JP2674312B2 - Slab type solid state laser device - Google Patents

Slab type solid state laser device

Info

Publication number
JP2674312B2
JP2674312B2 JP32407190A JP32407190A JP2674312B2 JP 2674312 B2 JP2674312 B2 JP 2674312B2 JP 32407190 A JP32407190 A JP 32407190A JP 32407190 A JP32407190 A JP 32407190A JP 2674312 B2 JP2674312 B2 JP 2674312B2
Authority
JP
Japan
Prior art keywords
laser
medium
space
transmitting member
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32407190A
Other languages
Japanese (ja)
Other versions
JPH04214687A (en
Inventor
慎司 岩崎
義彦 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP32407190A priority Critical patent/JP2674312B2/en
Publication of JPH04214687A publication Critical patent/JPH04214687A/en
Application granted granted Critical
Publication of JP2674312B2 publication Critical patent/JP2674312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はスラブ形と通称される高出力用に適する固
体レーザ装置であって、レーザ光を全反射する1対の板
面と,熱絶縁された1対の側面と,レーザ光が出入りす
る1対の斜端面とをもつスラブ状体に形成されたレーザ
媒体が、励起光源,冷却媒体を収納する収納容器内に両
斜端面が冷却媒体と接するように全長にわたり収納,保
持されるとともに該レーザ媒体の両斜端面に対向する前
記収納容器の両開口部にそれぞれレーザ光透過部材が気
密に取り付けられ、該収納容器の外部に前記レーザ光透
過部材とそれぞれ対向して全反射ミラーおよび出力ミラ
ーが配置されてなるスラブ形固体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a solid-state laser device suitable for high output, which is commonly called a slab type, and includes a pair of plate surfaces that totally reflect laser light and a thermal insulation. A laser medium formed in a slab-like body having a pair of side surfaces that are formed and a pair of beveled surfaces through which laser light goes in and out is a cooling medium having both beveled surfaces inside a storage container that stores an excitation light source and a cooling medium. A laser beam transmitting member is hermetically attached to both openings of the storage container that are stored and held over the entire length so as to contact with the laser medium, and are opposed to both oblique end surfaces of the laser medium. The present invention relates to a slab type solid-state laser device in which a total reflection mirror and an output mirror are arranged so as to face a transmissive member.

〔従来の技術〕[Conventional technology]

周知のように、固定レーザ装置ではレーザ活性物質を
含むYAG等のレーザ媒体が一般にはロッド状に形成され
るが、その断面形状が例えば円形の場合はレーザ発振時
にその中心軸にピークをもつ内部温度分布とそれに基づ
く熱歪みが生じるので、媒体の断面を通るレーザ光の位
相にその半径方向の位置によってずれが発生して全体の
発振モードが乱れやすく、この乱れの程度が著しくなる
とレーザ発振作用が停まってしまうので、高出力レーザ
発振用にはあまり向かない。
As is well known, in a fixed laser device, a laser medium such as YAG containing a laser active substance is generally formed in a rod shape, but if the cross-sectional shape is circular, for example, an internal portion having a peak in its central axis during laser oscillation Since the temperature distribution and thermal strain caused by it occur, the phase of the laser beam passing through the cross section of the medium is displaced depending on its radial position and the entire oscillation mode is easily disturbed. Is not suitable for high power laser oscillation.

前述のスラブ形固体レーザ装置はこの点を解決するも
ので、レーザ媒体としてスラブ状つまり板状のものを用
い、この媒体内ではレーザ光をその1対の板面で全反射
させながらジグジグ状に進行させるので、媒体内に温度
分布があってもレーザ光は温度の異なる場所を通りなが
ら進むことになり、熱歪みがレーザ光の位相に与える影
響が全体として平均化されて、レーザの発振モードが温
度分布によって影響される度合いがずっと少なくなる。
従って、スラブ形固体レーザ装置は大出力で発振させる
ことが可能で、かつレーザビームの断面内の位相がよく
揃っているので光学的手段によってごく小さなスポット
に収束できる特長を有する。
The above-mentioned slab-type solid-state laser device solves this problem by using a slab-shaped or plate-shaped laser medium as a laser medium, and in this medium, a laser beam is made into a jig-jig shape while being totally reflected by the pair of plate surfaces. Even if there is a temperature distribution in the medium, the laser light travels while passing through locations with different temperatures, and the effects of thermal strain on the phase of the laser light are averaged as a whole, and the laser oscillation mode Is much less affected by the temperature distribution.
Therefore, the slab-type solid-state laser device has a feature that it can oscillate with a large output and can converge to a very small spot by optical means because the phase in the cross section of the laser beam is well aligned.

第9図に、先に本出願人により提案された(特願平1
−157561号)スラブ形固体レーザ装置の構造を示す。レ
ーザ媒体10は偏平な矩形断面をもつNd等のレーザ活性物
質を含むYAG等の結晶体やガラスであって、レーザ光L
はその1対の板面10aを全反射面として媒体10内を図の
左右方向に前述のようにジクザグ状に進み、例えばブル
ースター角として知られている所定の角度に形成された
両斜端面10cを介して出入りする。このスラブ形レーザ
媒体10は、このレーザ媒体10を光励起するための励起光
源2を収納するとともに、レーザ媒体10の内部熱歪みを
下げて高出力発振させるためにレーザ媒体を冷却する冷
却媒体C,例えばフロンが導入口1c,導出口1dを介して通
流する,密閉構造の収納容器1内に、斜端面10cが収納
容器1内で冷却媒体と接するよう、その全長にわたって
収納され、ここには特に図示しないが、レーザ媒体10の
幅方向の温度勾配を小さくするために側面10b(第10
図)を熱絶縁する熱絶縁体12を抱持する半円筒形の金属
製保持具13にねじ孔を設け、収納容器本体部1aの側壁を
気密に貫通するボルトまたはスタッドを用いて保持され
ている。熱絶縁体12は、例えば熱絶縁性の良好なシリコ
ンラバー系の接着剤を側面10bと保持具13との間に充填
して硬化させて形成するか、側面10bと保持具13との間
に接着される良熱絶縁性樹脂片として形成される。ま
た、収納容器本体部1aは、励起光源2からの励起ELを反
射する鏡面に仕上げられた楕円状の内面をもつ筒状に形
成され、この本体部1aの両端面が、内面を鏡面に仕上げ
られ前記励起光源2をOリング6bを介して開口部に気密
に支持する1対の蓋部1bにより閉鎖されている。この1
対の蓋部1bには、レーザ媒体10の斜端面10cと対向する
位置に開口が形成され、この開口がレーザ光を透過させ
る板状の透過部材4により、Oリング6aと押さえ部材3
とを用いて気密に閉鎖され、この透過部材4のそれぞれ
外側に透過部材と対向してそれぞれ全反射ミラー21およ
び出力ミラーとして部分反射ミラー22が配置され、レー
ザ媒体10と全反射ミラー21,部分反射ミラー22とでレー
ザ共振系が構成されている。
FIG. 9 shows a proposal previously made by the present applicant (Japanese Patent Application No.
-157561) shows the structure of a slab type solid-state laser device. The laser medium 10 is a crystal or glass such as YAG containing a laser active substance such as Nd having a flat rectangular cross section.
Is a pair of plate surfaces 10a which are total reflection surfaces and move in the left-right direction in the figure in a zigzag shape in the lateral direction of the drawing as described above, and for example, both beveled end surfaces formed at a predetermined angle known as Brewster's angle. Enter and exit via 10c. The slab type laser medium 10 houses a pumping light source 2 for optically pumping the laser medium 10, and a cooling medium C for cooling the laser medium in order to reduce internal thermal strain of the laser medium 10 and oscillate at high output, For example, in the storage container 1 having a closed structure in which CFCs flow through the inlet 1c and the outlet 1d, the slanted end face 10c is stored over its entire length so that it contacts the cooling medium in the storage container 1. Although not particularly shown, in order to reduce the temperature gradient in the width direction of the laser medium 10, the side surface 10b (10th
(Fig.) A semi-cylindrical metal holder 13 for holding a heat insulator 12 for heat insulation is provided with a screw hole, and is held by using a bolt or a stud that hermetically penetrates the side wall of the storage container body 1a. There is. The heat insulator 12 is formed, for example, by filling a silicone rubber adhesive having good heat insulation between the side surface 10b and the holder 13 and curing it, or between the side surface 10b and the holder 13. It is formed as a good heat insulating resin piece to be adhered. Further, the main body 1a of the storage container is formed in a cylindrical shape having an elliptical inner surface finished to a mirror surface that reflects the excitation EL from the excitation light source 2, and both end surfaces of the main body 1a have the inner surface finished to a mirror surface. The excitation light source 2 is closed by a pair of lids 1b that airtightly support the excitation light source 2 through the O-ring 6b. This one
An opening is formed in the pair of lid portions 1b at a position facing the oblique end surface 10c of the laser medium 10, and the O-ring 6a and the pressing member 3 are formed by the plate-shaped transmitting member 4 which transmits the laser light.
Is hermetically closed by means of and, and a total reflection mirror 21 and a partial reflection mirror 22 as an output mirror are arranged on the outside of each of the transmission members 4 so as to face the transmission member. A laser resonance system is configured with the reflection mirror 22.

