zero coefficient normalized value for each sub-block by the zero coefficient sum; and the zero coefficient sum being preset. Determining a transition weight value for each sub-block according to a compression rate, adding the complexity normalization value, the zero coefficient normalization value, and the transition weight value to obtain the transition weight value. Image encoding method which comprises a step of determining a contraction integer.
【請求項2】 前記複雑度正規化値の算出段階では複雑
度正規化値を求めることが輝度信号に対して行われるこ
とを特徴とする請求項1項記載の映像符号化方法。
2. The video encoding method according to claim 1, wherein the complexity normalization value is calculated for the luminance signal in the complexity normalization value calculating step.
【請求項3】 前記所定数は±1であることを特徴とす
る請求項1項記載の映像符号化方法。
3. The video encoding method according to claim 1, wherein the predetermined number is ± 1.
【請求項4】 前記ゼロ係数値の算出段階で前記離散余
弦変換係数が±1より小さい係数はYに対する係数であ
ることを特徴とする請求項3項記載の映像符号化方法。
4. The video encoding method according to claim 3, wherein the coefficient for which the discrete cosine transform coefficient is smaller than ± 1 in the step of calculating the zero coefficient value is a coefficient for Y.
【請求項5】 前記副ブロックはマクロブロックである
ことを特徴とする請求項1項記載の映像符号化方法。
5. The video encoding method according to claim 1, wherein the sub-block is a macro block.
【請求項6】 前記複雑度正規化値の算出段階は、 マクロブロックの各単位ブロックに対し平均複雑度を求
める段階と、 前記単位ブロックの平均複雑度に応じてマクロブロック
の平均複雑度を求める段階と、 単位ブロックの平均複雑度と実際の画素値の差を算出し
て単位ブロックの自乗平均値を求める段階と、 マクロブロックで各単位ブロックに対して前記自乗平均
値のうちの最小値に1を加えマクロブロックの最小自乗
平均値を求める段階と、 各マクロブロックに対して前記マクロブロックの最小自
乗平均値と平均複雑度に応じて正規化して各マクロブロ
ックの複雑度正規化値を求める段階とからなることを特
徴とする請求項5項記載の映像符号化方法。
6. The step of calculating the normalized complexity value is a step of obtaining an average complexity of each unit block of the macroblock, and an average complexity of the macroblock is obtained according to the average complexity of the unit block. The step of calculating the difference between the average complexity of the unit block and the actual pixel value to obtain the root mean square value of the unit block, and the macro block to the minimum value of the root mean square value for each unit block. 1 is added to obtain the least square mean value of the macroblocks, and each macroblock is normalized according to the least square mean value of the macroblocks and the average complexity to obtain the complexity normalization value of each macroblock. The video encoding method according to claim 5, further comprising the steps of:
【請求項7】 前記ゼロ係数正規化値の算出段階は、 前記マクロブロック当たりゼロ係数和を全部合算して全
体ゼロ係数和を求める段階と、 前記全体ゼロ係数和に応じてマクロブロックの平均ゼロ
係数和を求める段階と、 前記マクロブロックの平均ゼロ係数和と前記マクロブロ
ックのゼロ係数和の差に応じてマクロブロックのゼロ係
数自乗平均値を求める段階と、 前記マクロブロックのゼロ係数自乗平均値とゼロ係数和
に応じて正規化して、各マクロブロックのゼロ係数正規
化値を求める段階とからなることを特徴とする請求項5
項記載の映像符号化方法。
7. The step of calculating the zero coefficient normalization value includes a step of summing all zero coefficient sums per macroblock to obtain a total zero coefficient sum, and an average zero of macroblocks according to the total zero coefficient sum. A step of obtaining a coefficient sum, a step of obtaining a zero coefficient root mean square value of the macroblock according to a difference between the average zero coefficient sum of the macroblock and the zero coefficient sum of the macroblock, and a zero coefficient root mean square value of the macroblock And normalizing according to the sum of zero coefficients to obtain a zero coefficient normalized value of each macroblock.
