JP2674002B2 - Image defect evaluation device for electrophotographic photoconductor - Google Patents

Image defect evaluation device for electrophotographic photoconductor

Info

Publication number
JP2674002B2
JP2674002B2 JP59051836A JP5183684A JP2674002B2 JP 2674002 B2 JP2674002 B2 JP 2674002B2 JP 59051836 A JP59051836 A JP 59051836A JP 5183684 A JP5183684 A JP 5183684A JP 2674002 B2 JP2674002 B2 JP 2674002B2
Authority
JP
Japan
Prior art keywords
electrode
drum
defect evaluation
photosensitive surface
photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59051836A
Other languages
Japanese (ja)
Other versions
JPS60195578A (en
Inventor
正彦 笠原
奨 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59051836A priority Critical patent/JP2674002B2/en
Publication of JPS60195578A publication Critical patent/JPS60195578A/en
Application granted granted Critical
Publication of JP2674002B2 publication Critical patent/JP2674002B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/50Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control
    • G03G15/5033Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the photoconductor characteristics, e.g. temperature, or the characteristics of an image on the photoconductor
    • G03G15/5037Machine control of apparatus for electrographic processes using a charge pattern, e.g. regulating differents parts of the machine, multimode copiers, microprocessor control by measuring the photoconductor characteristics, e.g. temperature, or the characteristics of an image on the photoconductor the characteristics being an electrical parameter, e.g. voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は電子写真感光体によつて形成される畫像のノ
イズ等の欠陥(畫像欠陥と呼ぶ)を非接触で評価する評
価装置に関する。 〔従来技術とその問題点〕 以下各図の説明において同一の符号は同一又は相当部
分を示す。 第1図はこの種の電子写真用感光体(以下ドラムと呼
ぶ)の主な用途としての複写機の構成を示す。同図にお
いてDは円筒状のドラムでその外周面静電潜像を形成す
る半導体の感光層からなる感光面をもち図中矢印の回転
方向AXRに回転自在に支持されている。CH1はドラムDに
前記潜像形成のため事前にコロナ放電による帯電を施す
コロナ放電器、EXはドラムDに露光を施すし文字パター
ンなどの潜像を形成させる半導体レーザ光源などを持つ
露光手段、DVは前記潜像にトナーなどの現像剤を附着さ
せて現像を行う現像器、Pは前記の現像された畫像を転
写するコピー用紙などの転写材、CH2はこの転写を行う
ための転写コロナ帯電器、CLはドラムD上に残留する現
像剤を除去するクリーニング手段、DCHはドラムD上の
残留電荷を青色光などの照射によつて除去する(光除電
という)蛍光燈などの除電器である。 従来ドラムンDの畫像欠陥評価法としては官能検査及
び複写機による畫像無しにより評価する方法が知られて
いる。 複写機で畫像出しをするためには、第1図で述べたよ
うな複写機にドラムDを装着し、畫像出しをする。そし
て、畫像出しの後ドラムDを脱着し、ドラム表面に付着
した現像剤などを取り除く作業が必要であり、さらに、
転写材P,現像剤などを費やすので、合せてかなりの時間
と費用を費やすという欠陥がある。 又、ドラムDの装着・脱着を簡単にした畫像評価装置
として“ノイズ・テスター”といわれるものもあるが、
やはり畫像出しをした後、ドラム表面に付着した現像剤
を取り除く作業が必要である。このようにしてこれら装
置より取り出した畫像は、いずれも人間が目で見て合否
の判定(官能検査)をするため測定誤差が生じたり、測
定精度を上げようとすると時間がかかつてしまうという
欠点がある。 〔発明の目的〕 本発明は前述の欠点を除き複写機での畫像出し及び畫
像出しにおける複雑な作業等を必要とせず、非接触でド
ラムに起因する静電潜像の欠陥を正確に評価装置を提供
することを目的とする。 〔発明の要点〕 本発明の要点は、円筒又は平面状の金属の基体の外周
面又は該平面上に、静電画像用の感光層を附し感光面を
形成せしめた電子写真用の感光体(ドラムなど)と、前
記感光層にほぼ均一に所定電位の帯電を行わせる手段
(コロナ放電器など)と、前記感光面に対し空隙を介し
て対向し、かつ前記面に平行で一列に設けられた複数個
の金属電極(センサ電極)からなる電極列と、該電極列
を一体に保持する線状の保持手段(電極支持体)と、前
記感光面を前記電極列にて走査するために、前記保持手
段と前記感光体とを駆動する手段(モータなど)と、前
記感光面状における前記電極列中の各電極の走査位置を
検出する走査位置検出手段と、前記の各電極の電位を検
出する電極電位検出手段(分圧コンデンサ、増巾器、A/
Dマルチプレクサ、CPUなど)と、前記走査位置検出手
段、電極電位検出手段の手段の検出信号を入力し、前記
感光面上の電位マップを作成する手段(CPUなど)とか
らなり、前記感光面と電極との間の最小空隙(ギャッ
プ)が1mm以下であることを特徴とする電子写真用感光
体の畫像欠陥評価装置にある。また、前記複数個の金属
電極からなる電極列は、感光面上に互いに所定の間隔を
置いて設けられたものであるようにした点と、前記電極
列が対向する前記感光面の法線方向に投影した投影の最
大の外径が1mm以下であるようにした点と、前記電極の
相互の間隔は1〜100mmの範囲にあるようにした点とに
ある。 〔発明の実施例〕 以下本発明を第2図〜第5図に基づいて説明する。第
2図は本発明の原理装置を示す構成図、第3図は第2図
で得られた測定値の例を示す図、第4図は本発明の構成
例を示す図、第5図は第4図装置の測定結果の1例を示
す図である。 第2図において、AXDはドラムDの軸(回転軸にもな
る)、D1はドラムD上の感光層、D2は感光層の基部とな
るアルミなどの金属筒である。DFは感光層D1内の欠陥部
であり、この場合円形状の欠陥部を想定したときその直
径(欠陥径と呼ぶ)を2Sとする。2はドラムDの円筒面
にギャップgで対向する円形断面の細い金属柱状のセン
サ電極で、AX2はその軸、2aはその直径(電極径と呼
ぶ)であり、軸AX2はドラムDの感光面の法線方向に向
つている。xは欠陥部DFの中心とセンサ電極2の中心と
の距離(欠陥距離と呼ぶ)である。また3はセンサ電極
2に誘起する電圧を増巾する高入力インピーダンスの増
巾器、4はセンサ電国2と大地間に設けられた分圧用コ
ンデンサ、SGは増巾器3から取出される検出電圧であ
る。なおドラムDは第1図のように図外のコロナ帯電器
CH1により所定の電位にほぼ均一に帯電されると共に、
図外の除電器により前記検出電圧の測定後除電が行われ
る。 さてほぼ均一に帯電されたドラムDではあるが、これ
によつてセンサ電極2上に誘起される電荷は主として、
ドラムDの表面上の欠陥部DFを含む電極近傍の感光面を
作る電解成分のうち、センサ電極2の表面の法線成分に
比例する。従つて前記電荷従ってセンサ電極2の電位は
欠陥部DFの影響を受けることになる。 第3図は第2図の原理装置で測定された測定値の例を
示し、図(A)は電極径2a=1.00mm、ギヤツプg=1.50
mm、欠陥距離x=1.25mm、の条件のもとで欠陥径2S(m
m)の大きさが変化した場合の検出電圧SGの変化の比率
(低下率)を示す。すなわち同図は欠陥径2Sが0の場合
の検出電圧SGを1とし、欠陥径2Sの増大と共に検出電圧
SGが低下する量を比率で示したものである。 この結果は検出電圧SGの低下率10%,20%,50%に対応
する欠陥径2Sはそれぞれ0.62,1.24,2.78(各mm)であ
り、所定の条件でこの低下率又は低下量を測定すること
によつて欠陥部の大きさを評価できることが判る。 図(B)は欠陥距離x=0、すなわちセンサ電極2の
真下に欠陥部DFがある場合において、電極径2aをパラメ
ータとしてそれぞれ2.0,1.0,0.5(各mm)としたときの
ギヤツプgと有効検出可能な欠陥径2S(欠陥径分解能と
呼ぶ)との関係を示す。ただしこの場合、この欠陥径分
解能は欠陥径2S=0すなわち欠陥なしの場合の検出電圧
SGの大きさを1とし、この大きさが20%低下したときの
欠陥径2Sの値を示している。 この図から仮に0.5の欠陥径2Sを検出するものとすれ
ば、次の条件が得られる。 1) ドラムDとセンサ電極2とギヤツプgを1mm以下
とする。 2) センサ電極2の電極径2aとしては1mm以下であれ
ばよい。 ただしセンサ電極2の軸AX2に直交する平面による断