ところで、このようにレーザ媒体10を、その斜端面10
cが収納容器1内で冷却媒体Cと接触するように収納容
器1内に保持する理由は、もしもレーザ媒体10を、第11
図に示すように、その斜端面10cが収納容器11の外部に
露出するように支持した場合には、レーザ媒体10の収納
容器11との間の気密部位がレーザ媒体10の周面に沿って
存在し、このため、全反射ミラー21,部分反射ミラー22
から反射されレーザ媒体10とレーザ媒体10の周面に沿う
Oリング6cを押さえる押さえ部材13との隙間を通るレー
ザ光によりOリング6cが照射され、Oリングの焼損を招
くという問題があり、また、Oリングの焼損を防止する
ために隙間を反射光から遮蔽する枠状の遮蔽板を設ける
と、レーザ媒体の斜端面周縁部が遮蔽されてレーザ出力
が減殺され、さらに枠状遮蔽板の内周縁近傍が出力光と
反射光とに照射されて遮蔽板からガスが発生し、これが
レーザ媒体の斜端面に焼き着き、レーザ媒体が破損する
という別の問題が生じるため、レーザ光が通過する収納
容器の開口部を、面積が十分広いレーザ光透過部材で閉
鎖できるようにし、その気密部位をレーザ光の光路から
十分離れて設定できるようにするためである。
By the way, in this way, the laser medium 10 is provided with the beveled surface 10
The reason why c is held in the storage container 1 so that it contacts the cooling medium C in the storage container 1 is that if the laser medium 10 is
As shown in the figure, when the inclined end surface 10c is supported so as to be exposed to the outside of the storage container 11, the airtight portion between the laser medium 10 and the storage container 11 is along the peripheral surface of the laser medium 10. Existence and for this reason total reflection mirror 21, partial reflection mirror 22
There is a problem that the O-ring 6c is irradiated by the laser light reflected from the laser medium 10 and passing through the gap between the laser medium 10 and the pressing member 13 that presses the O-ring 6c along the peripheral surface of the laser medium 10, and the O-ring is burned. If a frame-shaped shielding plate that shields the gap from reflected light is provided in order to prevent the O-ring from being burnt out, the periphery of the beveled end face of the laser medium is shielded and the laser output is reduced. The output light and the reflected light are irradiated in the vicinity of the peripheral edge to generate gas from the shielding plate, which burns on the beveled end face of the laser medium, causing another problem of damaging the laser medium. This is because the opening of the container can be closed by a laser light transmitting member having a sufficiently large area, and the airtight portion can be set sufficiently away from the optical path of the laser light.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このように構成される従来のスラブ形固体レーザ装置
においては、冷却媒体としてレーザ光(例えば波長λ=
1.06μm)の吸収が少なくレーザ光をよく透過する,例
えばフロンが用いられている。しかし、固体レーザ装置
として高い出力を得ようとするとフロンでは冷却効果が
不足するため、冷却媒体を例えば水のような冷却効果の
大きい媒体に変える必要がある。しかし水はレーザ光の
吸収が大きく、励起光源からレーザ媒体へ入力される励
起エネルギーを増しても、レーザ媒体の斜端面とレーザ
光透過部材との間に存在する水によりレーザ光が吸収さ
れ、入力に対し、出力が十分得られないという問題があ
った。
In the conventional slab type solid-state laser device configured as described above, laser light (for example, wavelength λ =
Freon is used, for example, which has a low absorption of 1.06 μm and transmits laser light well. However, in order to obtain a high output as a solid-state laser device, the cooling effect is insufficient with CFC, so it is necessary to change the cooling medium to a medium having a large cooling effect such as water. However, water has a large absorption of laser light, and even if the excitation energy input from the excitation light source to the laser medium is increased, the laser light is absorbed by the water existing between the oblique end surface of the laser medium and the laser light transmitting member, There was a problem that sufficient output could not be obtained for the input.

この発明の目的は、レーザ媒体を斜端面が水のような
光吸収の大きい冷却媒体に接触するように冷却媒体中に
浸漬させてもレーザ出力が十分に得られるスラブ形固体
レーザ装置を提供することである。
An object of the present invention is to provide a slab-type solid-state laser device in which a laser output can be sufficiently obtained even when a laser medium is immersed in a cooling medium such that a beveled end surface is in contact with a cooling medium having large light absorption such as water. That is.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題を解決するために、この発明においては、レ
ーザ光を全反射する1対の板面と、熱絶縁された1対の
側面と,レーザ光が出入りする1対の斜端面とをもつス
ラブ状体に形成されたレーザ媒体が、励起光源,冷却媒
体を収納する収納容器内に両斜端面が冷却媒体と接する
ように全長にわたり収納,保持されるとともに該レーザ
媒体の両斜端面に対向する前記収納容器の両開口部にそ
れぞれレーザ光透過部材が気密に取り付けられ、該収納
容器の外部に前記レーザ光透過部材とそれぞれ対向して
全反射ミラーおよび出力ミラーが配置されてなるスラブ
形固体レーザ装置を、前記レーザ光透過部材がいずれ
も、収納容器に取り付けられた状態でレーザ媒体の斜端
面と平行にかつ該斜端面の全面に実質的に接触状態に対
向する端面を備えた導光部を有する装置とするものとす
る。そして、この装置構成において、レーザ媒体の1対
の板面を両側から該板面と平行にかつ該板面と間隔をお
いて挟む1対の透明板と、該1対の透明板の間に該レー
ザ媒体を保持するスラブ保持具とを用いて該1対の板面
に沿う冷却媒体の流れを形成する区画された流路を形成
し、冷却媒体がこの流路を通過した後、レーザ媒体の一
方の斜端面とレーザ光透過部材との対向間隔と,レーザ
媒体の他方の斜端面とレーザ光透過部材との対向間隙と
を順に通過するように収納容器内の冷却媒体の流路を形
成すればさらに好適である。また、冷却媒体の流路は、
レーザ媒体の1対の板面を両側から該板面と平行にかつ
該板面と間隔をおいて挟む1対の透明板と、該1対の透
明板の間に該レーザ媒体を保持するスラブ保持具とを用
いて収納容器内の空間がレーザ媒体およびレーザ光透過
部材を包む空間と、励起光源を包む空間とに区画するこ
とにより、冷却媒体がレーザ媒体およびレーザ光透過部
材を冷却後、冷却行程の最終段階で励起光源を冷却する
ように形成すればさらに好適である。そして、冷却行程
の最終段階で励起光源を冷却する具体的な流路は、レー
ザ媒体およびレーザ光透過部材を包む空間を、レーザ媒
体の両斜端面近傍にスラブ保持具を配して3分するとと
もに、1対の励起光源を含む空間を、レーザ媒体および
レーザ光透過部材を包む空間を挟んでそれぞれ1つの励
起光源を包む2つの空間に2分し、冷却媒体が両スラブ
保持具間の空間内へ流入した後一方の斜端面が位置する
空間,他方の斜端面が位置する空間,一方の励起光源を
包む空間,他方の励起光源を包む空間を順に通過するよ
うに形成するか、冷却媒体が両スラブ保持具間の空間内
へ流入した後流路が2つに分岐され、分岐された冷却媒
体がそれぞれ、一方の斜端面が位置する空間,一方の励
起光源を包む空間と、他方の斜端面が位置する空間,他
方の励起光源を包む空間とをそれぞれ順に通過するよう
に形成するものとする。なお、前記レーザ光透過部材を
収納容器開口部に保持する保持構造は、レーザ光透過部
材が、導光部の全反射ミラーまたは出力ミラー側端部に
円柱状フランジを形成され、収納容器の外壁面に該レー
ザ光透過部材を導光部側から挿入可能な凹部が形成され
るとともに該凹部に前記円柱状フランジの外周面との間
にリング状空隙を形成する周面が形成され、該リング状
空隙にリング状気密部材が介装されるとともに、レーザ
光透過部材が円柱状フランジの導光部側端面と前記凹部
の底面との間に空隙を保ちかつ円柱状フランジの反導光
部側端面側で緩衝部材を介して収納容器外へ脱出不可能
に保持される構造とするのがよい。
In order to solve the above-mentioned problems, in the present invention, a slab having a pair of plate surfaces that totally reflect laser light, a pair of heat-insulated side surfaces, and a pair of oblique end surfaces through which laser light enters and exits. The laser medium formed in a shape is housed and held over the entire length in a container for accommodating the excitation light source and the cooling medium so that both slanted end faces contact the cooling medium, and faces both slanted end faces of the laser medium. A slab type solid-state laser in which a laser beam transmitting member is airtightly attached to both openings of the storage container, and a total reflection mirror and an output mirror are arranged outside the storage container so as to face the laser beam transmitting member. The apparatus is provided with a laser beam transmitting member, which is provided with an end face which is parallel to the slant end face of the laser medium and is substantially in contact with the entire slant end face in a state of being attached to the storage container. It shall be a device having a part. In this device configuration, a pair of transparent plates sandwiching a pair of plate surfaces of the laser medium from both sides in parallel with the plate surfaces and at a distance from the plate surfaces, and the laser between the pair of transparent plates. A slab holder for holding the medium is used to form a partitioned flow path that forms a flow of the cooling medium along the pair of plate surfaces, and after the cooling medium passes through this flow path, one of the laser media is formed. If the flow path of the cooling medium in the storage container is formed so as to pass through the facing interval between the beveled end face of the laser beam transmitting member and the facing gap between the other beveled end face of the laser medium and the laser beam transmitting member in order. It is more preferable. In addition, the flow path of the cooling medium,
A pair of transparent plates sandwiching a pair of plate surfaces of the laser medium from both sides in parallel with the plate surfaces and at a distance from the plate surfaces, and a slab holder for holding the laser medium between the pair of transparent plates. And the space inside the storage container is divided into a space that encloses the laser medium and the laser light transmitting member and a space that encloses the excitation light source, so that the cooling medium cools the laser medium and the laser light transmitting member, and then the cooling process. It is more preferable to form the excitation light source so as to be cooled in the final stage of (3). Then, the specific flow path for cooling the excitation light source at the final stage of the cooling process divides the space surrounding the laser medium and the laser light transmitting member into three parts by disposing the slab holders in the vicinity of both oblique end faces of the laser medium. At the same time, the space containing the pair of excitation light sources is divided into two spaces each containing one excitation light source with a space surrounding the laser medium and the laser light transmitting member interposed therebetween, and the cooling medium is a space between both slab holders. After flowing into the inside, a space where one beveled surface is located, a space where the other beveled surface is located, a space that encloses one excitation light source, a space that encloses the other excitation light source, or a cooling medium is formed. Flow into the space between the two slab holders, the flow path is branched into two, and the branched cooling medium has a space in which one of the slant end faces is located, a space that encloses one excitation light source, and the other. Space where the beveled surface is located, etc. Shall form a space surrounding the excitation light sources so that each pass in order. In the holding structure for holding the laser beam transmitting member in the container opening, the laser beam transmitting member has a cylindrical flange formed at the end portion of the light guide unit on the side of the total reflection mirror or the output mirror, and the laser beam transmitting member is provided outside the container. The wall surface is formed with a recess into which the laser beam transmitting member can be inserted from the light guide portion side, and the recess is formed with a peripheral surface forming a ring-shaped space between the recess and the outer peripheral surface of the cylindrical flange. A ring-shaped airtight member is interposed in the air gap, and the laser light transmitting member keeps a space between the end surface of the cylindrical flange on the light guide section side and the bottom surface of the recess and the side of the cylindrical flange opposite to the light guide section. It is preferable to have a structure in which the end face side is held so as not to be able to escape to the outside of the storage container via a buffer member.