The video encoding method described in the item.
【請求項8】 前記遷移加重値算出段階は、 前記マクロブロックのゼロ係数和を全部合算して全体ゼ
ロ係数和を求める段階と、 前記全体ゼロ係数和によりマクロブロックの平均ゼロ係
数和を求める段階と、 前記マクロブロックの平均ゼロ係数和と予め定められた
圧縮率により各マクロブロックに対する遷移加重値を求
める段階とからなることを特徴とする請求項5項記載の
映像符号化方法。
8. The transition weight value calculating step includes a step of summing all zero coefficient sums of the macroblocks to obtain a total zero coefficient sum, and a step of obtaining an average zero coefficient sum of the macroblocks by the total zero coefficient sum. 6. The video encoding method according to claim 5, further comprising: determining a transition weighting value for each macroblock based on a sum of average zero coefficients of the macroblocks and a predetermined compression rate.
【請求項9】 所定数の単位ブロックで構成された副ブ
ロック単位に分割される入力画像に対して時間領域のデ
ータである副ブロックを周波数領域のデータである離散
余弦変換係数に変換する離散余弦変換部と、前記離散余
弦変換係数を圧縮整数により決定される所定の量子化間
隔で量子化する量子化部と、量子化された係数を可変長
符号化する可変長符号化部とを具備する映像符号化装置
において、 前記副ブロック単位で入力画像のピクセル値により複雑
度を計算する複雑度計算部と、 各副ブロックに対して前記複雑度を正規化する複雑度正
規化部と、 前記離散余弦変換部で変換された離散余弦変換係数で前
記副ブロック単位で所定範囲内にある小さいゼロ係数を
カウントするゼロ係数カウント部と、 各副ブロックに対して前記ゼロ係数を正規化するゼロ係
数正規化部と、 前記ゼロ係数と予め設定される圧縮率により遷移加重値
を計算する加重値計算部と、 前記複雑度正規化値、前記ゼロ係数正規化値および前記
遷移加重値を加えて前記圧縮整数を発生して前記量子化
部に出力する圧縮整数発生部とを含むことを特徴とする
映像符号化装置。
9. A discrete cosine for converting a sub-block, which is data in the time domain, into a discrete cosine transform coefficient, which is data in the frequency domain, with respect to an input image divided into sub-block units composed of a predetermined number of unit blocks. A transforming unit, a quantizing unit for quantizing the discrete cosine transform coefficient at a predetermined quantizing interval determined by a compressed integer, and a variable length coding unit for variable length coding the quantized coefficient. In the video encoding device, a complexity calculation unit that calculates a complexity by a pixel value of an input image in units of the sub-blocks, a complexity normalization unit that normalizes the complexity for each sub-block, and the discrete A zero coefficient counting unit that counts small zero coefficients within a predetermined range in the sub-block unit by the discrete cosine transform coefficient converted by the cosine conversion unit, and the zero coefficient for each sub-block. A zero coefficient normalizing unit for normalizing, a weight value calculating unit for calculating a transition weight value by the zero coefficient and a preset compression ratio, the complexity normalization value, the zero coefficient normalizing value and the transition weight And a compressed integer generator that adds a value to generate the compressed integer and outputs the compressed integer to the quantizer.
【請求項10】 前記副ブロックはマクロブロック単位
であることを特徴とする請求項9項記載の映像符号化装
置。
10. The video encoding apparatus according to claim 9, wherein the sub-block is a macro block unit.
【請求項11】 前記ゼロ係数カウント部で所定数は±
1であることを特徴とする請求項9項記載の映像符号化
装置。
11. The predetermined number in the zero coefficient counting unit is ±
The video encoding device according to claim 9, wherein the video encoding device is 1.
JP26008594A 1994-01-12 1994-10-25 Video coding method and apparatus thereof Expired - Lifetime JP2675529B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019940000411A KR0183688B1 (en) 1994-01-12 1994-01-12 Image encoding method and device
KR94-411 1994-01-12

Publications (2)

Publication Number Publication Date
JPH07222154A JPH07222154A (en) 1995-08-18
JP2675529B2 true JP2675529B2 (en) 1997-11-12

Family

ID=19375521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26008594A Expired - Lifetime JP2675529B2 (en) 1994-01-12 1994-10-25 Video coding method and apparatus thereof

Country Status (8)

Country Link
US (1) US5629779A (en)
EP (1) EP0663778B1 (en)
JP (1) JP2675529B2 (en)
KR (1) KR0183688B1 (en)
CN (1) CN1078428C (en)
CA (1) CA2118189C (en)
DE (1) DE69434018T2 (en)
RU (1) RU2127962C1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155259C (en) * 1996-11-26 2004-06-23 松下电器产业株式会社 Bit rate variable coding device and method, coding program recording medium
JP3432392B2 (en) * 1997-04-07 2003-08-04 三菱電機株式会社 Image encoding device, image encoding method, and image storage / transmission device
JP3104868B2 (en) * 1997-11-25 2000-10-30 富士ゼロックス株式会社 Image processing device
GB2333656B (en) * 1998-01-22 2002-08-14 British Broadcasting Corp Compressed signals
GB2333657B (en) 1998-01-22 2002-08-21 Snell & Wilcox Ltd Video signal compression
GB2335104B (en) 1998-03-06 2002-01-30 British Broadcasting Corp Cascading of up conversion and down conversion
GB2337389B (en) 1998-05-15 2002-05-29 Snell & Wilcox Ltd Video signal processing
GB9822094D0 (en) 1998-10-09 1998-12-02 Snell & Wilcox Ltd Improvements in data compression
GB9822087D0 (en) * 1998-10-09 1998-12-02 Snell & Wilcox Ltd Improvements in data compression
GB9822092D0 (en) * 1998-10-09 1998-12-02 Snell & Wilcox Ltd Analysis of compression decoded sequences
GB9824061D0 (en) 1998-11-03 1998-12-30 Snell & Wilcox Ltd Film sequence detection (nt4)
US6700623B1 (en) 1998-12-10 2004-03-02 Snell & Wilcox Limited Video signal processing using triplets of pixels
US6850565B2 (en) * 1998-12-18 2005-02-01 Intel Corporation Real time bit rate control system
JP3603000B2 (en) 2000-02-01 2004-12-15 カネボウ株式会社 Huffman encoding apparatus, Huffman encoding method, and recording medium recording Huffman encoding processing program
GB2361126B (en) * 2000-04-05 2004-04-21 Snell & Wilcox Ltd Spatial video processing
US6839468B1 (en) * 2000-06-28 2005-01-04 International Business Machines Corporation Scaling of multi-dimensional data in a hybrid domain
US6879652B1 (en) * 2000-07-14 2005-04-12 Nielsen Media Research, Inc. Method for encoding an input signal
KR100922941B1 (en) * 2002-11-04 2009-10-22 삼성전자주식회사 Appratus and method of an energy-based adaptive DCT/IDCT
US7940843B1 (en) * 2002-12-16 2011-05-10 Apple Inc. Method of implementing improved rate control for a multimedia compression and encoding system
KR100943606B1 (en) * 2006-03-30 2010-02-24 삼성전자주식회사 Apparatus and method for controlling a quantization in digital communication system
US7995649B2 (en) 2006-04-07 2011-08-09 Microsoft Corporation Quantization adjustment based on texture level
US8503536B2 (en) 2006-04-07 2013-08-06 Microsoft Corporation Quantization adjustments for DC shift artifacts
US8711925B2 (en) 2006-05-05 2014-04-29 Microsoft Corporation Flexible quantization
TW200828983A (en) * 2006-12-27 2008-07-01 Altek Corp Method of eliminating image noise
WO2008111511A1 (en) 2007-03-14 2008-09-18 Nippon Telegraph And Telephone Corporation Code quantity estimating method and device, their program, and recording medium
EP2120463B1 (en) 2007-03-14 2014-12-10 Nippon Telegraph and Telephone Corporation Encoding bit rate control method, device, program, and recording medium containing the program
ES2676119T3 (en) 2007-03-14 2018-07-16 Nippon Telegraph And Telephone Corporation Quantification control method, device, program and recording medium containing the program
KR101083379B1 (en) 2007-03-14 2011-11-14 니폰덴신뎅와 가부시키가이샤 Motion vector searching method and device, and record medium having recorded the program therefor
US8498335B2 (en) 2007-03-26 2013-07-30 Microsoft Corporation Adaptive deadzone size adjustment in quantization
US8243797B2 (en) 2007-03-30 2012-08-14 Microsoft Corporation Regions of interest for quality adjustments
US8442337B2 (en) 2007-04-18 2013-05-14 Microsoft Corporation Encoding adjustments for animation content
US8428133B2 (en) 2007-06-15 2013-04-23 Qualcomm Incorporated Adaptive coding of video block prediction mode
US8571104B2 (en) 2007-06-15 2013-10-29 Qualcomm, Incorporated Adaptive coefficient scanning in video coding
US8542730B2 (en) 2008-02-22 2013-09-24 Qualcomm, Incorporated Fast macroblock delta QP decision
US8897359B2 (en) 2008-06-03 2014-11-25 Microsoft Corporation Adaptive quantization for enhancement layer video coding
US20110310961A1 (en) * 2010-06-17 2011-12-22 Microsoft Corporation Video rate control based on transform-coefficients histogram
JP5875236B2 (en) * 2011-03-09 2016-03-02 キヤノン株式会社 Image encoding device, image encoding method and program, image decoding device, image decoding method and program
US10306229B2 (en) 2015-01-26 2019-05-28 Qualcomm Incorporated Enhanced multiple transforms for prediction residual
US10623774B2 (en) 2016-03-22 2020-04-14 Qualcomm Incorporated Constrained block-level optimization and signaling for video coding tools
CN109102799B (en) * 2018-08-17 2023-01-24 信阳师范学院 Voice endpoint detection method based on frequency domain coefficient logarithm sum
US11323748B2 (en) 2018-12-19 2022-05-03 Qualcomm Incorporated Tree-based transform unit (TU) partition for video coding