面は円形に限られず四角形などの任意の形状でもよく、
上記の電極径2aの値はセンサ電極3の断面の最大外径の
目安を示すものと考えてよい。又センサ電極2のドラム
Dへの対向面S1の形状は第2図のように平面であること
は必ずしも必要ではなく、センサ電極2とドラムD間に
形成される静電容量が所定の値であれば、球面,円錐面
などの形状であつても差支えない。なおこの時は前記ギ
ヤツプgは最小のギヤツプを言う。従つて電極2の柱状
部の長さl1は0を含む所定の任意の長さとすることもで
きる。 次に図(C)は電極径2a=1.0mmとした場合におい
て、ギヤツプgをそれぞれ1.5,1.0,0.5(各mm)とした
ときの、欠陥距離xと図(B)と同様な欠陥径分解能と
の関係を示す。この図から図(B)と同様に0.5mmの欠
陥径2Sを有効に検出するものとすれば次の条件が得られ
る。 3) 欠陥部DFとセンサ電極2との中心距離としての欠
陥距離xは0.5mm以下とする必要がある。 従つて後述のようにドラムDを回転させながらセンサ
電極2をドラムDの軸AXDの方向に平行移動させてドラ
ム円筒周面の欠陥部DFを検出する場合ドラムDの1回転
に対するセンサ電極2の送りピツチは0.5mm以下とする
必要がある。 他方この場合の試験時間としては、ドラム軸長L=30
0mmとして、このようなセンサ電極2をアレイ状に10mm
間隔で30個等間隔に並べれば、送りピツチ0.5mmで1電
極当り10mmの送り距離を走査する時間はドラム20回転
分、従つてドラムDを20rpmで回転させれば約1分で終
了することになる。 このためには直径120mmのドラムの場合、20rpmにおけ
る周速度は126mm/secとなるので、0.5mmの欠陥部DFの通
過時間は約4msecである。これを精度良く検出するに
は、サンプリング時間は少くとも0.4msecで行う必要が
ある。また検出回路の時定数もこの程度は必要である。
また、30ケのアレイで検出するため、A/D変換速度は10
〜20μsecでなければならない。この時のデータ数はセ
ンサ1ケ当り、1周分で7.5kwordである。 と言うように各種の試験条件が得られる。 次に第4図について説明すると、同図は第2図,第3
図で述べた原理,条件などを基に実際のドラムD上の欠
陥部DFを検出するための畫像欠陥評価装置であり、1は
ドラム駆動モータ、2はアレイ状のセンサ電極、5は前
記の多数のセンサ電極2の支持体(電極支持体と呼ぶ)
2FをドラムDの軸AXDの方向に前後に駆動する電極駆動
モータ、6はドラムDの回転位置を検出するドラム回転
位置検出部、9は同じく回転位置検出のためのエンコー
ダである。 また7はドラム回転位置検出部6の出力信号を入力し
ドラムDの回転位置などを表示するドラム回転表示部、
8はセンサ電極2の各々に対応して設けられている増巾
器の出力電圧をA/D変換してCPUに入力するA/Dマルチプ
レクサ、10はドラム駆動モータ1と電極駆動モータ5を
制御するとともに、ドラム回転表示部を介して得られる
ドラムDの回転位置信号,A/Dマルチプレクサ8から入力
されるセンサ電極2の検出電圧を入力して欠陥部DFの位
置を判別する制御用のCPUである。 すなわちドラムDがドラム駆動モータ1を介して回転
方向AXRに回転せしめられるとき、ドラムDの感光面は
コロナ帯電器CH1によつてほぼ均一に所定の電位に帯電
されつつ、センサ電極2の下に来て、電極2の各々を介
して各増巾器2から検出電圧SGを出力させる。又ドラム
回転位置検出部6はドラムDの端面に附されたエンコー
ダ9を介してドラムDの回転とその位置を検出し、その
出力信号をドラム回転表示部7に与えて回転位置を表示
するとともに、表示部7の出力信号はCPUに与えられてC
PUはドラムDのその時々の回転位置を知る。 他方センサ電極2の各々は電極駆動モータ5,電極支持
体2Fを介してドラムDの回転と同期してCPU10により所
定の送りピツチで軸AXDの方向に送られ、ドラムDの周
上を走査する。このようにして検出電圧SGはA/Dマルチ
プレクサ8を介して、CPU10により読取られ、CPU10はド
ラムDの感光面上の電位マツプを作成する。CPU10には
あらかじめ畫像評価の基準のデータをインプツトしてお
くことにより、合否の判定および欠陥部DFの位置や大き
さを表示することなどができる。 第5図は第4図の畫像欠陥評価装置を用いて実際にド
ラムD表面上に種々の大きさの疵をつけ、これを光学顕
微鏡で確認した値と、畫像欠陥評価装置で測定した値と
を対比したものである。同図から明らかなように本装置
で実用上充分な精度をもつて欠陥部の検出を行えること
が判る。 なお本発明において欠陥評価の対象としての感光体
は、平面状の感光面を有するものであつても、これはド
ラムDの感光面の曲率半径が無限大となつたものと考え
ることができ、本発明による欠陥評価が可能である。 又前記の複数のセンサ電極2は互に軸AX2が平行に所
定間隔で並ぶものとしたが、このようにすることは電位
マツプの作成が容易となる利点はあるが、必須の条件で
はなく、例えばドラムンDの感光面に沿う所定ピツチの
スパイラル曲線上において、所定の間隔で並ぶようなも
のであつてもよい。 〔発明の効果〕 以上の説明から明らかなように、本発明によれば、円
柱面又は平面状の感光面と空隙をもつて対向する、細い
棒状などの複数個の電極からなる電極列を設け、これら
の電極を一体に保持して、感光面の走査を行うようにし
たため、短時間で感光面の電位分布を検知することによ
つて、感光面上の欠陥の評価を行うことができる。
Description: TECHNICAL FIELD The present invention relates to an evaluation device for non-contact evaluation of defects such as noise in a ridge image formed by an electrophotographic photosensitive member (referred to as ridge image defect). [Prior Art and Problems Thereof] In the following description of the drawings, the same reference numerals indicate the same or corresponding portions. FIG. 1 shows the structure of a copying machine as a main application of this type of electrophotographic photosensitive member (hereinafter referred to as a drum). In the figure, D is a cylindrical drum, which has a photosensitive surface made of a semiconductor photosensitive layer forming an electrostatic latent image on its outer peripheral surface, and is rotatably supported in a rotation direction AXR indicated by an arrow in the figure. CH1 is a corona discharger that charges the drum D in advance by corona discharge to form the latent image, and EX is an exposure unit having a semiconductor laser light source that exposes the drum D and forms a latent image such as a character pattern. DV is a developing device for developing by attaching a developer such as toner to the latent image, P is a transfer material such as copy paper for transferring the developed ridge image, and CH2 is a transfer corona charge for performing this transfer. A container, CL is a cleaning means for removing the developer remaining on the drum D, and DCH is a static eliminator such as a fluorescent lamp for removing the residual electric charge on the drum D by irradiating with blue light or the like (referred to as optical neutralization). . Conventionally, as a method of evaluating the image defect of the drum D, there is known a method of performing a sensory inspection and an image evaluation by a copying machine without the image. In order to print the image on the copying machine, the drum D is mounted on the copying machine as shown in FIG. 1 and the image is printed. Then, it is necessary to detach the drum D after the ridge image is formed and remove the developer and the like adhering to the drum surface.