〔作用〕[Action]

レーザ光透過部材を上記のように形成すると、レーザ
媒体の斜端面とレーザ光透過部材の間の冷却媒体中の光
路長が極めて小さく、レーザ光は冷却媒体にほとんど吸
収されることなく出力される。すなわち、スラブ形固体
レーザ装置を、レーザ媒体に対する冷却効果が大きく、
かつ出力の減殺が極めて小さい高出力の装置とすること
ができる。
When the laser light transmitting member is formed as described above, the optical path length in the cooling medium between the oblique end surface of the laser medium and the laser light transmitting member is extremely small, and the laser light is output without being absorbed by the cooling medium. . That is, the slab type solid-state laser device has a large cooling effect on the laser medium,
Moreover, it is possible to provide a high-output device with extremely small output reduction.

さらに、この装置構成において、レーザ媒体の1対の
板面を両側から該板面と平行にかつ該板面と間隔をおい
て挟む1対の透明板と、該1対の透明板の間に該レーザ
媒体を保持するスラブ保持具とを用いて該1対の板面に
沿う冷却媒体の流れを形成する区画された流路を形成
し、冷却媒体がこの流路を通過した後、レーザ媒体の一
方の斜端面とレーザ光透過部材との対向間隙と、レーザ
媒体の他方の斜端面とレーザ光透過部材との対向間隙と
を順に通過するように収納容器内の冷却媒体の流路を形
成すると、冷却媒体は、レーザ媒体の斜端面とレーザ光
透過部材の対向面との間の狭隘な間隙を強制的にかつ高
速で通過するから、このような流路構成としない場合に
生じうる,レーザ媒体斜端面とレーザ光透過部材対向面
との対向間隙中の冷却媒体の低移動速度に基づくレーザ
媒体斜端面,レーザ光透過部材対向面への水垢等の付着
やレーザ光の高エネルギー密度に基づく付着物の焼付
き、斜端面,対向面の損傷などの恐れがなく、面が常に
清浄に保たれ、高出力を安定して維持することができ
る。
Further, in this device configuration, a pair of transparent plates sandwiching a pair of plate surfaces of the laser medium from both sides in parallel with the plate surfaces and at a distance from the plate surfaces, and the laser between the pair of transparent plates. A slab holder for holding the medium is used to form a partitioned flow path that forms a flow of the cooling medium along the pair of plate surfaces, and after the cooling medium passes through this flow path, one of the laser media is formed. If the flow path of the cooling medium in the storage container is formed so as to sequentially pass through the facing gap between the beveled end face and the laser light transmitting member, and the facing gap between the other beveled end face of the laser medium and the laser light transmitting member, Since the cooling medium forcibly and rapidly passes through the narrow gap between the beveled end surface of the laser medium and the facing surface of the laser light transmitting member, the laser medium may occur when such a flow path configuration is not adopted. Cooling in the facing gap between the beveled surface and the facing surface of the laser beam transmitting member There is a risk of deposits such as water stains on the sloped surface of the laser medium due to the low moving speed of the body, the facing surface of the laser light transmitting member, or seizure of deposits due to the high energy density of the laser light, damage to the sloped surface or the facing surface. The surface is always kept clean and high output can be maintained stably.

そして、このように、レーザ媒体の斜端面とレーザ光
透過部材の対向面との清浄に保つ冷却媒体は、通常ガラ
ス製のランプが用いられる励起光源をも冷却する役目を
担っており、従って、収納容器内の空間を、レーザ媒体
およびレーザ光透過部材を包む空間と、励起光源を包む
空間とに区画して、冷却媒体の流路を、冷却媒体がレー
ザ媒体とレーザ光透過部材とを冷却した後、冷却行程の
最終段階で励起光源を冷却するように形成することによ
り、ランプの寿命がきたときのランプ交換時のランプの
取付け状態が悪かったり、あるいは何らかの原因によっ
てランプが運転中に破壊するようなことがあっても、ガ
ラスの破片がレーザ媒体の斜端面やレーザ光透過部材を
傷つけ、これによりレーザ出力が低下したり、あるいは
微小な傷が装置のパルス運転時の繰返し熱応力によって
クラックに進展,破壊する懸念を除去することができ
る。そして、このような流路の具体構成として、上述の
ように、レーザ媒体およびレーザ光透過部材を包む空間
を、レーザ媒体の両斜端面近傍にスラブ保持具を配して
3分するとともに、1対の励起光源を進む空間を、レー
ザ媒体およびレーザ光透過部材を包む空間を挟んでそれ
ぞれ1つの励起光源を含む2つの空間に2分し、冷却媒
体が両スラブ保持具間の空間内へ流入した後一方の斜端
面が位置する空間,他方の斜端面が位置する空間,一方
の励起光源を含む空間,他方の励起光源を包む空間を順
に通過するように流路を構成すれば、冷却媒体は、収納
容器内のすべての被冷却部材を直列に冷却し、冷却媒体
の流量と冷却効果との関係が一義的に決まるため、冷却
媒体を収納容器内へ送り込むポンプの容量を、必要な冷
却効果に応じて無駄なく適正に決めることができる。ま
た、冷却媒体が両スラブ保持具間の空間内へ流入した後
流路が2つに分岐され、分岐された冷却媒体がそれぞ
れ、一方の斜端面が位置する空間,一方の励起光源を包
む空間と、他方の斜端面が位置する空間,他方の励起光
源を包む空間とをそれぞれ順に通過するように流路を形
成すれば、実施例の項で説明するように、流路の構成が
著しく単純化され、分岐した流路相互間に流れの抵抗の
差が生じうるもの、流れの抵抗が大きい方の流路に流れ
る冷却媒体が、必要が冷却効果が得られる流量となるよ
うにポンプ容量を大きくすることにより、装置全体とし
て十分な冷却が得られ、かつポンプ容量の増加に伴うコ
スト上昇分は、流路構成の単純化によるコスト低減によ
り実質的にこれを補うことができる。従って、すべての
被冷却部材を直列に冷却する流路構成で必要とする流量
に対してポンプ容量に余裕がある場合には、分岐流路に
よる流路構成によりコスト面のメリットが得られる。
And, in this way, the cooling medium which keeps the beveled end surface of the laser medium and the facing surface of the laser light transmitting member clean is also responsible for cooling the excitation light source in which a glass lamp is usually used. The space in the storage container is divided into a space that encloses the laser medium and the laser light transmitting member, and a space that encloses the excitation light source, and the cooling medium flow path cools the laser medium and the laser light transmitting member. After that, by forming the excitation light source to be cooled at the final stage of the cooling process, the lamp may not be installed properly when it is replaced at the end of its life, or the lamp may be damaged during operation due to some cause. Even if this happens, the broken glass may damage the beveled surface of the laser medium or the laser beam transmitting member, which may reduce the laser output or cause minute damage to the device. Progress in cracking by repeated thermal stress at the time of the scan operation, it is possible to remove the fear of destroying. As a specific configuration of such a flow path, as described above, the space surrounding the laser medium and the laser light transmitting member is divided into three parts by arranging the slab holders in the vicinity of both slanted end faces of the laser medium, and The space that goes through the pair of excitation light sources is divided into two spaces, each containing one excitation light source, with the space surrounding the laser medium and the laser light transmitting member sandwiched in between, and the cooling medium flows into the space between both slab holders. After that, if the flow path is configured so as to sequentially pass through the space in which one beveled surface is located, the space in which the other beveled surface is located, the space containing one excitation light source, and the space enclosing the other excitation light source, the cooling medium is formed. Since all the members to be cooled in the storage container are cooled in series and the relationship between the flow rate of the cooling medium and the cooling effect is uniquely determined, the capacity of the pump that sends the cooling medium into the storage container must be set to the required cooling level. Useless depending on the effect It can be properly determined. In addition, after the cooling medium flows into the space between the slab holders, the flow path is branched into two, and the branched cooling medium has a space in which one of the slant end faces is located and a space in which one of the excitation light sources is wrapped. If the flow path is formed so as to sequentially pass through the space in which the other slanted end face is located and the space that encloses the other excitation light source, the structure of the flow path is remarkably simple, as described in the embodiment section. The flow capacity of the flow path that is divided into two parts, and the flow capacity of the cooling medium flowing in the flow path with the larger flow resistance is the pump capacity so that the cooling effect can be obtained. By increasing the size, sufficient cooling can be obtained for the entire apparatus, and the cost increase due to the increase in pump capacity can be substantially compensated by the cost reduction due to the simplification of the flow path configuration. Therefore, when there is a margin in the pump capacity with respect to the flow rate required in the flow channel configuration for cooling all the cooled members in series, the flow channel configuration with the branch flow channel provides a cost advantage.

また、レーザ光透過部材を収納容器に保持する保持構
造を、前述のように構成することにより、レーザ光透過
部材は、その周面で、また軸方向に収納容器の固い金属
面と接触することなく保持され、レーザ光透過部材表面
の損傷が防止されるとともに、装置組立て時あるいは点
検時に無理な力がかかる恐れがなくなり、前記冷却媒体
の流路構成とあいまって装置の信頼性が一層向上する。
Further, by constructing the holding structure for holding the laser light transmitting member in the storage container as described above, the laser light transmitting member should be in contact with the hard metal surface of the storage container on its peripheral surface and in the axial direction. Without being held, damage to the surface of the laser light transmitting member is prevented, and there is no fear of applying excessive force at the time of assembling or inspecting the device, and the reliability of the device is further improved in combination with the flow passage configuration of the cooling medium. .

〔実施例〕〔Example〕

第1図に本発明によるレーザ光透過部材を備えたスラ
ブ形固体レーザ装置の第1の実施例を示す。図において
第9図と同一の部材には同一符号を付して説明を省略す
る。レーザ媒体10,励起光源2および冷却媒体Cを収納
する収納容器には、冷却媒体Cとして水が導入,導出さ
れる導出入口1c,1dが形成され、導入口1cから導入され
た水は励起光源2およびレーザ媒体10から熱を奪い、導
出口1dから収納容器1の外部へ導出され、収納容器外で
再冷却されて導入口1cから再び導入され、このようにし
て循環しながら励起光源2とレーザ媒体10とを冷却す
る。レーザ媒体10はその全長が収納容器1内に収納,保
持され、その斜端面10aと対向する位置に形成された収
納容器1の開口部は、本発明によるレーザ光透過部材14
のフランジ部によりOリング6aを介して気密に閉鎖され
る。このレーザ光透過部材14は、図のように、収納容器
1に取り付けられた状態でレーザ媒体の斜端面10aと平
行にかつ該斜端面の全面にレーザ媒体10および収納容器
1の製作の精度を考慮した最小の間隙をもって対向する
端面14aを備えた導光部14bを有する。すなわち、導光部
14bの断面と同一面積を有する端面14aは、レーザ媒体10
の斜端面10aの表面積に比べて十分に広い表面を有し、
Oリング6aや押さえ部材3はレーザ光の光路から十分離
れて収納容器1に取り付けられる。そして、レーザ媒体
10の斜端面10aから出力されたレーザ光は、この斜端面1
0aとレーザ光透過部材の端面14aとの間の極くわずかな
距離だけ水中を通過する。すでに述べたように、水はレ
ーザ光に対し吸収の大きい冷却媒体であるが、このよう
にレーザ光が通過する水中の光路長を実質的になくする
ことにより、斜端面10aからの出力をほとんど減殺され
ることなく収納容器の外部に取り出すことができる。
FIG. 1 shows a first embodiment of a slab type solid-state laser device equipped with a laser light transmitting member according to the present invention. In the figure, the same members as those in FIG. 9 are designated by the same reference numerals and the description thereof will be omitted. Outlet ports 1c, 1d into which water is introduced and led out as the cooling medium C are formed in a storage container that stores the laser medium 10, the excitation light source 2 and the cooling medium C, and the water introduced from the introduction port 1c is the excitation light source. 2 and heat from the laser medium 10, are drawn out from the outlet 1d to the outside of the storage container 1, are recooled outside the storage container, and are introduced again from the inlet 1c. The laser medium 10 is cooled. The entire length of the laser medium 10 is stored and held in the storage container 1, and the opening of the storage container 1 formed at a position facing the slanted end surface 10a has a laser light transmitting member 14 according to the present invention.
It is closed airtightly via the O-ring 6a. As shown in the drawing, the laser light transmitting member 14 is mounted on the storage container 1 in parallel with the slant end face 10a of the laser medium and on the entire slant end face of the laser medium 10 and the storage container 1 with high accuracy. It has a light guide portion 14b having end surfaces 14a facing each other with a minimum gap taken into consideration. That is, the light guide section
The end surface 14a having the same area as the cross section of 14b has the laser medium 10
Has a surface sufficiently larger than the surface area of the beveled surface 10a of
The O-ring 6a and the pressing member 3 are attached to the storage container 1 sufficiently away from the optical path of the laser light. And laser medium
The laser light output from the sloped surface 10a of 10 is the sloped surface 1
It passes through water under a very short distance between 0a and the end face 14a of the laser beam transmitting member. As described above, water is a cooling medium that absorbs a large amount of laser light, but by substantially eliminating the optical path length in water through which laser light passes in this way, the output from the beveled surface 10a is almost eliminated. It can be taken out of the storage container without being killed.

第2図ないし第4図に本発明によるレーザ光透過部材
を備えたスラブ形固体レーザ装置の第2の実施例を示
す。ここで、第3図は第2図のA−A線に沿う断面図、
第4図は第3図のB−B線に沿う断面図である。この実
施例では、レーザ媒体の1対の板面10a,10aを両側から
該板面と平行にかつ適宜に設定された間隔をおいて挟
む,無機質ガラスからなる1対の透明板8,8と、この1
対の透明板8,8の間にレーザ媒体10を,その斜端面10aの
近傍でレーザ媒体を長手方向(レーザ光の往復進行方
向)に貫通させて保持するスラブ保持具7とを用いて冷
却媒体を矢印25c(第3図)のように板面10aに沿って流
す,区画された流路9(第2図,第3図)が形成され、
導入管路23(第4図)から導入された冷却媒体は、矢印
25a−25b−25cと流れる際にレーザ媒体10を板面10aを介
して冷却し、さらに矢印25d−25eと流れて励起光源2Aを
冷却し、次に収納容器15に形成された流入孔15a(第2
図)を通ってレーザ媒体の一方の斜端面10aとレーザ光
透過部材14の対向面14aとの間の微小間隙を通過し、流
出孔15bから矢印25fのように上昇し、励起光源2Bを冷却
した後矢印25gのように流入孔15cを通ってレーザ媒体の
他方の斜端面10aとレーザ光透過部材14の対向面14aとの
間の微小間隙を通過し、流路15dを通って導出管路24
(第4図)に流入し、矢印25hのように外部へ導出され
る。
2 to 4 show a second embodiment of a slab type solid-state laser device equipped with a laser light transmitting member according to the present invention. Here, FIG. 3 is a sectional view taken along the line AA of FIG.
FIG. 4 is a sectional view taken along the line BB in FIG. In this embodiment, a pair of transparent plates 8 and 8 made of an inorganic glass sandwiching a pair of plate surfaces 10a, 10a of a laser medium from both sides in parallel with the plate surfaces and at an appropriately set interval. , This one
Cooling the laser medium 10 between the pair of transparent plates 8 and 8 using a slab holder 7 that holds the laser medium in the longitudinal direction (the reciprocal traveling direction of the laser light) in the vicinity of the beveled surface 10a. A divided flow path 9 (FIGS. 2 and 3) is formed in which the medium is flowed along the plate surface 10a as shown by an arrow 25c (FIG. 3).
The cooling medium introduced from the introduction line 23 (Fig. 4) is indicated by the arrow.
The laser medium 10 is cooled through the plate surface 10a when flowing with 25a-25b-25c, further flows with an arrow 25d-25e to cool the excitation light source 2A, and then the inflow hole 15a formed in the storage container 15 ( Second
(Fig.) Passing through a minute gap between one oblique end surface 10a of the laser medium and the facing surface 14a of the laser light transmitting member 14, rising from the outflow hole 15b as shown by an arrow 25f, and cooling the excitation light source 2B. After passing through the inflow hole 15c as shown by the arrow 25g, the minute passage between the other oblique end surface 10a of the laser medium and the facing surface 14a of the laser light transmitting member 14 is passed through the flow passage 15d and the outlet conduit. twenty four
It flows into (Fig. 4) and is led out to the outside as shown by an arrow 25h.

冷却媒体の流路をこのように構成することにより、冷
却媒体はレーザ媒体の斜端面とレーザ光透過部材の対向
面との間の微小間隙を強制的にかつ高速で通過し、これ
ら斜端面および対向面が装置運転中常に洗浄され、冷却
媒体の垢等の付着が防止されるため、レーザ媒体の斜端
面とレーザ光透過部材対向面との間隙を微小化すること
によって得られた高いレーザ出力が、付着物等により減
殺される恐れなく安定に維持される。
By configuring the flow path of the cooling medium in this way, the cooling medium forcibly and at high speed passes through the minute gap between the oblique end surface of the laser medium and the facing surface of the laser light transmitting member. Since the facing surface is constantly cleaned during operation of the device and adhesion of dust etc. on the cooling medium is prevented, the high laser output obtained by miniaturizing the gap between the beveled surface of the laser medium and the facing surface of the laser light transmitting member. However, it is stably maintained without fear of being killed by deposits.

第5図および第6図に本発明の第3の実施例を示す。
これらの図において第1図と同一の部材には同一符号が
付されている。この実施例は、冷却媒体がレーザ媒体と
レーザ光透過部材を冷却した後、最終段階で励起光源を
冷却するように冷却媒体の流路を形成する場合の流路構
成の一例を示すものである。なお、第6図(a),
(b),(c)はそれぞれ第5図における切断線C−C,
D−D,E−Eに沿う断面図である。
5 and 6 show a third embodiment of the present invention.
In these figures, the same members as those in FIG. 1 are designated by the same reference numerals. This embodiment shows an example of the flow channel configuration in the case where the cooling medium cools the laser medium and the laser light transmitting member, and then the flow channel of the cooling medium is formed so as to cool the excitation light source at the final stage. . FIG. 6 (a),
(B) and (c) are respectively cutting lines C-C in FIG.
It is sectional drawing which follows DD and EE.

収納容器30の内部空間は、第5図に示すように、透明
板8,8と、レーザ媒体10を透明板8,8の間に支持するスラ
ブ保持具7,7とにより、レーザ媒体10,,レーザ光透過部
材14,14を包む空間と、この空間を挟んでそれぞれ励起
光源2Aおよび2Bを包む2つの空間とに区画されている。
また、レーザ媒体10とレーザ光透過部材14,14とを包む
空間は、スラブ保持具7,7をレーザ媒体10が貫通する仕
切り板として形成して両斜端面10c,10c近傍に配するこ
とにより、レーザ媒体10の本体部を包む空間と,斜端面
10c,10cが位置する2つの空間との3つの空間に3分さ
れる。また、収納容器30は、第6図に示すように、その
側面側で流路板31A,31Bにより水密に挟まれている。流
路板31A,31Bは、第5図における収納容器30の左右方向
の長さを十分カバーする幅を有する方形に形成されてい
る。そこで、第6図(a)に示すように、流路板31Aの
導入口32aから冷却媒体C,ここでは水を送り込むと、水
は、紙面に垂直方向に長い、断面方形の流路から、スラ
ブ保持具7,7(第5図)間の空間内へ該スラブ保持具間
の幅をもってレーザ光の進行方向と直角方向にかつレー
ザ媒体の板面10a,10aに平行に流入した後、板面10c,10c
に沿う流路32b,32bを通ってレーザ媒体10を横切りつつ
流路板31Bの断面方形の流路へ向かう。そして、この流
路に流入した水は、第6図(b)に示すように、レーザ
媒体10の一方の斜端面が位置する空間32c(空間32cは冷
却媒体流路の一部を構成する)へ入り、空間32c(第5
図)内の斜端面10cとレーザ光透過部材14との間の空隙
を横切り、流路板31Aの流路32d(第6図(b))に入
る。流路32dは、紙面に垂直方向(第5図では左右方
向)にもう一方の斜端面が位置する空間32eまで延びて
おり、水はこの流路32dを通って空間32eに入る。空間32
eに入った水は斜端面10cとレーザ光透過部材14との間の
間隙を横切り、収納容器に形成された流路32fを通って
励起光源2Bを包む空間に入る。ここで水は励起光源2Bを
冷却しながら右方へ向かい、流路板31Bに形成された流
路32h(第6図(c))を通り、励起光源2Aを包む空間
に入る。ここで水は励起光源2Aを冷却したがら空間内を
第5図の左方へ向かい、流路32jから外部へ導出され
る。
As shown in FIG. 5, the internal space of the storage container 30 is formed by the transparent plates 8 and 8 and the slab holders 7 and 7 that support the laser medium 10 between the transparent plates 8 and 8, so that the laser medium 10, Then, it is divided into a space that encloses the laser light transmitting members 14 and 14 and two spaces that enclose the excitation light sources 2A and 2B with the space sandwiched therebetween.
Further, the space that encloses the laser medium 10 and the laser light transmitting members 14 and 14 is formed by forming the slab holders 7 and 7 as partition plates through which the laser medium 10 penetrates and arranging them near both beveled end faces 10c and 10c. A space surrounding the main body of the laser medium 10 and a beveled surface
It is divided into three spaces, 10c and 10c. Further, as shown in FIG. 6, the storage container 30 is watertightly sandwiched between the flow path plates 31A and 31B on the side surface side thereof. The flow path plates 31A, 31B are formed in a rectangular shape having a width that sufficiently covers the length of the storage container 30 in the left-right direction in FIG. Therefore, as shown in FIG. 6 (a), when the cooling medium C, here water, is fed from the inlet 32a of the flow path plate 31A, the water flows from the flow path having a rectangular cross section, which is long in the direction perpendicular to the paper surface. After flowing into the space between the slab holders 7 and 7 (Fig. 5) with the width between the slab holders in the direction perpendicular to the traveling direction of the laser light and parallel to the plate surfaces 10a and 10a of the laser medium, Face 10c, 10c
The laser medium 10 is traversed through the flow paths 32b, 32b along the direction toward the flow path having a rectangular cross section of the flow path plate 31B. Then, as shown in FIG. 6 (b), the water that has flowed into this flow path is a space 32c in which one of the slanted end faces of the laser medium 10 is located (the space 32c constitutes a part of the cooling medium flow path). Enter the space 32c (5th
(See FIG. 6) across the gap between the beveled end face 10c and the laser light transmitting member 14 and enter the flow path 32d (FIG. 6 (b)) of the flow path plate 31A. The flow path 32d extends in a direction perpendicular to the paper surface (left and right direction in FIG. 5) to a space 32e where the other beveled end surface is located, and water enters the space 32e through the flow path 32d. Space 32
The water that has entered e crosses the gap between the beveled surface 10c and the laser light transmission member 14, passes through the flow path 32f formed in the storage container, and enters the space that encloses the excitation light source 2B. Here, the water moves to the right while cooling the excitation light source 2B, passes through the flow path 32h (FIG. 6 (c)) formed in the flow path plate 31B, and enters the space surrounding the excitation light source 2A. Here, the water is guided to the left in FIG. 5 in the space while cooling the excitation light source 2A, and is led out from the flow path 32j to the outside.

冷却媒体の流路をこのように形成すると、水はすべて
の被冷却部材を直列に冷却し、水の流量と冷却効果との
関係が一義的に定まるため、必要な冷却効果を得るのに
必要な流量が容易に求められ、水を送り出すポンプの容
量を無駄なく適正に決めることができる。
When the flow path of the cooling medium is formed in this way, water cools all the cooled members in series, and the relationship between the flow rate of water and the cooling effect is uniquely determined, so it is necessary to obtain the required cooling effect. A large flow rate can be easily obtained, and the capacity of the pump that pumps water can be appropriately determined without waste.

第7図および第8図に本発明の第4の実施例を示す。
この実施例は、冷却媒体がレーザ媒体とレーザ光透過部
材とを冷却した後、最終段階で励起光源を冷却するよう
に冷却媒体の流路を形成する場合の,上記第3の実施例
と異なる流路の構成例を示すものである。なお、第8図
(a),(b),(c)はそれぞれ第7図における切断
線F−F,G−G,H−Hに沿う断面図である。
7 and 8 show a fourth embodiment of the present invention.
This embodiment is different from the third embodiment in the case where the cooling medium cools the laser medium and the laser light transmitting member and then the flow path of the cooling medium is formed so as to cool the excitation light source in the final stage. It shows an example of the configuration of the flow path. 8 (a), (b), and (c) are sectional views taken along the cutting lines FF, GG, H-H in FIG. 7, respectively.

収納容器33内は、収納容器30の場合と同様に、3分さ
れたレーザ媒体10とレーザ光透過部材14,14とを包む空
間と、励起光源2A,2Bを包む2つの空間とに区画されて
いる。また、収納容器33には、第8図に示すように、そ
の側面側で流路板34A,34Bにより水密に挟まれている。
流路板34A,34Bは、第7図における収納容器33の左右方
向の長さを十分カバーする幅を有する方形に形成されて
いる。そこで、第8図(a)に示すように、流路板34A
の導光口35aから冷却媒体C,ここでは水を送り込むと、
水は、紙面に垂直方向に長い,断面方形の流路からレー
ザ媒体10の板面に沿い、スラブ保持具7,7(第7図)間
の幅をもって流路板34Bの断面方形の流路へ向かいつつ
第7図に示すように、2つの流れ35b,35cに分岐する。
分岐した流れ35b,35cはそれぞれレーザ媒体10の両斜端
面がそれぞれ位置する空間35d,35eへ向かう。空間35d,3
5eに流入した水はそれぞれ斜端面10cとレーザ光透過部
材14との間の空隙を横切り、一方は収納容器に形成され
た流路35fを通って励起光源2Aを包む空間に、他方は流
路35gを通って励起光源2Bを包む空間に入る。ここで水
はそれぞれ励起光源2Aおよび2Bを冷却しながら流路35j
および35kから外部へ導出される。
As in the case of the storage container 30, the storage container 33 is divided into a space that encloses the laser medium 10 and the laser light transmitting members 14 and 14 that are divided into three parts, and two spaces that enclose the excitation light sources 2A and 2B. ing. Further, as shown in FIG. 8, the storage container 33 is watertightly sandwiched by the flow path plates 34A and 34B on its side surface side.
The flow path plates 34A and 34B are formed in a rectangular shape having a width that sufficiently covers the length of the storage container 33 in the left-right direction in FIG. Therefore, as shown in FIG. 8 (a), the flow path plate 34A
When the cooling medium C, here water is sent from the light guide port 35a of
Water flows along the plate surface of the laser medium 10 from a rectangular cross-section flow path that is long in the vertical direction to the paper surface, and has a width between the slab holders 7 and 7 (Fig. 7) and a rectangular cross-section flow path of the flow path plate 34B. As shown in FIG. 7, it branches into two streams 35b and 35c while heading toward.
The branched flows 35b and 35c are directed to the spaces 35d and 35e in which the two slanted end faces of the laser medium 10 are located, respectively. Space 35d, 3
The water that has flowed into 5e traverses the gap between the beveled surface 10c and the laser light transmitting member 14, one passing through the flow passage 35f formed in the storage container into the space surrounding the excitation light source 2A, and the other flow passage. Enter the space surrounding the excitation light source 2B through 35g. Here, water cools the excitation light sources 2A and 2B, respectively, and the flow path 35j
And derived from 35k to the outside.

冷却媒体の流路をこのように形成すると、2つに分岐
されそれぞれレーザ媒体本体の半分と,一方のレーザ光
透過部材と,一方の励起光源とを直列に冷却しながら流
れる冷却媒体の流路の流れの抵抗が互いに異なる場合が
生じうる。この場合には、流れの抵抗が大きい方の流路
の流量を、必要な冷却効果が得られるようにポンプ容量
を大きくして確保する必要がある。しかし、通常、流れ
の抵抗の不平衡はさほど大きくないから、ポンプ容量の
増加分はさほど大きくなくて済み、また、これによるコ
スト上昇分も、流路板34A,34Bが上記第3の実施例にお
ける流路板31A,31Bと比較して小形,単純に形成できる
ことから、流路板のコスト差により実質的に補うことが
できる。
When the flow path of the cooling medium is formed in this way, the flow path of the cooling medium is divided into two and flows while cooling half of the laser medium main body, one laser light transmitting member, and one excitation light source in series. There may be cases where the flow resistances of the two differ from each other. In this case, it is necessary to secure the flow rate of the flow path having the larger flow resistance by increasing the pump capacity so as to obtain the required cooling effect. However, since the flow resistance imbalance is not so large in general, the increase in the pump capacity is not so large, and the increase in cost due to this is that the flow path plates 34A and 34B use the third embodiment. Since it is smaller and simpler than the flow channel plates 31A and 31B in FIG. 1, it can be substantially compensated by the cost difference of the flow channel plates.

上記第3および第4の実施例に示すように、冷却媒体
がレーザ媒体およびレーザ光透過部材を冷却した後、最
終段階で励起光源を冷却するように冷却媒体の流路を形
成することにより、通常ガラス製のランプが用いられる
励起光源の寿命がきたときのランプの交換の際にランプ
の取付け状態が悪かったり、運転中に何らかの原因でラ
ンプが破壊するようなことがあっても、ガラスの破片が
レーザ媒体の斜端面やレーザ光透過部材を傷つけること
なく、冷却媒体Cとともに外部へ排出される。一般的に
は、冷却媒体を循環使用するために、収納容器の排水側
に冷却器を用いるが、これにフィルタを設ければ、破片
はここですべて除去される。これにより、ランプの破壊
によってレーザ出力が低下したり、あるいは微小な傷が
装置のパルス運転時の繰返し熱応力によってクラックに
進展,破壊するおそれがなくなる。
As shown in the third and fourth embodiments, after the cooling medium cools the laser medium and the laser light transmitting member, by forming the flow path of the cooling medium so as to cool the excitation light source in the final stage, Normally, a glass lamp is used.When the life of the excitation light source is reached, the lamp may not be installed properly when it is replaced, or the lamp may break during operation for some reason. The fragments are discharged together with the cooling medium C to the outside without damaging the beveled surface of the laser medium or the laser beam transmitting member. Generally, in order to circulate the cooling medium, a cooler is used on the drain side of the container, but if a filter is provided on this, all debris is removed here. As a result, there is no risk that the laser output will be reduced due to the destruction of the lamp, or that minute scratches will propagate into and break into cracks due to repeated thermal stress during pulse operation of the device.

第12図に本発明の第5の実施例を示す。また第13図に
第1図におけるレーザ光透過部材14まわりの詳細図を示
す。レーザ光透過部材を収納容器に気密に保持する構造
は、第1図に示す第1の実施例による装置構成では、収
納容器1の外壁面に形成した凹部底面の溝にOリング6a
を嵌め込み、このOリング6aにレーザ光透過部材14のフ
ランジ面14rを当て、もう一方の面14sを押さえ部材3の
面3sで押してOリング6aを圧縮しつつボルトで押さえ部
材3が収納容器1に当るまで締め切ることにより、レー
ザ光透過部材14が収納容器1の外方へ脱出不可能に保持
する構造である。この場合、収納容器1の面1rとレーザ
光透過部材14のフランジ面14rとの間には空隙が存在す
るように各部の寸法が設定されるから、レーザ光透過部
材14のフランジ面14rは収納容器1の固い金属面に当る
ことがなく、損傷を免れることができるが、もう一方の
面14sは、押さえ部材3の固い面と接触して損傷する恐
れがある。また、収納容器1の面1rとレーザ光透過部材
14のフランジ面14rとの間の空隙は、フランジ面14rでO
リング6aを所定量圧縮する必要から、さほど大きくとれ
ないので、工作上ありうる加工寸法ミスにより、空隙が
なくなる方向に工作がなされた場合には、このミスが発
見されないまま組立てが行われ、フランジ面14rも損傷
を受けるだけでなく、レーザ光透過部材に無理な力がか
かる恐れがある。
FIG. 12 shows a fifth embodiment of the present invention. Further, FIG. 13 shows a detailed view around the laser beam transmitting member 14 in FIG. The structure for hermetically holding the laser beam transmitting member in the container is the O-ring 6a in the groove on the bottom surface of the recess formed in the outer wall surface of the container 1 in the device configuration according to the first embodiment shown in FIG.
Then, the flange surface 14r of the laser light transmitting member 14 is applied to the O-ring 6a, the other surface 14s is pressed by the surface 3s of the pressing member 3 to compress the O-ring 6a, and the pressing member 3 is held by the bolt to hold the pressing member 3. The laser light transmitting member 14 is held so as not to be able to escape to the outside of the storage container 1 by closing until it hits. In this case, since the dimensions of each part are set so that there is a gap between the surface 1r of the storage container 1 and the flange surface 14r of the laser light transmitting member 14, the flange surface 14r of the laser light transmitting member 14 is stored. The container 1 can be protected from damage by not hitting the hard metal surface of the container 1, but the other surface 14s may come into contact with the hard surface of the pressing member 3 and be damaged. Further, the surface 1r of the storage container 1 and the laser light transmitting member
The gap between the flange surface 14r of 14 and the flange surface 14r is O
Since the ring 6a needs to be compressed by a predetermined amount, it cannot be so large, so if the work is done in the direction to eliminate the void due to a possible machining dimension error, the assembly will be performed without finding this mistake and the flange Not only the surface 14r may be damaged, but also an excessive force may be applied to the laser light transmitting member.

第12図の実施例は、レーザ光透過部材の損傷の恐れが
極めて小さくなる保持構造の一例を示すものである。こ
の構造によれば、レーザ光透過部材14の導光部14bの全
反射ミラーまたは出力ミラー側端部に円柱状フランジ14
cが形成されるとともに、収納容器41の外壁面に形成さ
れた,レーザ光透過部材14が導光部14b側から挿入され
る凹部に円柱状フランジ14cの径よりも大きい内径の周
面41tが形成され、レーザ光透過部材14を収納容器41に
保持させる際に、周面41tを有する溝内に嵌め込まれた
リング状気密部材,ここではOリング43を円柱状フラン
ジ14cの外周面で押し拡げてOリングの断面を変形させ
ながらレーザ光透過部材14を適宜の位置に停止させ、次
に円柱状フランジの右方端面に例えば四弗化エチレンか
らなる板状の緩衝材45を当て、この緩衝材45を介して押
さえ部材4でボルト50を用いてレーザ光透過部材14をさ
らに押し込み、押さえ部材4が収納容器41に当るまでボ
ルト50を締めることにより、レーザ光透過部材14が収納
容器41に気密にかつ容器外方へ脱出不可能に保持され
る。このとき、収納容器41の面41rとフランジ面14rとの
間に十分大きい空隙が形成されるように各部の寸法が設
定されている。この空隙は、第13図のように、フランジ
面14rでOリングを所定量圧縮する必要がないから十分
大きくとることができ、工作上のミスによってもこの空
隙がなくなることは実際上ありえない大きさとすること
ができる。このように、周面に気密部位を設定し、かつ
レーザ光透過部材を緩衝材を介して収納容器に脱出不可
能に保持する構造をとることにより、レーザ光透過部材
の全表面が固い金属面との接触を免れ、また、レーザ光
透過部材に無理な力がかかることがなくなり、損傷の懸
念が除去される。
The embodiment of FIG. 12 shows an example of a holding structure in which the risk of damage to the laser light transmitting member is extremely reduced. According to this structure, the cylindrical flange 14 is provided at the end portion of the light guide portion 14b of the laser light transmitting member 14 on the side of the total reflection mirror or the output mirror.
c is formed, and a peripheral surface 41t having an inner diameter larger than the diameter of the cylindrical flange 14c is formed in a recess formed on the outer wall surface of the storage container 41 and into which the laser light transmitting member 14 is inserted from the light guide portion 14b side. When the laser beam transmitting member 14 is held in the storage container 41, the ring-shaped airtight member fitted in the groove having the peripheral surface 41t, here the O-ring 43 is pushed and expanded by the outer peripheral surface of the cylindrical flange 14c. The laser light transmitting member 14 is stopped at an appropriate position while deforming the cross section of the O-ring, and then a plate-shaped cushioning member 45 made of, for example, ethylene tetrafluoride is applied to the right end face of the cylindrical flange, and the cushioning is performed. The laser light transmitting member 14 is further pushed into the storage container 41 by pressing the laser light transmitting member 14 further by using the bolt 50 with the pressing member 4 via the material 45 and tightening the bolt 50 until the pressing member 4 hits the storage container 41. Airtight and cannot escape to the outside of the container It is held in. At this time, the dimensions of each part are set so that a sufficiently large gap is formed between the surface 41r of the storage container 41 and the flange surface 14r. As shown in FIG. 13, this gap can be made sufficiently large because it is not necessary to compress the O-ring by a predetermined amount on the flange surface 14r, and it is practically impossible that this gap will be eliminated due to a mistake in machining. can do. In this way, by setting the airtight portion on the peripheral surface and taking the structure in which the laser light transmitting member is held in the storage container through the cushioning material so as not to be able to escape, the entire surface of the laser light transmitting member is a solid metal surface. The contact with the laser light transmitting member is avoided, and the laser light transmitting member is not unnecessarily applied with force, and the fear of damage is eliminated.

〔発明の効果〕〔The invention's effect〕

本発明においては、スラブ形固体レーザ装置を以上の
ように構成したので、以下のような効果が奏せられる。
In the present invention, since the slab type solid state laser device is configured as described above, the following effects can be obtained.

請求項1の装置では、冷却媒体として、水のように冷
却効果は大きいが光吸収も大きい冷却媒体を用いても、
光が吸収される光路長が実質的になくなるため、レーザ
媒体の斜端面から出力されるレーザ光のエネルギーがほ
とんど減殺されることなく収納容器外に得られ、冷却媒
体の冷却能力をフルに生かした,大出力装置の実現が可
能になった。
In the device of claim 1, even if a cooling medium having a large cooling effect but a large light absorption is used as the cooling medium,
Since the optical path length for absorbing light is substantially eliminated, the energy of the laser light output from the slanted end face of the laser medium can be obtained outside the storage container with almost no loss, making full use of the cooling capacity of the cooling medium. In addition, it has become possible to realize a large output device.