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170264A (en) * 1988-12-10 1992-12-08 Fuji Photo Film Co., Ltd. Compression coding device and expansion decoding device for a picture signal
US5051840A (en) * 1988-12-14 1991-09-24 Fuji Photo Film Co., Ltd. Device for coding a picture signal by compression
US5230038A (en) * 1989-01-27 1993-07-20 Fielder Louis D Low bit rate transform coder, decoder, and encoder/decoder for high-quality audio
US5086488A (en) * 1989-08-19 1992-02-04 Mitsubishi Denki Kabushiki Kaisha Transform coding apparatus
DE69132268T2 (en) * 1990-09-29 2000-10-26 Victor Company Of Japan, Ltd. Image signal encoder / decoder with adaptive quantization
GB2252002B (en) * 1991-01-11 1995-01-04 Sony Broadcast & Communication Compression of video signals
US5260808A (en) * 1991-04-23 1993-11-09 Canon Kabushiki Kaisha Image processing apparatus
JP3109854B2 (en) * 1991-04-23 2000-11-20 キヤノン株式会社 Image coding method and apparatus
JP3144824B2 (en) * 1991-05-08 2001-03-12 株式会社リコー Image playback device
KR0176448B1 (en) * 1991-07-19 1999-05-01 강진구 Image coding method and apparatus
US5168375A (en) * 1991-09-18 1992-12-01 Polaroid Corporation Image reconstruction by use of discrete cosine and related transforms
JPH0595536A (en) * 1991-10-01 1993-04-16 Toshiba Corp High efficiency coded signal processor
KR0141824B1 (en) * 1991-12-23 1998-07-15 구자홍 Image compressing method & apparatus of variable length
JP3360844B2 (en) * 1992-02-04 2003-01-07 ソニー株式会社 Digital image signal transmission apparatus and framing method
US5253055A (en) * 1992-07-02 1993-10-12 At&T Bell Laboratories Efficient frequency scalable video encoding with coefficient selection
US5444490A (en) * 1992-07-07 1995-08-22 U.S. Philips Corporation Television system for transmitting pictures in a digital form
US5377051A (en) * 1993-01-13 1994-12-27 Hitachi America, Ltd. Digital video recorder compatible receiver with trick play image enhancement
JPH06217274A (en) * 1993-01-18 1994-08-05 Matsushita Electric Ind Co Ltd Image signal compressing device
US5408274A (en) * 1993-03-11 1995-04-18 The Regents Of The University Of California Method and apparatus for compositing compressed video data

Also Published As

Publication number Publication date
EP0663778B1 (en) 2004-09-22
CA2118189C (en) 1999-07-20
JPH07222154A (en) 1995-08-18
US5629779A (en) 1997-05-13
DE69434018T2 (en) 2005-01-20
CA2118189A1 (en) 1995-07-13
EP0663778A3 (en) 1997-05-02
CN1106599A (en) 1995-08-09
KR950024581A (en) 1995-08-21
RU94040147A (en) 1996-08-27
CN1078428C (en) 2002-01-23
KR0183688B1 (en) 1999-05-01
EP0663778A2 (en) 1995-07-19
RU2127962C1 (en) 1999-03-20
DE69434018D1 (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP2675529B2 (en) Video coding method and apparatus thereof
JP5107495B2 (en) Quality-based image compression
US5818529A (en) Variable length coding of video with controlled deletion of codewords
JP3441132B2 (en) Moving picture compression apparatus and method
US5764806A (en) Image encoding method and apparatus
KR0150955B1 (en) Compressive and extensive method of an image for bit-fixing and the apparatus thereof
WO1991014295A1 (en) Digital image coding using a random scanning of image frames
JPH0723422A (en) Video signal band compression equipment of digital vtr
JPH0595536A (en) High efficiency coded signal processor
JPH0746594A (en) Encoding method and its device
JPH05219385A (en) Picture compression expansion method and device
KR20040015477A (en) Motion Estimation Method and Apparatus Which Refer to Discret Cosine Transform Coefficients
WO2002080574A1 (en) Image processing device, image processing method, image processing program, and recording medium
JPH10108184A (en) Image data processing unit and its method
JP3302091B2 (en) Encoding device and encoding method
JPH07203430A (en) Image coding device
EP1484925A2 (en) Method and device for compressing image data
JPH0410788A (en) Method for controlling coding variable of image signal
KR100234239B1 (en) Method and apparatus of quantizing for decreasing blocking effect
JP2776425B2 (en) Cell loss compensation image decoding method
JPH08256337A (en) Moving image coder
JPH0738894A (en) Image encoding device
KR0141297B1 (en) Method for nonlinearly quantizing a video signal
JPH0583560A (en) Image data encoder
JP3279927B2 (en) Image encoding method and apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970610

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 13