Since the transfer material P, the developer, etc. are consumed, there is a defect that a considerable amount of time and cost are spent together. There is also a so-called "noise tester" as an image evaluation device that makes it easy to attach and detach the drum D.
After the ridge image is formed, it is necessary to remove the developer adhering to the surface of the drum. In this way, all the ridge images taken out from these devices have a drawback that humans visually judge pass / fail (sensory test), resulting in measurement error, and it takes time to improve measurement accuracy. There is. [Object of the Invention] Except for the above-mentioned drawbacks, the present invention does not require ridge image formation in a copying machine and complicated work in ridge image formation, and accurately evaluates a defect of an electrostatic latent image caused by a drum in a non-contact manner. The purpose is to provide. [Main points of the invention] The main point of the present invention is to provide a photoreceptor for electrophotography in which a photosensitive layer for an electrostatic image is attached to the outer peripheral surface of a cylindrical or planar metal substrate or on the flat surface to form a photosensitive surface. (A drum, etc.), a means (a corona discharger, etc.) for uniformly charging the photosensitive layer to a predetermined potential, are provided in a row in opposition to the photosensitive surface via a gap and parallel to the surface. An electrode array composed of a plurality of metal electrodes (sensor electrodes) formed in a line, a linear holding means (electrode support) that integrally holds the electrode array, and the photosensitive surface for scanning with the electrode array. , A means for driving the holding means and the photosensitive member (motor or the like), a scanning position detecting means for detecting a scanning position of each electrode in the electrode array on the photosensitive surface, and a potential of each electrode. Electrode potential detection means (voltage divider, amplifier, A /
D multiplexer, CPU, etc.) and means for inputting the detection signals of the scanning position detecting means, the electrode potential detecting means, and creating a potential map on the photosensitive surface (CPU, etc.). A minimum defect (gap) between the electrode and the electrode is an image defect evaluation device for electrophotographic photoconductor, which is characterized by being 1 mm or less. Further, the electrode array composed of the plurality of metal electrodes is provided on the photosensitive surface at a predetermined distance from each other, and the direction of the normal line of the photosensitive surface to which the electrode array is opposed. The maximum outer diameter of the projected image is 1 mm or less, and the distance between the electrodes is in the range of 1 to 100 mm. [Examples of the Invention] The present invention will be described below with reference to FIGS. FIG. 2 is a block diagram showing the principle device of the present invention, FIG. 3 is a diagram showing an example of the measured values obtained in FIG. 2, FIG. 4 is a diagram showing a configuration example of the present invention, and FIG. 4 is a diagram showing an example of the measurement results of the apparatus. In FIG. 2, AXD is a shaft of the drum D (also serves as a rotation shaft), D1 is a photosensitive layer on the drum D, and D2 is a metal cylinder such as aluminum serving as a base of the photosensitive layer. DF is a defective portion in the photosensitive layer D1, and in this case, assuming a circular defective portion, its diameter (called a defect diameter) is 2S. Reference numeral 2 denotes a thin metal columnar sensor electrode having a circular cross section that faces the cylindrical surface of the drum D with a gap g. AX2 is its axis, 2a is its diameter (called the electrode diameter), and axis AX2 is the photosensitive surface of the drum D. It faces in the direction of the normal line. x is a distance between the center of the defect portion DF and the center of the sensor electrode 2 (referred to as a defect distance). Further, 3 is a widening device having a high input impedance for widening the voltage induced in the sensor electrode 2, 4 is a voltage dividing capacitor provided between the sensor electric country 2 and the ground, and SG is a detection taken out from the widening device 3. Voltage. The drum D is a corona charger (not shown) as shown in FIG.
It is almost uniformly charged to a predetermined potential by CH1, and