請求項2の装置では、冷却媒体が、レーザ媒体の斜端
面とレーザ光透過部材の対向面との間の狭隘な間隙を強
制的にかつ高速で通過し、このような流路構成としない
場合に生じうる,レーザ媒体斜端面とレーザ光透過部材
対向面との対向間隙中の冷却媒体の低移動速度に基づく
レーザ媒体斜端面,レーザ光透過部材対向面への水垢等
の付着やレーザ光の高エネルギー密度に基づく付着物の
焼付き,斜端面,対向面の焼損などの恐れがなく、面が
常に清浄に保たれ、高出力を安定して維持することがで
きるという重要な効果が得られる。
In the apparatus of claim 2, when the cooling medium is forced to pass through a narrow gap between the slant end surface of the laser medium and the facing surface of the laser light transmitting member at a high speed, and such a flow path configuration is not provided. Caused by the low moving speed of the cooling medium in the facing gap between the beveled end surface of the laser medium and the facing surface of the laser beam transmitting member, the adhesion of water stains or the like to the beveled end surface of the laser medium or the facing surface of the laser beam transmitting member or the laser beam There is no risk of sticking of deposits due to high energy density, burn-out of the beveled surface or the opposing surface, the surface is always kept clean, and the important effect that high output can be stably maintained is obtained. .

請求項3の装置では、通常ガラス製のランプが用いら
れる励起光源ランプの寿命がきたときのランプ交換時の
ランプの取付け状態が悪かったり、あるいは何らかの原
因によってランプが運転中に破壊するようなことがあっ
ても、ガラスの破片がレーザ媒体の斜端面やレーザ光透
過部材を傷つけ、これによりレーザ出力が低下したり、
あるいは微小な傷が装置のパルス運転時の繰返し熱応力
によってクラックに進展,破壊する懸念が除去される。
In the device according to claim 3, the lamp is not mounted properly when the lamp is replaced when the life of the excitation light source lamp, which is usually made of glass, is exhausted, or the lamp is destroyed during operation due to some cause. Even if there is, the broken glass damages the beveled surface of the laser medium and the laser light transmitting member, which reduces the laser output,
Alternatively, it eliminates the concern that minute scratches may develop and break into cracks due to repeated thermal stress during pulse operation of the device.

請求項4の装置では、冷却媒体が収納容器内のすべて
の被冷却部材を直列に冷却し、冷却媒体の流量と冷却効
果との関係が一義的に決まるため、冷却媒体を収納容器
内へ送り込むポンプの容量を、必要な冷却効果に応じて
無駄なく適正に決めることができる。
In the apparatus of claim 4, the cooling medium cools all the members to be cooled in the storage container in series, and the relationship between the flow rate of the cooling medium and the cooling effect is uniquely determined. Therefore, the cooling medium is sent into the storage container. The capacity of the pump can be appropriately determined without waste according to the required cooling effect.

請求項5の装置では、流路の構成が著しく単純化さ
れ、分岐した流路相互間に流れの抵抗の差が生じうるも
のの、流れの抵抗が大きい方の流路に流れる冷却媒体
が、必要な冷却効果が得られる流量となるようにポンプ
容量を大きくすることにより、装置全体として十分な冷
却が得られ、かつポンプ容量の増加に伴うコスト上昇分
は、流路構成の単純化によるコスト低減により実質的に
これを補うことができる。従って、すべての被冷却部材
を直列に冷却する流路構成で必要とする流量に対してポ
ンプ容量に余裕がある場合には、コスト面のメリットが
得られる。
According to the apparatus of claim 5, although the structure of the flow passage is remarkably simplified and a difference in flow resistance may occur between the branched flow passages, a cooling medium flowing in the flow passage having the larger flow resistance is required. By increasing the pump capacity so that the flow rate can achieve a sufficient cooling effect, sufficient cooling can be obtained for the entire device, and the cost increase due to the increase in pump capacity can be reduced by simplifying the flow path configuration. Can substantially compensate for this. Therefore, if there is a margin in the pump capacity with respect to the flow rate required for the flow path configuration for cooling all the cooled members in series, a cost advantage can be obtained.

請求項6の装置では、レーザ光透過部材が、その周面
で、また軸方向に収納容器の固い金属面と接触すること
なく保持され、レーザ光透過部材表面の損傷が防止され
るとともに、装置組立て時あるいは点検時に無理な力が
かかる恐れがなくなり、前記冷却媒体の流路構成とあい
まって装置の信頼性が一層向上する。
In the device according to claim 6, the laser light transmitting member is held by the peripheral surface thereof and without coming into contact with the hard metal surface of the storage container in the axial direction, thereby preventing damage to the surface of the laser light transmitting member and at the same time, the device. There is no fear that an unreasonable force will be applied at the time of assembly or inspection, and the reliability of the device will be further improved in combination with the above-mentioned cooling medium flow path configuration.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によるレーザ光透過部材を備えたスラブ
形固体レーザ装置の第1の実施例による構成を示す縦断
面図、第2図ないし第4図は同じく本発明によるレーザ
光透過部材を備えたスラブ形固体レーザ装置の第2の実
施例による構成を示すものであって、第2図は縦断面
図、第3図は第2図のA−A線に沿う横断面図、第4図
は第3図のB−B線に沿う水平断面図、第5図は本発明
によるレーザ光透過部材を備えたスラブ形固体レーザ装
置の第3の実施例による構成を示す縦断面図、第6図は
第5図各部の断面を示す図であって同図(a),
(b),(c)はそれぞれ第5図におけるC−C線,D−
D線,E−E線に沿う断面図、第7図は本発明によるレー
ザ光透過部材を備えたスラブ形固体レーザ装置の第4の
実施例を示す縦断面図、第8図は第7図各部の断面を示
す図であって同図(a),(b),(c)はそれぞれ第
7図におけるF−F線,G−G線,H−H線に沿う断面図、
第9図は本出願人が先に提案したスラブ形固体レーザ装
置の構成例を示す断面図、第10図は第5図に示すレーザ
媒体の側面構造を示す断面図、第11図は従来のスラブ形
固体レーザ装置の構成例を示す断面図、第12図は本発明
の第5の実施例によるレーザ光透過部材の保持構造を示
す断面図、第13図は第1図におけるレーザ光透過部材ま
わりの詳細を示す断面図である。 1,11,15,41:収納容器、2,2A,2B:励起光源、3:押さえ部
材、7:スラブ保持具、8:透明板、9:流路、10:レーザ媒
体、10a:斜端面、10b:側面、12:熱絶縁体、4,14:レーザ
光透過部材、14a:端面、14b:導光部、14c:円柱状フラン
ジ、21:全反射ミラー、22:出力ミラー(部分反射ミラ
ー)、32a,32b,32c,32d,32e,32f,32g,32h,32i,32j,35a,
35b,35c,35d,35e,35f,35g,35h,35i,35j,35k:流路、C:冷
却媒体、EL:励起光、L:レーザ光、41t:周面。
FIG. 1 is a longitudinal sectional view showing a structure of a slab type solid-state laser device having a laser light transmitting member according to the present invention according to a first embodiment, and FIGS. 2 to 4 show a laser light transmitting member according to the present invention. 2 shows a configuration of a slab type solid-state laser device provided according to a second embodiment, FIG. 2 is a longitudinal sectional view, FIG. 3 is a lateral sectional view taken along the line AA of FIG. 2, and FIG. FIG. 5 is a horizontal sectional view taken along the line BB of FIG. 3, and FIG. 5 is a longitudinal sectional view showing a structure of a slab type solid-state laser device having a laser light transmitting member according to a third embodiment of the present invention. FIG. 6 is a diagram showing a cross section of each part in FIG.
(B) and (c) are respectively C-C line and D- in FIG.
Sectional views taken along the lines D and E-E, FIG. 7 is a longitudinal sectional view showing a fourth embodiment of a slab type solid-state laser device provided with a laser light transmitting member according to the present invention, and FIG. 8 is FIG. It is a figure which shows the cross section of each part, Comprising: (a), (b), (c) is sectional drawing which follows the FF line in FIG. 7, GG line, and HH line, respectively.
FIG. 9 is a sectional view showing a structural example of a slab type solid-state laser device previously proposed by the applicant, FIG. 10 is a sectional view showing a side structure of the laser medium shown in FIG. 5, and FIG. FIG. 12 is a sectional view showing a configuration example of a slab type solid-state laser device, FIG. 12 is a sectional view showing a holding structure of a laser light transmitting member according to a fifth embodiment of the present invention, and FIG. 13 is a laser light transmitting member in FIG. It is sectional drawing which shows the details of circumference | surroundings. 1,11,15,41: storage container, 2,2A, 2B: excitation light source, 3: pressing member, 7: slab holder, 8: transparent plate, 9: flow path, 10: laser medium, 10a: beveled surface , 10b: side surface, 12: thermal insulator, 4, 14: laser light transmitting member, 14a: end face, 14b: light guide section, 14c: cylindrical flange, 21: total reflection mirror, 22: output mirror (partial reflection mirror) ), 32a, 32b, 32c, 32d, 32e, 32f, 32g, 32h, 32i, 32j, 35a,
35b, 35c, 35d, 35e, 35f, 35g, 35h, 35i, 35j, 35k: flow path, C: cooling medium, EL: excitation light, L: laser light, 41t: peripheral surface.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レーザ光を全反射する1対の板面と、熱絶
縁された1対の側面と,レーザ光が出入りする1対の斜
端面とをもつスラブ状体に形成されたレーザ媒体が、該
レーザ媒体の両板面を照射する1対の励起光源と,冷却
媒体とを収納する収納容器内に両斜端面が冷却媒体と接
するように全長にわたり収納,保持されるとともに該レ
ーザ媒体の両斜端面に対向する前記収納容器の両開口部
にそれぞれレーザ光透過部材が気密に取り付けられ、該
収納容器の外部に前記レーザ光透過部材とそれぞれ対向
して全反射ミラーおよび出力ミラーが配置されてなるス
ラブ形固体レーザ装置において、前記レーザ光透過部材
がいずれも、収納容器に取り付けられた状態でレーザ媒
体の斜端面と平行にかつ該斜端面の全面に実質的に接触
状態に対向する端面を備えた導光部を有することを特徴
とするスラブ形固体レーザ装置。
1. A laser medium formed in a slab-like body having a pair of plate surfaces for totally reflecting laser light, a pair of heat-insulated side surfaces, and a pair of beveled surfaces for entering and exiting laser light. However, the laser medium is housed and held over the entire length so that both slanted end surfaces are in contact with the cooling medium and a pair of excitation light sources for irradiating both plate surfaces of the laser medium and the cooling medium. Laser light transmitting members are airtightly attached to both openings of the storage container facing both the slanted end faces, and a total reflection mirror and an output mirror are disposed outside the storage container so as to face the laser light transmission member. In the slab type solid-state laser device, the laser light transmitting member is parallel to the slant end face of the laser medium and is substantially in contact with the entire slant end face in a state of being attached to the container. end Slab type solid-state laser apparatus, comprising a light guide portion having a.
【請求項2】請求項第1項に記載のスラブ形固体レーザ
装置において、レーザ媒体の1対の板面を両側から該板
面と平行にかつ該板面と間隔をおいて挟む1対の透明板
と、該1対の透明板の間に該レーザ媒体を保持するスラ
ブ保持具とを用いて該1対の板面に沿う冷却媒体の流れ
を形成する区画された流路が形成され、冷却媒体がこの
流路を通過した後、レーザ媒体の一方の斜端面とレーザ
光透過部材との対向間隔と,レーザ媒体の他方の斜端面
とレーザ光透過部材との対向間隔とを順に通過するよう
に収納容器内の冷却媒体の流路が形成されていることを
特徴とするスラブ形固体レーザ装置。
2. A slab type solid state laser device according to claim 1, wherein a pair of plate surfaces of the laser medium are sandwiched from both sides in parallel with the plate surface and at a distance from the plate surface. A cooling medium is formed by using a transparent plate and a slab holder that holds the laser medium between the pair of transparent plates to form a partitioned flow path that forms a flow of the cooling medium along the pair of plate surfaces. After passing through this flow path, one of the oblique ends of the laser medium and the laser beam transmitting member face each other, and the other oblique end face of the laser medium and the laser beam transmitting member face each other. A slab type solid-state laser device having a flow path for a cooling medium in a storage container.
【請求項3】請求項第1項に記載のスラブ形固体レーザ
装置において、レーザ媒体の1対の板面を両側から該板
面と平行にかつ該板面と間隔をおいて挟む1対の透明板
と、該1対の透明板の間に該レーザ媒体を保持するスラ
ブ保持具とを用いて収納容器内の空間がレーザ媒体およ
びレーザ光透過部材を包む空間と、励起光源を包む空間
とに区画され、冷却媒体がレーザ媒体およびレーザ光透
過部材を冷却後、冷却行程の最終段階で励起光源を冷却
するように流路が形成されていることを特徴とするスラ
ブ形固体レーザ装置。
3. A slab type solid state laser device according to claim 1, wherein a pair of plate surfaces of the laser medium are sandwiched from both sides in parallel with the plate surface and at a distance from the plate surface. Using a transparent plate and a slab holder that holds the laser medium between the pair of transparent plates, the space inside the container is divided into a space that encloses the laser medium and the laser light transmitting member and a space that encloses the excitation light source. The slab type solid-state laser device is characterized in that a flow path is formed so that the cooling medium cools the laser medium and the laser light transmitting member and then cools the excitation light source at the final stage of the cooling process.
【請求項4】請求項第3項に記載のスラブ形固体レーザ
装置において、レーザ媒体およびレーザ光透過部材を包
む空間が、スラブ保持具をレーザ媒体の両斜端面近傍に
配することにより3分されるとともに、1対の励起光源
を包む空間がレーザ媒体およびレーザ光透過部材を包む
空間を挟んでそれぞれ1つの励起光源を包む2つの空間
に2分され、冷却媒体が両スラブ保持具間の空間内へ流
入した後、一方の斜端面が位置する空間,他方の斜端面
が位置する空間,一方の励起光源を包む空間,他方の励
起光源を包む空間を順に通過するように冷却媒体の流路
が形成されていることを特徴とするスラブ形固体レーザ
装置。
4. The slab type solid-state laser device according to claim 3, wherein the space surrounding the laser medium and the laser light transmitting member is 3 minutes by arranging the slab holder near both oblique end faces of the laser medium. At the same time, the space that encloses the pair of excitation light sources is divided into two spaces that enclose the laser medium and the laser light transmitting member, and that encloses one excitation light source. After flowing into the space, the flow of the cooling medium so as to sequentially pass through the space where one beveled surface is located, the space where the other beveled surface is located, the space that encloses one excitation light source, and the space that encloses the other excitation light source. A slab-type solid-state laser device having a path formed therein.
【請求項5】請求項第3項に記載のスラブ形固体レーザ
装置において、レーザ媒体およびレーザ光透過部材を包
む空間が、スラブ保持具をレーザ媒体の両斜端面近傍に
配することにより3分されるとともに、1対の励起光源
を包む空間がレーザ媒体およびレーザ光透過部材を包む
空間を挟んでそれぞれ1つの励起光源を包む2つの空間
に2分され、冷却媒体が両スラブ保持具間の空間内へ流
入した後流路が2つに分岐され、分岐された冷却媒体が
それぞれ、一方の斜端面が位置する空間,一方の励起光
源を包む空間と、他方の斜端面が位置する空間,他方の
励起光源を包む空間とをそれぞれ順に通過するように冷
却媒体の流路が形成されていることを特徴とするスラブ
形固体レーザ装置。
5. The slab type solid-state laser device according to claim 3, wherein the space surrounding the laser medium and the laser light transmitting member is 3 minutes by arranging the slab holder near both oblique end faces of the laser medium. At the same time, the space that encloses the pair of excitation light sources is divided into two spaces that enclose the laser medium and the laser light transmitting member, and that encloses one excitation light source. After flowing into the space, the flow path is branched into two, and the branched cooling medium has a space in which one beveled surface is located, a space that encloses one excitation light source, and a space in which the other beveled surface is located, A slab-type solid-state laser device, wherein a flow path of a cooling medium is formed so as to sequentially pass through a space surrounding the other excitation light source.
【請求項6】請求項第1項に記載のスラブ形固体レーザ
装置において、レーザ光透過部材が、導光部の全反射ミ
ラーまたは出力ミラー側端部に円柱状フランジを形成さ
れ、収納容器の外壁面に該レーザ光透過部材を導光部側
から挿入可能な凹部が形成されるとともに該凹部に前記
円柱状フランジの外周面との間にリング状空隙を形成す
る周面が形成され、該リング状空隙にリング状気密部材
が介装されるとともに、レーザ光透過部材が円柱状フラ
ンジの導光部側端面と前記凹部の底面との間に空隙を保
ちかつ円柱状フランジの反導光部側端面側で緩衝部材を
介して収納容器外へ脱出不可能に保持されていることを
特徴とするスラブ形固体レーザ装置。
6. The slab type solid-state laser device according to claim 1, wherein the laser light transmitting member has a cylindrical flange formed at the end portion of the light guide portion on the side of the total reflection mirror or the output mirror, and A concave portion into which the laser light transmitting member can be inserted from the light guide portion side is formed on the outer wall surface, and a peripheral surface which forms a ring-shaped space between the concave portion and the outer peripheral surface of the cylindrical flange is formed. A ring-shaped airtight member is interposed in the ring-shaped space, and the laser light transmission member maintains a space between the end surface of the cylindrical flange on the light guide portion side and the bottom surface of the recess and the anti-light guide portion of the cylindrical flange. A slab-type solid-state laser device characterized in that the slab-type solid-state laser device is held on the side end face side via a cushioning member so as not to be able to escape from the storage container.
JP32407190A 1990-01-22 1990-11-27 Slab type solid state laser device Expired - Fee Related JP2674312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32407190A JP2674312B2 (en) 1990-01-22 1990-11-27 Slab type solid state laser device

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP1217190 1990-01-22
JP2631590 1990-02-06
JP29452690 1990-10-31
JP2-12171 1990-10-31
JP2-26315 1990-10-31
JP2-294526 1990-10-31
JP32407190A JP2674312B2 (en) 1990-01-22 1990-11-27 Slab type solid state laser device

Publications (2)

Publication Number Publication Date
JPH04214687A JPH04214687A (en) 1992-08-05
JP2674312B2 true JP2674312B2 (en) 1997-11-12

Family

ID=27455746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32407190A Expired - Fee Related JP2674312B2 (en) 1990-01-22 1990-11-27 Slab type solid state laser device

Country Status (1)

Country Link
JP (1) JP2674312B2 (en)

Also Published As

Publication number Publication date
JPH04214687A (en) 1992-08-05

Similar Documents

Publication Publication Date Title
JP6722761B2 (en) High Power Planar Waveguide (PWG) Pump Head with Modular Components for High Power Laser Systems
JP6550539B2 (en) Integrated pump light homogenizer and signal injector for high power laser systems
JPH03190293A (en) Slab type laser medium
JP2020141144A (en) Planar waveguides with enhanced support and/or cooling features for high-power laser systems
JP2674312B2 (en) Slab type solid state laser device
JPH02257684A (en) Lasers being pumped optically
JP2000082860A (en) Solid-state laser device
US4993041A (en) Laser provided with an improved securing arrangement for its active medium and securing arrangement intended for the laser
US10587088B2 (en) Solid-state laser device
JP4333342B2 (en) Laser processing equipment
US20050147140A1 (en) Integrated laser cavity with transverse flow cooling
JP4560317B2 (en) Faraday rotator
JP2003080390A (en) Light absorption device for high intensity laser beam
EP1670104B1 (en) Solid-state laser pumped module and laser oscillator
JPH05190940A (en) Solid laser equipment
JPH1187813A (en) Solid laser oscillator
JP2588931B2 (en) Solid state laser
KR100212114B1 (en) Polarization apparatus of high power laser
JPH0661550A (en) Solid-state laser device
JPH06260701A (en) Laser oscillation device
JPH0451495Y2 (en)
JPH0466396B2 (en)
WO1996034438A1 (en) Laser oscillator
JP2009054838A (en) Solid-state laser module
JPH08330648A (en) Solid-state laser oscillator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees