JP2674563B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP2674563B2
JP2674563B2 JP7111054A JP11105495A JP2674563B2 JP 2674563 B2 JP2674563 B2 JP 2674563B2 JP 7111054 A JP7111054 A JP 7111054A JP 11105495 A JP11105495 A JP 11105495A JP 2674563 B2 JP2674563 B2 JP 2674563B2
Authority
JP
Japan
Prior art keywords
solid
imaging device
state imaging
metal
shielding film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7111054A
Other languages
Japanese (ja)
Other versions
JPH08288486A (en
Inventor
英二 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7111054A priority Critical patent/JP2674563B2/en
Publication of JPH08288486A publication Critical patent/JPH08288486A/en
Application granted granted Critical
Publication of JP2674563B2 publication Critical patent/JP2674563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電荷結合素子(CC
D)などを用いた固体撮像装置に関し、特に固体撮像素
子の温度上昇を抑制して画質の改善を図った固体撮像装
置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a charge coupled device (CC).
The present invention relates to a solid-state image pickup device using D) or the like, and more particularly to a solid-state image pickup device that improves image quality by suppressing a temperature rise of a solid-state image pickup element.

【0002】[0002]

【従来の技術】近年、固体撮像素子では、プロセス技術
の発達により、また一方で高解像度のニーズに応えるた
めに高画素化が進んでいる。画素数が増えたことによ
り、動作周波数が上がり、それにつれて、素子部の発熱
量が増加しシリコン基板上に固体撮像素子を形成したチ
ップ表面の温度が上がる。
2. Description of the Related Art In recent years, in the solid-state image pickup device, the number of pixels has been increased to meet the needs of high resolution due to the development of process technology. Due to the increase in the number of pixels, the operating frequency rises, and accordingly, the amount of heat generated in the element portion increases and the temperature of the chip surface on which the solid-state imaging device is formed on the silicon substrate rises.

【0003】その結果、その発熱の影響が無視できない
ようになってきており、とりわけ、温度上昇に伴い、特
定の画素の暗電流が突出して増加し、暗状態で前記の特
定の画素部が白く見え、そのコントラストが温度上昇に
依存して増加する欠陥が顕著になる。この欠陥は、暗電
流が10度で約2倍に増加するため、画質を著しく劣化
させる。
As a result, the influence of the heat generation has become non-negligible, and, in particular, the dark current of a specific pixel increases remarkably as the temperature rises, and the specific pixel portion becomes white in the dark state. The defects that become visible and whose contrast increases depending on the temperature increase become remarkable. This defect significantly deteriorates the image quality because the dark current increases about twice at 10 degrees.

【0004】また、暗電流の増加はダイナミックレンジ
を狭める原因にもなっている。実際の固体撮像素子自体
の自己発熱は、0.3から0.5W程度あり、これに伴
って周囲温度に対して20度前後の温度上昇が生じ、そ
の結果、画像情報のS/Nの低下、ダイナミックレンジ
の劣化を招いていた。
Further, the increase in dark current also causes the dynamic range to be narrowed. The actual self-heating of the solid-state imaging device itself is about 0.3 to 0.5 W, which causes a temperature rise of about 20 degrees with respect to the ambient temperature, resulting in a decrease in S / N of image information. , The dynamic range was deteriorated.

【0005】その解決策として、電子冷却素子等を用い
てチップを冷却する方法がある。チップの温度を下げる
と、暗電流ならびに熱雑音を減らすことが可能となる。
図3(a)は、この種冷却手段を備えた従来の固体撮像
装置の平面図であり、図3(b)は、図3(a)のC−
D線の断面図である。従来技術では、図3に示されるよ
うに、電子冷却素子3の冷却側の電極3a上に金属板1
3を介して固体撮像素子1をその受光領域14を上にし
て搭載し、電子冷却素子の放熱側の電極3bを放熱板1
5に接触させていた。この構成により、固体撮像素子自
体が発生する熱を電子冷却素子3に吸収させる一方、電
子冷却素子の発生する熱は、放熱板15に放出して、チ
ップの温度上昇を防ぐ。なお、この種の冷却手段を備え
た固体撮像装置は、例えば特開平4−123462号公
報等により公知となっている。
As a solution to this problem, there is a method of cooling the chip using an electronic cooling element or the like. Reducing the temperature of the chip can reduce dark current and thermal noise.
FIG. 3 (a) is a plan view of a conventional solid-state imaging device provided with this type of cooling means, and FIG. 3 (b) is C- of FIG. 3 (a).
It is sectional drawing of the D line. In the conventional technique, as shown in FIG. 3, the metal plate 1 is provided on the cooling side electrode 3a of the electronic cooling element 3.
The solid-state image pickup device 1 is mounted with the light receiving region 14 facing upward via 3 and the electrode 3b on the heat radiation side of the electronic cooling device is mounted on the heat radiation plate 1.
5 was in contact. With this configuration, the heat generated by the solid-state imaging element itself is absorbed by the electronic cooling element 3, while the heat generated by the electronic cooling element is released to the heat dissipation plate 15 to prevent the temperature of the chip from rising. A solid-state imaging device equipped with this type of cooling means is known, for example, from Japanese Patent Laid-Open No. 4-123462.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の固体撮像装置では、チップの裏面からの冷却である
ため、チップ表面の発熱源の温度上昇を抑えるために
は、チップ全体を冷却しなければならない。すなわち、
厚さ400〜700μmにおよぶシリコン基板の裏面か
ら加えた冷却熱がシリコンの熱伝導による効率でシリコ
ン基板全体を冷却しながら、チップの表面まで到達し
て、表面に形成された固体電子素子の発熱部を冷却する
ものである。
However, in the above-mentioned conventional solid-state image pickup device, since the cooling is performed from the back surface of the chip, the entire chip must be cooled in order to suppress the temperature rise of the heat source on the chip surface. I won't. That is,
The cooling heat applied from the back surface of the silicon substrate having a thickness of 400 to 700 μm reaches the front surface of the chip while cooling the entire silicon substrate with the efficiency of heat conduction of silicon, and heat generation of the solid-state electronic device formed on the front surface. This is to cool the part.

【0007】そのため、冷却しなければならない全体の
熱容量が増加するので、素子の発熱部の温度上昇を抑え
るための電子冷却素子が大規模化しまたその消費電力が
増加する。また、シリコンの熱伝導率が金属にくらべ小
さいため、チップ全体の冷却が飽和に達するまでに時間
がかかるという欠点があった。
As a result, the overall heat capacity that must be cooled increases, and the electronic cooling element for suppressing the temperature rise of the heat generating portion of the element becomes large in size and its power consumption also increases. Further, since the thermal conductivity of silicon is lower than that of metal, it takes a long time to cool the entire chip to reach saturation.

【0008】本発明は、上記課題を解決するものであっ
て、固体撮像素子の温度上昇を低消費電力、短時間で抑
制し、良好な画質を得ることのできる固体撮像装置を提
供することを目的とする。
The present invention is to solve the above problems, and provides a solid-state imaging device capable of suppressing the temperature rise of the solid-state imaging device with low power consumption in a short time and obtaining good image quality. To aim.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明によれば、固体撮像素子の表面に形成された
金属遮光膜が電子冷却素子により直接的に冷却されてい
ることを特徴とする固体撮像装置、が提供される。すな
わち、より具体的には、固体撮像素子の表面に形成され
た金属遮光膜が電子冷却素子の電極または電子冷却素子
が設けられた金属基板に接続されていることを特徴とす
る固体撮像装置、が提供される。
To achieve the above object, according to the present invention, the metal light-shielding film formed on the surface of the solid-state image pickup device is directly cooled by the electronic cooling device. And a solid-state image pickup device. That is, more specifically, a solid-state imaging device characterized in that the metal light-shielding film formed on the surface of the solid-state imaging device is connected to an electrode of the electronic cooling element or a metal substrate provided with the electronic cooling element, Will be provided.

【0010】[0010]

【作用】本発明は、上記の構成により、熱伝導率が大き
い金属遮光膜が冷却され、そしてこの金属遮光膜に近接
して、転送電極などの配線や半導体活性層が存在してい
るために、発熱体を効果的にかつ短時間で冷却すること
ができるようになる。その結果、低消費電力で固体撮像
素子の温度上昇を抑制することができるようになり、ダ
イナミックレンジが広く、良好な画質の固体撮像装置を
小規模の冷却手段により実現することが可能になる。
According to the present invention, since the metal light-shielding film having a large thermal conductivity is cooled by the above-mentioned structure, and the wiring such as the transfer electrode and the semiconductor active layer are present in the vicinity of the metal light-shielding film. Therefore, the heating element can be cooled effectively and in a short time. As a result, it is possible to suppress the temperature rise of the solid-state imaging device with low power consumption, and it is possible to realize a solid-state imaging device having a wide dynamic range and good image quality with a small-scale cooling means.

【0011】[0011]

【実施例】次に、本発明の実施例について、図面を参照
して説明する。図1(a)は、本発明の第1の実施例を
示す平面図であり、図1(b)はそのA−B線の断面図
である。図1(a)に示されるように、固体撮像素子1
の表面には、受光開口部6を有する金属遮光膜4が形成
されており、金属遮光膜4の端部2個所にはそれぞれコ
ンタクト部5が形成されている。このコンタクト部5は
金属ワイヤ2を介して電子冷却素子(図示なし)の冷却
側の電極に接続されている。
Next, embodiments of the present invention will be described with reference to the drawings. 1A is a plan view showing a first embodiment of the present invention, and FIG. 1B is a sectional view taken along the line AB. As shown in FIG. 1A, the solid-state imaging device 1
A metal light-shielding film 4 having a light receiving opening 6 is formed on the surface of, and contact portions 5 are formed at two end portions of the metal light-shielding film 4. The contact portion 5 is connected to the cooling-side electrode of the electronic cooling element (not shown) via the metal wire 2.

【0012】図1(b)に示されるように、金属遮光膜
4に開設された受光開口部6の下には、光電変換領域と
なるn型半導体領域9aが形成されており、このn型半
導体領域9aに隣接して、この光電変換領域で生成され
た信号電荷を転送するためのn型半導体領域9bが形成
されている。これらの2種のn型半導体領域9a、9b
は、両者の間を結合するための領域(電荷読み出し領
域)を除いて素子分離用のp+ 型半導体領域10により
囲まれている。また、光電変換領域であるn型半導体領
域9a上は、この領域を埋め込み型とするためにp+
半導体領域10により覆われている。
As shown in FIG. 1B, an n-type semiconductor region 9a serving as a photoelectric conversion region is formed below the light-receiving opening 6 formed in the metal light-shielding film 4, and this n-type semiconductor region 9a is formed. Adjacent to the semiconductor region 9a, an n-type semiconductor region 9b for transferring the signal charges generated in this photoelectric conversion region is formed. These two types of n-type semiconductor regions 9a and 9b
Is surrounded by a p + type semiconductor region 10 for element isolation except a region (charge reading region) for coupling the two. Further, the n-type semiconductor region 9a, which is a photoelectric conversion region, is covered with the p + -type semiconductor region 10 in order to make this region a buried type.

【0013】これら各半導体領域は、n型シリコン基板
12上に形成されたp型半導体領域11の表面領域内に
形成されている。半導体基板上には、シリコン酸化膜8
に囲まれて第1の転送電極7aと第2の転送電極7bが
形成されている。これらの転送電極により、n型半導体
領域9aにて生成された信号電荷は、電荷転送領域であ
るn型半導体領域9bに読み出された後、この領域を紙
面の垂直方向に転送される。
Each of these semiconductor regions is formed in the surface region of the p-type semiconductor region 11 formed on the n-type silicon substrate 12. A silicon oxide film 8 is formed on the semiconductor substrate.
A first transfer electrode 7a and a second transfer electrode 7b are formed surrounded by. The signal charges generated in the n-type semiconductor region 9a by these transfer electrodes are read out to the n-type semiconductor region 9b which is a charge transfer region, and then transferred in the direction perpendicular to the paper surface.

【0014】上記のように構成された固体撮像装置にお
いて、電子冷却素子を冷却すると、金属ワイヤ2は金属
の熱伝導によって冷却される。金属ワイヤ2の冷却によ
り、金属遮光膜4はコンタクト部5から徐々に冷却さ
れ、金属中の自由電子により冷却熱が金属遮光膜4全体
に伝播し、均一温度に飽和冷却される。
In the solid-state image pickup device constructed as described above, when the electronic cooling element is cooled, the metal wire 2 is cooled by heat conduction of the metal. By cooling the metal wire 2, the metal light-shielding film 4 is gradually cooled from the contact portion 5, and the cooling heat is propagated to the whole metal light-shielding film 4 by free electrons in the metal, and is saturated and cooled to a uniform temperature.

【0015】そして、均一温度に冷却された金属遮光膜
4からの冷却熱が、シリコン酸化膜8を介して、第1、
第2の転送電極および拡散層へ伝わり、これらの転送電
極および光電変換領域、電荷転送領域などの半導体領域
を冷却する。而して、図1(b)に示されるように、半
導体基板裏面から基板表面までの距離は400〜700
μm程度あるのに対し、金属遮光膜4から転送電極7
a、7bまでの距離は1μm程度であり、基板表面の拡
散層までの距離は2μm程度である。よって、本実施例
では従来例に比べ、熱抵抗が小さく、冷却効果が高くな
り、格段に低い消費電力により温度上昇を抑えることが
可能になる。また、冷却手段の小規模化も可能になる。
Then, the cooling heat from the metal light-shielding film 4 cooled to a uniform temperature is transmitted through the silicon oxide film 8 to the first,
It is transmitted to the second transfer electrode and the diffusion layer, and cools the transfer electrode and the semiconductor regions such as the photoelectric conversion region and the charge transfer region. Thus, as shown in FIG. 1B, the distance from the back surface of the semiconductor substrate to the front surface of the substrate is 400 to 700.
Although the thickness is about μm, the metal light-shielding film 4 to the transfer electrode 7
The distance to a and 7b is about 1 μm, and the distance to the diffusion layer on the substrate surface is about 2 μm. Therefore, in the present embodiment, the thermal resistance is small, the cooling effect is high, and the temperature rise can be suppressed by the remarkably low power consumption as compared with the conventional example. Further, the cooling means can be downsized.

【0016】図2は、本発明の第2の実施例を示す斜視
図である。同図に示されるように、本実施例において
は、固体撮像素子1上の金属遮光膜と、電子冷却素子3
の冷却側電極との間がそれぞれ3本ずつの金属ワイヤ2
により接続されている。このように電子冷却素子と金属
遮光膜間を接続する金属ワイヤの本数を増やしたことに
より、電子冷却素子−金属遮光膜間の熱抵抗が第1の実
施例の場合よりも低くなり、より効率的な冷却を行うこ
とが可能になる。
FIG. 2 is a perspective view showing a second embodiment of the present invention. As shown in the figure, in this embodiment, the metal light-shielding film on the solid-state image sensor 1 and the electronic cooling element 3 are used.
Three metal wires each between the cooling side electrode and
Connected by By increasing the number of metal wires connecting the electronic cooling element and the metal light-shielding film in this manner, the thermal resistance between the electronic cooling element and the metal light-shielding film becomes lower than that in the first embodiment, and the efficiency is improved. It becomes possible to perform effective cooling.

【0017】図3は、本発明の第3の実施例を示す斜視
図である。同図に示されるように、本実施例において
は、固体撮像素子1上の金属遮光膜の両側に、電子冷却
素子3の冷却側電極が直接接続されている。このように
構成したことにより、電子冷却素子−金属遮光膜間の熱
抵抗がさらに低くなり、一層効率的な冷却を行うことが
可能になる。
FIG. 3 is a perspective view showing a third embodiment of the present invention. As shown in the figure, in this embodiment, the cooling-side electrodes of the electronic cooling element 3 are directly connected to both sides of the metal light-shielding film on the solid-state imaging device 1. With this configuration, the thermal resistance between the electronic cooling element and the metal light-shielding film is further reduced, and more efficient cooling can be performed.

【0018】以上の実施例では、電子冷却素子の冷却側
電極に金属ワイヤを接続したりあるいはこの電極を金属
遮光膜に直接接続したりしていたが、これに代えて、金
属基板上に絶縁膜を介して複数の冷却側電極を形成しそ
の上に冷却素子を設けたものを作製し、この金属基板の
裏面をワイヤを介するなどして金属遮光膜に接続するよ
うにしてもよい。また、上記の実施例と、従来例とを組
み合わせて、他の電子冷却素子上に固体撮像素子を搭載
するようにしてもよい。
In the above embodiments, the metal wire is connected to the cooling side electrode of the electronic cooling element or the electrode is directly connected to the metal light-shielding film, but instead of this, insulation is provided on the metal substrate. It is also possible to form a plurality of electrodes on the cooling side via a film and to provide a cooling element on the electrodes, and to connect the back surface of this metal substrate to the metal light-shielding film via a wire or the like. Further, the solid-state imaging device may be mounted on another electronic cooling device by combining the above-described embodiment and the conventional example.

【0019】[0019]

【発明の効果】以上説明したように、本発明の固体撮像
装置は、固体撮像素子の表面に設けられた金属遮光膜を
直接的に電子冷却素子により冷却するものであるので、
発熱体までの距離を従来方式に比較して格段に近付ける
ことができ、短時間で効率よく冷却することが可能にな
る。したがって、本発明によれば、低消費電力で小規模
な冷却手段により、固体撮像素子の温度上昇を抑制する
ことが可能になり、良好な撮像品質の固体撮像装置を実
現することが可能になる。
As described above, in the solid-state image pickup device of the present invention, the metal light-shielding film provided on the surface of the solid-state image pickup element is directly cooled by the electronic cooling element.
The distance to the heating element can be made much closer than in the conventional method, and efficient cooling can be achieved in a short time. Therefore, according to the present invention, it is possible to suppress the temperature rise of the solid-state image pickup element by a small-scale cooling means with low power consumption, and it is possible to realize a solid-state image pickup apparatus with good image pickup quality. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施例を示す平面図とそのA
−B線の断面図。
FIG. 1 is a plan view showing a first embodiment of the present invention and its A.
-B sectional drawing of line.

【図2】 本発明の第2の実施例を示す斜視図。FIG. 2 is a perspective view showing a second embodiment of the present invention.

【図3】 本発明の第3の実施例を示す斜視図。FIG. 3 is a perspective view showing a third embodiment of the present invention.

【図4】 従来例の平面図とそのC−D線の断面図。FIG. 4 is a plan view of a conventional example and a sectional view taken along line C-D thereof.

【符号の説明】[Explanation of symbols]

1 固体撮像素子 2 金属ワイヤ 3 電子冷却素子 4 金属遮光膜 5 コンタクト部 6 受光開口部 7a 第1の転送電極 7b 第2の転送電極 8 シリコン酸化膜 9a n型半導体領域(光電変換領域) 9b n型半導体領域(電荷転送領域) 10 p+ 型半導体領域 11 p型半導体領域 12 n型シリコン基板 13 金属板 14 受光領域 15 放熱板DESCRIPTION OF SYMBOLS 1 Solid-state image sensor 2 Metal wire 3 Electronic cooling element 4 Metal light-shielding film 5 Contact part 6 Light-receiving opening 7a First transfer electrode 7b Second transfer electrode 8 Silicon oxide film 9a n-type semiconductor region (photoelectric conversion region) 9b n Type semiconductor region (charge transfer region) 10 p + type semiconductor region 11 p type semiconductor region 12 n type silicon substrate 13 metal plate 14 light receiving region 15 heat sink

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体撮像素子の表面に形成された金属遮
光膜が電子冷却素子により直接的に冷却されていること
を特徴とする固体撮像装置。
1. A solid-state image pickup device, wherein a metal light-shielding film formed on a surface of the solid-state image pickup element is directly cooled by an electronic cooling element.
【請求項2】 前記金属遮光膜が前記電子冷却素子の電
極または前記電子冷却素子が設けられた金属基板に接続
されていることを特徴とする請求項1記載の固体撮像装
置。
2. The solid-state imaging device according to claim 1, wherein the metal light-shielding film is connected to an electrode of the electronic cooling element or a metal substrate provided with the electronic cooling element.
【請求項3】 前記金属遮光膜が金属ワイヤを介して前
記電子冷却素子の電極または前記電子冷却素子が設けら
れた金属基板に接続されていることを特徴とする請求項
1記載の固体撮像装置。
3. The solid-state imaging device according to claim 1, wherein the metal light-shielding film is connected to an electrode of the electronic cooling element or a metal substrate provided with the electronic cooling element via a metal wire. .
【請求項4】 前記固体撮像素子が他の電子冷却素子上
に搭載されていることを特徴とする請求項1記載の固体
撮像装置。
4. The solid-state imaging device according to claim 1, wherein the solid-state imaging device is mounted on another electronic cooling device.
JP7111054A 1995-04-13 1995-04-13 Solid-state imaging device Expired - Lifetime JP2674563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7111054A JP2674563B2 (en) 1995-04-13 1995-04-13 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7111054A JP2674563B2 (en) 1995-04-13 1995-04-13 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH08288486A JPH08288486A (en) 1996-11-01
JP2674563B2 true JP2674563B2 (en) 1997-11-12

Family

ID=14551248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7111054A Expired - Lifetime JP2674563B2 (en) 1995-04-13 1995-04-13 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2674563B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339214A (en) * 2005-05-31 2006-12-14 Fujifilm Holdings Corp Solid-state image pickup device
KR100790290B1 (en) * 2006-12-20 2008-01-02 동부일렉트로닉스 주식회사 Method manufactruing of electronic cooling divice
KR20080062045A (en) * 2006-12-29 2008-07-03 동부일렉트로닉스 주식회사 Cmos device and method for manufacturing the same
US11456323B2 (en) 2017-10-20 2022-09-27 Sony Semiconductor Solutions Corporation Imaging unit
WO2021014849A1 (en) * 2019-07-24 2021-01-28 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device, electronic machine and solid-state imaging device production method

Also Published As

Publication number Publication date
JPH08288486A (en) 1996-11-01

Similar Documents

Publication Publication Date Title
TWI281347B (en) Semiconductor image sensor module, manufacturing method of semiconductor image sensor module, camera and manufacturing method of camera
US7920195B2 (en) Image sensing apparatus having an effective pixel area
TWI375320B (en) Image sensor and manufacturing method thereof
JP2008060356A (en) Photoelectric conversion device, and imaging system
JP2002237614A (en) Photoelectric conversion device and its drive method, and information processor
JPH01295449A (en) Cooling type solid-state image sensing device
JP2674563B2 (en) Solid-state imaging device
JP4911312B2 (en) Imaging device
JPH01303745A (en) Package for solid-state image sensing element
JP2013201568A (en) Imaging module
JPH04123462A (en) Semiconductor mounting device
US12035060B2 (en) Stacked image sensor
JP2713525B2 (en) Method for manufacturing solid-state imaging device
US20240079432A1 (en) Photodetector and electronic apparatus
US20230144963A1 (en) Stacked image sensor
JP3121424B2 (en) Semiconductor photodetector
JP3511463B2 (en) Solid-state imaging device and large-area solid-state imaging device
JPS60220965A (en) Solid-state image pickup device
JP2005175104A (en) Solid-state imaging device
JP2002124655A (en) System for converting electromagnetic waves into electrical signal, and image sensor
JPS6255961A (en) Solid state image pick-up device
JP2510149B2 (en) Solid-state imaging device
JPH0669482A (en) Solid-state image pickup
JPS5991777A (en) Solid-state image pickup device
JPH04254378A (en) Solid-state image pickup device