A static eliminator (not shown) removes static electricity after measuring the detected voltage. Although the drum D is almost uniformly charged, the charge induced on the sensor electrode 2 by this is mainly
It is proportional to the normal component of the surface of the sensor electrode 2 among the electrolytic components forming the photosensitive surface near the electrode including the defective portion DF on the surface of the drum D. Therefore, the charge, and thus the potential of the sensor electrode 2, is affected by the defect portion DF. FIG. 3 shows an example of measurement values measured by the principle device of FIG. 2, and FIG. 3A shows an electrode diameter 2a = 1.00 mm and a gear g = 1.50.
mm, defect distance x = 1.25 mm, defect diameter 2S (m
The rate of change (decrease rate) of the detection voltage SG when the magnitude of m) changes is shown. That is, in the figure, the detection voltage SG when the defect diameter 2S is 0 is set to 1, and the detection voltage SG increases as the defect diameter 2S increases.
The amount of SG reduction is shown as a ratio. As a result, the defect diameters 2S corresponding to the detection voltage SG reduction rates of 10%, 20%, and 50% are 0.62, 1.24, and 2.78 (each mm), and the reduction rate or reduction amount is measured under predetermined conditions. Therefore, it can be seen that the size of the defective portion can be evaluated. The figure (B) shows that when the defect distance x = 0, that is, when there is a defect portion DF directly below the sensor electrode 2, it is effective with the gear gap g when the electrode diameter 2a is set to 2.0, 1.0, 0.5 (each mm), respectively. The relationship with the detectable defect diameter 2S (called defect diameter resolution) is shown. However, in this case, this defect diameter resolution is the defect diameter 2S = 0, that is, the detection voltage when there is no defect.
The size of SG is set to 1, and the value of the defect diameter 2S when this size is reduced by 20% is shown. If the defect diameter 2S of 0.5 is detected from this figure, the following conditions are obtained. 1) Set the drum D, the sensor electrode 2, and the gear g to 1 mm or less. 2) The electrode diameter 2a of the sensor electrode 2 may be 1 mm or less. However, the cross section of the sensor electrode 2 taken along a plane orthogonal to the axis AX2 is not limited to a circle, and may be any shape such as a quadrangle.
It can be considered that the above-mentioned value of the electrode diameter 2a indicates a standard of the maximum outer diameter of the cross section of the sensor electrode 3. Further, the shape of the surface S1 of the sensor electrode 2 facing the drum D does not necessarily have to be a flat surface as shown in FIG. 2, and the capacitance formed between the sensor electrode 2 and the drum D has a predetermined value. As long as it has a spherical surface or a conical surface, it does not matter. At this time, the gear g is the smallest gear. Therefore, the length l1 of the columnar portion of the electrode 2 can be set to a predetermined arbitrary length including 0. Next, FIG. (C) shows the defect distance x and the same defect diameter resolution as in FIG. (B) when the electrode diameter 2a is 1.0 mm and the gear g is 1.5, 1.0, and 0.5 (each mm). Shows the relationship with. From this figure, if the defect diameter 2S of 0.5 mm is effectively detected as in the case of FIG. 3) The defect distance x as the center distance between the defect portion DF and the sensor electrode 2 needs to be 0.5 mm or less. Therefore, as will be described later, when the sensor electrode 2 is translated in the direction of the axis AXD of the drum D while rotating the drum D to detect the defective portion DF on the drum cylindrical peripheral surface, the sensor electrode 2 for one rotation of the drum D The feed pitch must be 0.5 mm or less. On the other hand, as the test time in this case, the drum shaft length L = 30
Assuming 0 mm, such sensor electrodes 2 are arranged in an array of 10 mm.
If 30 pieces are arranged at equal intervals, the time required to scan a feed distance of 0.5 mm for the feed pitch of 10 mm per electrode is 20 rotations of the drum. Therefore, if drum D is rotated at 20 rpm, it will be completed in about 1 minute. become. To this end, in the case of a drum having a diameter of 120 mm, the peripheral speed at 20 rpm is 126 mm / sec, so that the passing time of the defect portion DF of 0.5 mm is about 4 msec. To detect this accurately, the sampling time must be at least 0.4 msec. Also, the time constant of the detection circuit must be at this level.
In addition, since 30 arrays are used for detection, the A / D conversion speed is 10
Must be ~ 20 μsec. At this time, the number of data per sensor is 7.5 kword for one rotation. As described above, various test conditions can be obtained. Next, FIG. 4 will be described.
An image defect evaluation apparatus for detecting an actual defective portion DF on the drum D based on the principle and conditions described in the figure, 1 is a drum drive motor, 2 is an array-shaped sensor electrode, 5 is the above-mentioned Support for many sensor electrodes 2 (referred to as electrode support)
An electrode drive motor that drives 2F back and forth in the direction of the axis AXD of the drum D, 6 is a drum rotational position detection unit that detects the rotational position of the drum D, and 9 is an encoder that also detects rotational position. Further, 7 is a drum rotation display section for inputting an output signal of the drum rotation position detection section 6 and displaying a rotation position of the drum D, and the like.
8 is an A / D multiplexer that A / D converts the output voltage of the amplifier provided for each of the sensor electrodes 2 and inputs it to the CPU, and 10 controls the drum drive motor 1 and the electrode drive motor 5. In addition, the control CPU for determining the position of the defective portion DF by inputting the rotation position signal of the drum D obtained through the drum rotation display unit and the detection voltage of the sensor electrode 2 input from the A / D multiplexer 8. Is. That is, when the drum D is rotated in the rotation direction AXR via the drum driving motor 1, the photosensitive surface of the drum D is charged to a predetermined potential substantially uniformly by the corona charger CH1, while the photosensitive surface of the drum D is below the sensor electrode 2. Then, the detection voltage SG is output from each amplifier 2 through each of the electrodes 2. The drum rotation position detector 6 detects the rotation of the drum D and its position through an encoder 9 attached to the end surface of the drum D, and outputs the output signal to the drum rotation display unit 7 to display the rotation position. , The output signal of the display unit 7 is given to the CPU C
The PU knows the rotation position of the drum D from time to time. On the other hand, each of the sensor electrodes 2 is sent in the direction of the axis AXD by a predetermined feed pitch by the CPU 10 in synchronization with the rotation of the drum D via the electrode drive motor 5 and the electrode support 2F, and scans the circumference of the drum D. . In this way, the detected voltage SG is read by the CPU 10 via the A / D multiplexer 8, and the CPU 10 creates a potential map on the photosensitive surface of the drum D. By inserting the reference image data of the image evaluation into the CPU 10 in advance, it is possible to judge the pass / fail and display the position and size of the defective portion DF. FIG. 5 shows the values obtained by actually making scratches of various sizes on the surface of the drum D by using the image defect evaluation apparatus of FIG. 4 and confirming the same with an optical microscope, and the values measured by the image defect evaluation apparatus. Is a comparison. As is clear from the figure, it can be seen that this apparatus can detect a defective portion with sufficient accuracy in practical use. In the present invention, even if the photoconductor as the object of the defect evaluation has a flat photoconductive surface, it can be considered that the radius of curvature of the photoconductive surface of the drum D is infinite. The defect evaluation according to the present invention is possible. Further, the plurality of sensor electrodes 2 are arranged such that the axes AX2 thereof are arranged in parallel to each other at a predetermined interval. This has the advantage of facilitating the preparation of the potential map, but it is not an essential condition. For example, they may be arranged at predetermined intervals on a spiral curve of predetermined pitch along the photosensitive surface of the drum D. [Effects of the Invention] As is apparent from the above description, according to the present invention, an electrode array including a plurality of thin rod-shaped electrodes facing a cylindrical or planar photosensitive surface with a gap is provided. Since these electrodes are integrally held to scan the photosensitive surface, the defect on the photosensitive surface can be evaluated by detecting the potential distribution on the photosensitive surface in a short time.

【図面の簡単な説明】 第1図は通常の複写機の構成例を示す図、第2図は本発
明の原理装置を示す構成図、第3図は第2図装置で得ら
れた測定値の例を示す図、第4図は本発明装置の構成例
を示す図、第5図は第4図の装置の測定結果の1例を示
す図である。 D……電子写真用感光体(ドラム)、CH1……コロナ帯
電器、1……ドラム駆動モータ、2……センサ電極、2F
……電極支持体、3……増巾器、SG……検出電圧、4…
…分圧用コンデンサ、5……電極駆動モータ、6……ド
ラム回転位置検出部、7……ドラム回転表示部、8……
A/Dマルチプレクサ、9……エンコーダ、10……CPU、2F
……電極支持体、AXD……軸、AXR……回転方向。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration example of a normal copying machine, FIG. 2 is a configuration diagram showing a principle device of the present invention, and FIG. 3 is a measured value obtained by the device shown in FIG. FIG. 4 is a diagram showing an example of the configuration of the device of the present invention, and FIG. 5 is a diagram showing an example of the measurement results of the device of FIG. D: Electrophotographic photoconductor (drum), CH1: Corona charger, 1 ... Drum drive motor, 2 ... Sensor electrode, 2F
...... Electrode support, 3 ...... Amplifier, SG ・ ・ ・ Detection voltage, 4 ・ ・ ・
… Voltage dividing capacitor, 5 …… Electrode drive motor, 6 …… Drum rotation position detector, 7 …… Drum rotation indicator, 8 ……
A / D multiplexer, 9 ... Encoder, 10 ... CPU, 2F
…… Electrode support, AXD …… Axis, AXR …… Rotation direction.

フロントページの続き (56)参考文献 特開 昭59−37581(JP,A) 特開 昭53−131848(JP,A) 特開 昭58−68651(JP,A) 特開 昭59−49573(JP,A) 特開 昭57−116354(JP,A) 特開 昭58−65445(JP,A) 特開 昭57−53767(JP,A) 特公 昭58−10746(JP,B2) 特公 平2−43134(JP,B2) 特表 昭61−500690(JP,A)Continuation of front page    (56) References JP-A-59-37581 (JP, A)                 JP-A-53-131848 (JP, A)                 JP 58-68651 (JP, A)                 JP 59-49573 (JP, A)                 JP-A-57-116354 (JP, A)                 JP 58-65445 (JP, A)                 JP-A-57-53767 (JP, A)                 Japanese Patent Sho 58-10746 (JP, B2)                 Japanese Patent Publication 2-43134 (JP, B2)                 Special table Sho 61-500690 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.円筒又は平面状の金属の基体の外周面又は該平面上
に、静電画像用の感光層を附し感光面を形成せしめた電
子写真用の感光体と、前記感光層にほぼ均一に所定電位
の帯電を行わせる手段と、前記感光面に対し空隙を介し
て対向し、かつ前記面に平行で一列に設けられた複数個
の金属電極からなる電極列と、該電極列を一体に保持す
る線状の保持手段と、 前記感光面を前記電極列にて走査するために、前記保持
手段と前記感光体とを駆動する手段と、 前記感光面上における前記電極列中の各電極の走査位置
を検出する走査位置検出手段と、 前記の各電極の電位を検出する電極電位検出手段と、 前記走査位置検出手段、電極電位検出手段の各手段の検
出信号を入力し、前記感光面上の電位マップを作成する
手段とからなり、前記感光面と電極との間の最小空隙
(ギャップ)が1mm以下であることを特徴とする電子写
真用感光体の畫像欠陥評価装置。 2.特許請求の範囲第1項に記載の畫像欠陥評価装置に
おいて、 前記複数個の金属電極からなる電極列は、感光面上に互
いに所定の間隔を置いて設けられたものであることを特
徴とする電子写真用感光体の画像欠陥評価装置。 3.特許請求の範囲第1項又は第2項に記載の畫像欠陥
評価装置において、 前記電極列が対向する前記感光面の法線方向に投影した
投影の最大の外径が1mm以下であることを特徴とする電
子写真用感光体の畫像欠陥評価装置。 4.特許請求の範囲第2項に記載の畫像欠陥評価装置に
おいて、 前記電極の相互の間隔は1〜100mmの範囲にあることを
特徴とする電子写真用感光体の畫像欠陥評価装置。
(57) [Claims] A photoconductor for electrophotography having a photosensitive layer for electrostatic images formed on or on the outer peripheral surface of a cylindrical or planar metal substrate, and a predetermined potential on the photosensitive layer. Means for performing charging, and an electrode array composed of a plurality of metal electrodes arranged in a row parallel to the surface and facing the photosensitive surface, and holding the electrode array integrally. A linear holding means, a means for driving the holding means and the photoconductor in order to scan the photosensitive surface with the electrode array, and a scanning position of each electrode in the electrode array on the photosensitive surface Scanning position detecting means for detecting the electric potential of each electrode, the electrode potential detecting means for detecting the electric potential of each electrode, the scanning position detecting means, the detection signal of each means of the electrode electric potential detecting means, and the electric potential on the photosensitive surface. And a means for creating a map, said photosensitive surface and electrodes An image defect evaluation apparatus for an electrophotographic photosensitive member, characterized in that the minimum gap (gap) between the two is 1 mm or less. 2. The ridge image defect evaluation apparatus according to claim 1, wherein the electrode rows composed of the plurality of metal electrodes are provided on the photosensitive surface at predetermined intervals. Image defect evaluation system for electrophotographic photoreceptors. 3. The ridge image defect evaluation apparatus according to claim 1 or 2, wherein the maximum outer diameter of the projection projected in the normal direction of the photosensitive surface facing the electrode row is 1 mm or less. An image photographic defect evaluation apparatus for an electrophotographic photoreceptor. 4. The image defect evaluation apparatus according to claim 2, wherein the distance between the electrodes is in the range of 1 to 100 mm.
JP59051836A 1984-03-16 1984-03-16 Image defect evaluation device for electrophotographic photoconductor Expired - Fee Related JP2674002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59051836A JP2674002B2 (en) 1984-03-16 1984-03-16 Image defect evaluation device for electrophotographic photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59051836A JP2674002B2 (en) 1984-03-16 1984-03-16 Image defect evaluation device for electrophotographic photoconductor

Publications (2)

Publication Number Publication Date
JPS60195578A JPS60195578A (en) 1985-10-04
JP2674002B2 true JP2674002B2 (en) 1997-11-05

Family

ID=12897942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59051836A Expired - Fee Related JP2674002B2 (en) 1984-03-16 1984-03-16 Image defect evaluation device for electrophotographic photoconductor

Country Status (1)

Country Link
JP (1) JP2674002B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271593B2 (en) * 2005-10-11 2007-09-18 Xerox Corporation Contactless system and method for detecting defective points on a chargeable surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045426B2 (en) * 1977-04-22 1985-10-09 株式会社日立製作所 Photoconductor surface defect detection device
JPS5937581A (en) * 1982-08-26 1984-03-01 Fuji Electric Co Ltd Receptor tester for electrophotography

Also Published As

Publication number Publication date
JPS60195578A (en) 1985-10-04

Similar Documents

Publication Publication Date Title
JPH04267269A (en) Image forming device
EP0701180A2 (en) Electrophotographic color image forming apparatus
JP2544067B2 (en) Method and apparatus for creating a tri-level image on a charge retentive surface
JP3701477B2 (en) Cylindrical surface inspection device
JP2674002B2 (en) Image defect evaluation device for electrophotographic photoconductor
JP5293100B2 (en) Method and apparatus for evaluating characteristics of electrophotographic photosensitive member
US5448337A (en) Method and apparatus for determining the charge or voltage distribution of an electrophotographic surface
JPS59136771A (en) Checking method of electrophotographic sensitive body
JP2003005389A (en) Method and apparatus for evaluating characteristic of photoreceptor
JP2004077125A (en) Apparatus and method for detecting defect in electrophotography photoreceptor
US5307120A (en) Method for measuring electrostatic potential
JPS605944B2 (en) Charged object surface potential detection device
JP2981359B2 (en) Image forming device
EP0050528A2 (en) Toner concentration monitor
JPS5949573A (en) Inspecting device of photoreceptor for electrophotography
JPH06130768A (en) Image forming device
JPH0727482Y2 (en) Electrostatic recording device
JPH0777853A (en) Process controller
JPH04220555A (en) Apparatus and method for measuring electrostatic capacity of photosensitive body
JP3069497B2 (en) Image forming device
JPS6078464A (en) Method for inspecting feed characteristics of transfer paper
JP2000214100A (en) Defect inspection apparatus
JP2023055235A (en) Image forming apparatus
JPH03185435A (en) Detector for pollution within optical scan system
JPH0541758A (en) Image forming device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees