JP2672988B2 - Method of treating backscattered light in optical fiber - Google Patents

Method of treating backscattered light in optical fiber

Info

Publication number
JP2672988B2
JP2672988B2 JP28754688A JP28754688A JP2672988B2 JP 2672988 B2 JP2672988 B2 JP 2672988B2 JP 28754688 A JP28754688 A JP 28754688A JP 28754688 A JP28754688 A JP 28754688A JP 2672988 B2 JP2672988 B2 JP 2672988B2
Authority
JP
Japan
Prior art keywords
backscattered light
code
optical
fiber
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28754688A
Other languages
Japanese (ja)
Other versions
JPH02134532A (en
Inventor
博司 中本
弥平 小山田
紀久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28754688A priority Critical patent/JP2672988B2/en
Publication of JPH02134532A publication Critical patent/JPH02134532A/en
Application granted granted Critical
Publication of JP2672988B2 publication Critical patent/JP2672988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3118Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR using coded light-pulse sequences

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は光符号列を用いた光ファイバにおける後方散
乱光の処理方法に関し、例えば光ファイバ破断点の検出
方法に適用できるものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method of processing backscattered light in an optical fiber using an optical code string, and is applicable to, for example, a method of detecting an optical fiber break point.

<従来の技術> ダイナミックレンジを改善するため符号列の自己相関
に基づいて符号圧縮を行うOTDR(Optical Time Domein
Reflectometr)が検討されており、そこで用いられる符
号列としては光バーカー符号(P HEALEY:‘Pulse compr
ession coding in optical time domeinreflectometl
y',in Proc.7th Eur.Conf.Opt.Commun.(Copenhagen,De
nmark),1981)が知られている。光バーカー符号とはN
ビットの0,1の2値符号列X={x1,x2,…xN}に於い
て、自己相関関数ρ(j)が下式(4)に示される条件
を満足する符号列である。
<Prior Art> OTDR (Optical Time Domein) that performs code compression based on the autocorrelation of the code sequence to improve the dynamic range.
Reflectometr) is being studied, and the optical barker code (P HEALEY: 'Pulse compr
ession coding in optical time domeinreflectometl
y ', in Proc.7th Eur.Conf.Opt.Commun. (Copenhagen, De
nmark), 1981) is known. Optical Barker code is N
In the binary code string X = {x 1 , x 2 , ... x N } of 0, 1 of bits, the autocorrelation function ρ (j) is a code string that satisfies the condition shown in the following equation (4). is there.

ここでnはj=0すなわち0ビットシフトの自己相関
であり、符号列Xに於ける符号「1」の数である。j=
±1,±2,…,±(N−1)の時のρ(j)のうち少なく
とも一つは1となる。第9図に7ビットの光バーカー符
号{1,1,0,0,1,0,1}の自己相関の一例を示す。この例
ではn=4であり、j=±1,±2,…,±(N−1)の時
のρ(j)はすべて1となっている。
Here, n is the autocorrelation of j = 0, that is, 0 bit shift, and is the number of codes “1” in the code string X. j =
At least one of ρ (j) at the time of ± 1, ± 2, ..., ± (N−1) is 1. FIG. 9 shows an example of the autocorrelation of a 7-bit optical Barker code {1,1,0,0,1,0,1}. In this example, n = 4, and ρ (j) is 1 when j = ± 1, ± 2, ..., ± (N−1).

次に、第9図に示した7ビットの光バーカー符号{1,
1,0,0,1,0,1}を用いたOTDRを第10図に示す。同図に示
されるように、このOTDRではパルス幅をτとし符号0,1
を光の振幅0,AOに対応してASK(振幅偏移変調;Amplitud
e Shift Keying)変調された光パルスを被測定ファイバ
に入射し後方散乱光を観測する。即ち、OTDR内に設けら
れた光源1から発射される光パルスは光コネクタ4を経
て被測定ファイバ13に入力され、この被測定ファイバ13
から戻ってくる後方散乱光は光コネクタ4,方向性結合器
2を経て受光器3に受光される。ここでファイバ中の光
速をcrとすると、光ファイバの長手方向の分解能は単純
にはcr(τ/2)となる。ファイバを分解能cr(τ/2)で
長手方向に区切ったときの入射端からm番目の地点から
の後方散乱量を、パルス幅τ,振幅Aoの入射パルスに対
してsmとすると、第1ビット目のパルスがファイバに入
射した時からmτ秒後の後方散乱量p(mτ)は、サン
プラにより下式(5)のように検出される。尚、第11図
は符号列{1,1,0,0,1,0}入射時の後方散乱光の説明図
である。
Next, the 7-bit optical Barker code {1, 1, shown in FIG.
OTDR using 1,0,0,1,0,1} is shown in FIG. As shown in the figure, in this OTDR, the pulse width is τ and the codes 0, 1
The corresponding amplitude 0, A O of the light ASK (amplitude shift keying; Amplitud
e Shift Keying) A modulated optical pulse is incident on the measured fiber and backscattered light is observed. That is, the optical pulse emitted from the light source 1 provided in the OTDR is input to the measured fiber 13 via the optical connector 4, and the measured fiber 13
The backscattered light returning from is passed through the optical connector 4 and the directional coupler 2 and is received by the light receiver 3. Now the speed of light in the fiber and c r, a longitudinal resolution of the optical fiber becomes c r (τ / 2) is simply. The backscatter of the m-th point from the incident end when separated longitudinally resolution fiber c r (τ / 2), a pulse width tau, when the s m with respect to the incident pulse amplitude A o, The backscattering amount p (mτ) after mτ seconds from the time when the pulse of the first bit is incident on the fiber is detected by the sampler as in the following expression (5). Incidentally, FIG. 11 is an explanatory diagram of the backscattered light when the code string {1,1,0,0,1,0} is incident.

p(mτ)+sm+sm-1+sm-4+sm-6 …(5) この後、コントローラ8から送られる符号列{1,1,0,
0,1,0,1}とアベレージャ6を経た後方散乱光との相関 は相関器7により下式(6)に示されるように求められ
る。
p (mτ) + s m + s m-1 + s m-4 + s m-6 (5) Thereafter, the code string sent from the controller 8 {1,1,0,
Correlation between 0,1,0,1} and backscattered light that passed through the averager 6. Is obtained by the correlator 7 as shown in the following equation (6).

sm-6+sm-5+sm-4+sm-3+sm-2+sm-1+4sm+sm+1 +sm+2+sm+3+sm+4+sm+5+sm+6 …(6) (6)式で表される相関は、第9図で示される自己相
関に基づくパルスをファイバに入射したときの、入射端
からm番目の地点からの後方散乱光と一致する。第9図
で示されるパルスの振幅は元のパルス列において送出し
たパワー、すなわち符号1の数に対応して4倍の大きさ
となっているので、ダイナミックレンジとして6dBの改
善が見込まれる。また、送出したパワー(符号「1」の
数)に対する自己相関のピーク強度の比は1となりきわ
めて効率はよくなる。尚、第10図中、9はオシロスコー
プである。
s m-6 + s m-5 + s m-4 + s m-3 + s m-2 + s m-1 + 4s m + s m + 1 + s m + 2 + s m + 3 + s m + 4 + s m + 5 + s m + 6 (6) The correlation represented by the equation (6) coincides with the backscattered light from the m-th point from the incident end when the pulse based on the autocorrelation shown in FIG. 9 is incident on the fiber. Since the amplitude of the pulse shown in FIG. 9 is four times as large as the power transmitted in the original pulse train, that is, the number of the code 1, the dynamic range is expected to be improved by 6 dB. Further, the ratio of the peak intensity of the autocorrelation to the transmitted power (the number of code “1”) is 1, which is extremely efficient. In FIG. 10, 9 is an oscilloscope.

<発明が解決しようとする課題> しかし、第9図のパルスは中心から時間的に6τ秒前
後に振幅1のサイドローブが存在するため、ファイバの
入射端からn番目の地点の後方散乱量は、(6)式で示
すようにその地点を中心にファイバの長手方向の距離に
して6×cr(τ/2)前後の後方散乱量の和となる。この
ためファイバ所望の地点からの後方散乱光は、その地点
の周辺の後方散乱光の和によって隠されてしまい、後方
散乱光により光ファイバの破断点位置を検出しようとす
ると距離分解能は単一パルスの時に比べ13倍、即ち13×
cr(τ/2)に落ちてしまう。
<Problems to be Solved by the Invention> However, since the pulse of FIG. 9 has a side lobe of amplitude 1 around 6τ seconds from the center, the backscattering amount at the n-th point from the entrance end of the fiber is , As shown in the equation (6), the total amount of backscattering is about 6 × c r (τ / 2) in terms of the distance in the longitudinal direction of the fiber with that point as the center. Therefore, the backscattered light from the desired point of the fiber is hidden by the sum of the backscattered light around that point, and when trying to detect the break point position of the optical fiber by the backscattered light, the distance resolution is a single pulse. 13 times compared to the time of, that is, 13 ×
It falls to c r (τ / 2).

本発明の目的は距離分解能を劣化させることがなくダ
イナミックレンジの改善が図れる光ファイバにおける後
方散乱光の処理方法を提供することにある。
An object of the present invention is to provide a method of processing backscattered light in an optical fiber which can improve the dynamic range without deteriorating the distance resolution.

<課題を解決するための手段> 本発明では±1の2値符号で表されるゴーレー符号を
0,1の2値符号で表される光パルス列に交換する手段を
提供することにより自己相関後のサイドローブが0であ
る光パルス圧縮符号を実現することを特徴とする。
<Means for Solving the Problem> In the present invention, a Golay code represented by a binary code of ± 1 is used.
An optical pulse compression code having a side lobe of 0 after autocorrelation is realized by providing a means for exchanging the optical pulse train represented by a binary code of 0,1.

<実 施 例> 以下、本発明の実施例について図面を参照して詳細に
説明する。尚、以下の実施例では本発明を光ファイバ破
断点検出法に適用したものである。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following examples, the present invention is applied to the optical fiber breaking point detection method.

実施例 1 第1図に本実施例における信号処理のフローチャート
を示す。同図に示されるように、まず、ゴーレー符号A
={ai},B={bi}(i=1,2,…,N)を生成する。この
ゴーレー符号A,Bは、それぞれの自己相関の和が下式
(7)に示される条件を満足する。
Embodiment 1 FIG. 1 shows a flowchart of signal processing in this embodiment. As shown in the figure, first, the Golay code A
= {A i }, B = {b i } (i = 1,2, ..., N) is generated. In the Golay codes A and B, the sum of the respective autocorrelations satisfies the condition shown in the following expression (7).

ここで、符号列として{ai}={1,1,1,−1,−1,−1,
1,−1}と{bi}={1,1,1,−1,1,1,−1,1}の8ビッ
トゴーレー符号を用いると、それぞれの自己相関とそれ
らの和は第2図に示す結果となる。即ち、二つの自己相
関の和のサイドローブは0となり、A,Bの総ビット数16
ビットに対し相関後の中心ピーク値は16倍であるために
送出したパワー(符号「1」の数)に対する自己相関の
中心ピーク値の倍率の比は1となり、極めて効率はよ
い。
Here, {a i } = {1,1,1, -1, -1, -1, -1, as a code string
Using 8-bit Golay codes of 1, -1,} and {b i } = {1,1,1, -1,1,1, -1, -1,1}, their autocorrelation and their sum are shown in FIG. The result is shown in. That is, the side lobe of the sum of the two autocorrelations becomes 0, and the total number of A and B bits is 16
Since the central peak value after correlation is 16 times for a bit, the ratio of the ratio of the central peak value of autocorrelation to the transmitted power (the number of the code “1”) is 1, which is extremely efficient.

次に符号列A,Bの各要素ai,biについてそれぞれに0,1
の符号列への変換処理を行う。まず、下式(8)に示す
ように符号列Aに基づき次の二つの0,1の2値符号列V,X
を生成する。
Next, for each element a i , b i of the code sequence A, B, 0, 1
Conversion processing to the code string of. First, as shown in the following equation (8), based on the code string A, the following two binary code strings V and X of 0 and 1
Generate

V={v1} ={a1+1)/2} ={1,1,1,0,0,0,1,0} X={x1} ={(1−a1)/2} ={0,0,0,1,1,1,0,1} …(8) そして、これらの符号列V,Xについてそれぞれの後方
散乱光を観測する。即ち、符号列Vに基づいてパルス幅
τでASK変調された光パルスを被観測ファイバに入射し
τ秒後とに後方散乱光を観測したとき、前述したように
ファイバ中の散乱点の間隔は見かけ上cr(τ/2)と同じ
に見える。この時符号列Vによるmτ秒後の後方散乱光
p1(mτ)は第12図(a)に示すようになる。
V = {v 1 } = {a 1 +1) / 2} = {1,1,1,0,0,0,1,0} X = {x 1 } = {(1-a 1 ) / 2} = {0,0,0,1,1,1,0,1} (8) Then, the backscattered light of each of these code strings V and X is observed. That is, when the light pulse ASK-modulated with the pulse width τ based on the code string V is incident on the observed fiber and the backscattered light is observed τ seconds later, the interval between the scattering points in the fiber is as described above. It looks like c r (τ / 2) apparently. At this time, the backscattered light after mτ seconds by the code string V
p 1 (mτ) is as shown in FIG. 12 (a).

p1(mτ)=sm+sm-1+sm-2+sm-6 …(9) そして、符号列Aと後方散乱光p1との相関 は、第3図(a)に示す符号列AとVの相関に一致し次
式のようになる。
p 1 (mτ) = s m + s m-1 + s m-2 + s m-6 (9) Then, the correlation between the code string A and the backscattered light p 1 Is in agreement with the correlation between the code strings A and V shown in FIG.

c1(mτ)=sm-6+sm-5+sm-4−sm-3+sm-1+4sm−s
m+2 −3sm+3−sm+4−sm+5−sm+7 …(10) 同様に符号列Xによる後方散乱光p2(mτ)は第12図
(b)に示すように p2(mτ)=sm-3+sm-4+sm-5+sm-7 となる。符号列Aと後方散乱光との相関 は、第3図(b)に示す符号列AとXの相関に一致し次
式のようになる。
c 1 (mτ) = s m-6 + s m-5 + s m-4 −s m-3 + s m-1 + 4s m −s
m + 2 −3s m + 3 −s m + 4 −s m + 5 −s m + 7 (10) Similarly, the backscattered light p 2 (mτ) by the code string X is shown in FIG. 12 (b). Thus, p 2 (mτ) = s m-3 + s m-4 + s m-5 + s m-7 . Correlation between code sequence A and backscattered light Is in agreement with the correlation between the code sequences A and X shown in FIG.

c2(mτ)=sm-7+sm-6+2sm-5−sm-4+2m-2−4sm −sm+1−sm+2−sm+4 …(11) c1とc2の差paは第2図(a)に示す符号列Aの自己相
関に一致し、次式のようになる。
c 2 (mτ) = s m-7 + s m-6 + 2s m-5 −s m-4 +2 m-2 −4s m −s m + 1 −s m + 2 −s m + 4 … (11) c The difference p a between 1 and c 2 is in agreement with the autocorrelation of the code string A shown in FIG.

pa(mτ)=c1(mτ)−c2(mτ) =−sm-7−sm-6−3sm-3+sm-1 +8sm+sm+1−3sm+3−sm+5−sm+7 …(12) 次に第1図にしたがってゴーレー符号の一方の符号列
Bについて同様の処理を行う。符号列B={1,1,1,−1,
1,1,−1,1}に基づき次の二つの符号列Y,Zを生成し、そ
れらの後方散乱光p3,p4を観測すると第12図(c)
(d)に示すようになる。
p a (mτ) = c 1 (mτ) −c 2 (mτ) = −s m-7 −s m-6 −3s m-3 + s m-1 + 8s m + s m + 1 −3s m + 3 −s m + 5 −s m + 7 (12) Next, similar processing is performed for one code string B of the Golay code according to FIG. Code string B = {1,1,1, −1,
When the following two code strings Y and Z are generated based on 1,1, −1,1} and their backscattered lights p 3 and p 4 are observed, FIG. 12 (c)
As shown in FIG.

Y={y1} ={(b1+1)/2} ={1,1,1,0,1,1,0,1} Z={z1} ={(1−b1)/2} ={0,0,0,1,0,0,1,0} …(13) p3(mτ)=sm+sm-1+sm-2+sm-4−sm-5+sm-7 …(1
4) p4(mτ)=sm+3+sm+6 …(15) これらと符号列Bとの相関c3,c4は、第3図(c)
(d)に示す符号例Y,Zと符号列Bとの相関に一致し、
それぞれ次式のようになる。
Y = {y 1} = { (b 1 +1) / 2} = {1,1,1,0,1,1,0,1} Z = {z 1} = {(1-b 1) / 2 } = {0,0,0,1,0,0,1,0} ... (13 ) p 3 (mτ) = s m + s m-1 + s m-2 + s m-4 -s m-5 + s m -7 … (1
4) p 4 (mτ) = s m + 3 + s m + 6 (15) Correlations c 3 and c 4 between these and the code sequence B are shown in FIG. 3 (c).
Matches the correlation between the code examples Y and Z shown in (d) and the code string B,
It becomes like the following formula respectively.

c3(mτ)=sm-7+sm-6+2sm-5+sm-4+3sm-3+2sm-2 +sm-1+6sm+sm+1+2sm+3+sm+4+sm+5+sm+7…(16) c4(mτ)=sm-6+sm-5+sm-4+2sm-2+2sm-1−2sm +2sm+1+sm+2−sm+3+sm+4 …(17) c3とc4との差pbは第2図(b)に示す符号列Bの自己
相関と一致し、次式のようになる。
c 3 (mτ) = s m-7 + s m-6 + 2s m-5 + s m-4 + 3s m-3 + 2s m-2 + s m-1 + 6s m + s m + 1 + 2s m + 3 + s m + 4 + s m +5 + s m + 7 … (16) c 4 (mτ) = s m-6 + s m-5 + s m-4 + 2s m-2 + 2s m-1 −2s m + 2s m + 1 + s m + 2 −s m +3 + s m + 4 (17) The difference p b between c 3 and c 4 is in agreement with the autocorrelation of the code string B shown in FIG.

pb(mτ)=c3(mτ)−c4(mτ) =sm-7+sm-6+3sm-3−sm-1+8sm−sm+1+3sm+3+sm+5 +sm+7 …(18) 最後にpaとpbの和によりサイドローブは相殺され次式
のようになり、第2図(c)に一致する。
p b (mτ) = c 3 (mτ) −c 4 (mτ) = s m-7 + s m-6 + 3s m-3− s m-1 + 8s m− s m + 1 + 3s m + 3 + s m + 5 + S m + 7 (18) Finally, the side lobes are canceled by the sum of p a and p b , and the following equation is obtained, which agrees with Fig. 2 (c).

p(mτ)=pa(mτ)+pb(mτ)=16sm …(19) 以上の信号処理の結果から明らかなように、自己相関
のサイドローブが0になる符号列を用いることにより、
その地点の前後の領域からの後方散乱光の成分を含まず
にファイバの所望の地点のみの後方散乱光を得ることが
でき、かつ送出したビット数8×4=32ビットに対し後
方散乱光の強度はパルス圧縮の結果16倍であるため、送
出したパワー(1の数)に対する自己相関のピーク強度
の倍率の比は1となりきわめて効率はよくなる。
p (mτ) = p a (mτ) + p b (mτ) = 16s m (19) As is clear from the above signal processing results, by using a code string in which the side lobe of autocorrelation is 0,
It is possible to obtain the backscattered light only at a desired point in the fiber without including the components of the backscattered light from the area before and after that point, and to obtain the backscattered light for the transmitted bit number 8 × 4 = 32 bits. Since the intensity is 16 times as a result of pulse compression, the ratio of the ratio of the peak intensity of the autocorrelation to the transmitted power (the number of 1s) is 1, which is extremely efficient.

このようなp(mτ)を各地点に対し連続的に求めて
ゆくと、光ファイバの破断箇所では、空気とファイバと
の境界で反射し、約100倍程度の大きなパワーが観測さ
れ、他の箇所とファイバロスが異なることとなるので、
そこが破断箇所であることが判る。
When such p (mτ) is continuously calculated for each point, it is reflected at the boundary between the air and the fiber at the breaking point of the optical fiber, and a large power of about 100 times is observed. Since the location and the fiber loss will be different,
It turns out that there is a break.

実施例 2 第4図は他の実施例における信号処理のフローチャー
トを示したものである。実施例1ではゴーレー符号より
生成した4種の0,1の符号例を時分割多重していたが、
本実施例では波長多重することを特徴とする。このよう
にすると実施例1と同様にその地点の前後に領域からの
後方散乱光の成分を含まずに、ファイバの任意の地点の
みの後方散乱光を得ることができ、かつ送出したビット
数8×4=32ビットに対し後方散乱光の強度はパルス圧
縮の結果16倍であるため、送出したパワー(1の数)に
対する自己相関のピーク強度の倍率の比は1となりきわ
めて効率はよくなる。また、この方法により実施例1に
比べて測定時間を短縮することが可能となる。尚、周波
数多重,周波数分離以外の処理は、実施例1と同様であ
るので、説明を省略する(以下同じ)。
Embodiment 2 FIG. 4 shows a flowchart of signal processing in another embodiment. In the first embodiment, four types of code examples of 0 and 1 generated from Golay codes are time-division multiplexed.
This embodiment is characterized by wavelength multiplexing. In this way, as in the first embodiment, the backscattered light from only an arbitrary point of the fiber can be obtained without including the components of the backscattered light from the area before and after that point, and the number of transmitted bits is 8 Since the intensity of backscattered light is 16 times as a result of pulse compression for x4 = 32 bits, the ratio of the ratio of the peak intensity of the autocorrelation to the transmitted power (the number of 1) is 1, which is extremely efficient. In addition, this method can shorten the measurement time as compared with the first embodiment. The processes other than the frequency multiplexing and the frequency separation are the same as those in the first embodiment, and the description thereof will be omitted (the same applies hereinafter).

実施例 3 第5図は他の実施例における信号処理のフローチャー
トを示したものである。実施例1ではゴーレー符号より
生成した4種の0,1の符号例に基づいてASK変調していた
が、本実施例ではFSK(周波数偏移変調:frequency shif
t keying)変調することを特徴とする。実施例1と同様
にその地点の前後の領域からの後方散乱光の成分を含ま
ずに、ファイバの任意の地点のみの後方散乱光を得るこ
とができ、かつ送出したビット数8×4=32ビットに対
し後方散乱光の強度はパルス圧縮の結果16倍であるた
め、送出したパワー(1の数)に対する自己相関のピー
ク強度の倍率の比は1となりきわめて効率よくなる。
Embodiment 3 FIG. 5 shows a flowchart of signal processing in another embodiment. In the first embodiment, ASK modulation was performed based on four types of 0,1 code examples generated from Golay codes, but in the present embodiment, FSK (frequency shift keying: frequency shif) is used.
t keying) modulation. As in the first embodiment, the backscattered light from only an arbitrary point in the fiber can be obtained without including the components of the backscattered light from the regions before and after that point, and the number of transmitted bits is 8 × 4 = 32. Since the intensity of the backscattered light is 16 times that of the bit as a result of pulse compression, the ratio of the peak intensity of the autocorrelation to the transmitted power (the number of 1s) is 1, which is extremely efficient.

実施例 4 第6図は他の実施例における信号処理のフローチャー
トを示したものである。実施例1ではゴーレー符号より
生成した4種の0,1の符号列に基づいてASK変調し時分割
多重していたが、本実施例ではFSK変調した四つの符号
列を波長多重することを特徴とする。実施例1と同様に
その地点の前後の領域からの後方散乱光の成分を含まず
に、ファイバの任意の地点のみの後方散乱光を得ること
ができ、かつ送出したビット数8×4=32ビットに対し
後方散乱光の強度はパルス圧縮の結果16倍であるため、
送出したパワー(1の数)に対する自己相関のピーク強
度の倍率の比は1となりきわめて効率はよくなる。ま
た、この方法により実施例1に比べて測定時間を短縮す
ることが可能となる。
Embodiment 4 FIG. 6 shows a flow chart of signal processing in another embodiment. In the first embodiment, ASK modulation and time division multiplexing were performed based on four kinds of 0,1 code strings generated from Golay codes, but in the present embodiment, four FSK-modulated code strings are wavelength-multiplexed. And As in the first embodiment, the backscattered light from only an arbitrary point in the fiber can be obtained without including the components of the backscattered light from the regions before and after that point, and the number of transmitted bits is 8 × 4 = 32. Since the intensity of the backscattered light is 16 times that of the bit as a result of pulse compression,
The ratio of the ratio of the peak intensity of the autocorrelation to the transmitted power (the number of 1) is 1, and the efficiency is extremely high. In addition, this method can shorten the measurement time as compared with the first embodiment.

実施例 5 第7図は他の実施例における信号処理のフローチャー
トを示したものである。実施例1ではゴーレー符号より
生成した4種の0,1の符号列を用いたが、本実施例では
ゴーレー符号において光の周波数で「+1」をf1に「−
1」をf2にFSK変調し後方散乱光を観測後周波数分離す
ることを特徴とする。実施例1と同様にその地点の前後
の領域からの後方散乱光の成分を含まずに、ファイバの
任意の地点のみの後方散乱光を得ることができ、かつ送
出したビット数8×4=32ビットに対し後方散乱光の強
度はパルス圧縮の結果16倍であるため、送出したパワー
(1の数)に対する自己相関のピーク強度の倍率の比は
1となりきわめて効率はよくなる。また、この方法によ
り実施例1に比べて測定時間を短縮することが可能とな
る。
Fifth Embodiment FIG. 7 shows a flow chart of signal processing in another embodiment. Although using a code sequence of 0 and 1 of the four generated from Gore code In Example 1, the "+1" to f 1 the frequency of light in Gore codes in the present embodiment, "-
1 ”is FSK modulated to f 2 and backscattered light is frequency-separated after observation. Similar to the first embodiment, the backscattered light from only an arbitrary point of the fiber can be obtained without including the components of the backscattered light from the regions before and after that point, and the number of transmitted bits is 8 × 4 = 32. Since the intensity of the backscattered light is 16 times that of the bit as a result of pulse compression, the ratio of the ratio of the peak intensity of the autocorrelation to the transmitted power (the number of 1s) is 1, which is extremely efficient. In addition, this method can shorten the measurement time as compared with the first embodiment.

実施例 6 第8図は他の実施例における信号処理のフローチャー
トを示したものである。実施例1ではゴーレー符号より
生成した4種の0,1の符号列を用いたが、本実施例では
ゴーレー符号において符号「+1」「−1」をそれぞれ
別々の光の周波数にFSK変調し、かつ2種の符号列を周
波数多重し、後方散乱光を観測後周波数分離することを
特徴とする。実施例1と同様にその地点の前後の領域か
らの後方散乱光の成分を含まずに、ファイバの任意の地
点のみの後方散乱光を得ることができ、かつ送出したビ
ット数8×4=32ビットに対し後方散乱光の強度はパル
ス圧縮の結果16倍であるため、送出したパワー(1の
数)に対する自己相関のピーク強度の倍率の比は1とな
りきわめて効率はよくなる。また、この方法により実施
例1に比べて測定時間を短縮することが可能となる。
Sixth Embodiment FIG. 8 is a flow chart of signal processing in another embodiment. In the first embodiment, four kinds of 0,1 code strings generated from the Golay code were used, but in the present embodiment, the codes “+1” and “−1” in the Golay code are FSK-modulated to different light frequencies, In addition, two types of code strings are frequency-multiplexed, and backscattered light is frequency-separated after observation. As in the first embodiment, the backscattered light from only an arbitrary point in the fiber can be obtained without including the components of the backscattered light from the regions before and after that point, and the number of transmitted bits is 8 × 4 = 32. Since the intensity of the backscattered light is 16 times that of the bit as a result of pulse compression, the ratio of the peak intensity of the autocorrelation to the transmitted power (the number of 1s) is 1, which is extremely efficient. In addition, this method can shorten the measurement time as compared with the first embodiment.

<発明の効果> 以上、実施例に基づいて具体的に説明したように本発
明は±1の2値符号列で表わされるゴーレー符号を0,1
の2値符号列である光パルス列に変換するので、自己相
関後のサイドローブが0となった。このため、後方散乱
光により光ファイバの破断位置を検出しようとする場合
の距離分解能を劣化させることなくダイナミックレンジ
の改善が図れることとなった。
<Effects of the Invention> As described above in detail with reference to the embodiments, the present invention uses the Golay code represented by the binary code sequence of ± 1 as 0,1.
The side lobe after autocorrelation becomes 0, because the optical pulse train is a binary code sequence of. Therefore, the dynamic range can be improved without deteriorating the distance resolution when detecting the broken position of the optical fiber by the backscattered light.

【図面の簡単な説明】[Brief description of the drawings]

第1図はゴーレー符号を光パルス試験器に適用した本発
明の第1の実施例におけるパルス圧縮手順を示すフロー
チャート、第2図(a)(b)(c)は本発明において
用いられるゴーレー符号の自己相関の例を示すグラフ、
第3図(a)(b)(c)(d)は本光圧縮法において
第2図で表されるゴーレー符号を用いた時の処理過程で
発生する相関を示すグラフ、第4図はゴーレー符号を光
パルス試験器に適用した本発明の第2の実施例における
パルス圧縮手順を示すフローチャート、第5図はゴーレ
ー符号を光パルス試験器に適用した本発明の第3の実施
例におけるパルス圧縮手順を示すフローチャート、第6
図はゴーレー符号を光パルス試験器に適用した本発明の
第4の実施例におけるパルス圧縮手順を示すフローチャ
ート、第7図はゴーレー符号を光パルス試験器に適用し
た本発明の第5の実施例におけるパルス圧縮手順を示す
フローチャート、第8図はゴーレー符号を光パルス試験
器に適用した本発明の第6の実施例におけるパルス圧縮
手順を示すフローチャート、第9図は従来の光パルス試
験器において用いられている光バーカー符号の自己相関
を例を示すグラフ、第10図は符号列の自己相関に基づい
て符号圧縮を行うOTDRのブロック図、第11図は光パルス
試験器において光バーカー符号を用いた時のある領域で
の後方散乱光を示す説明図、第12図(a)(b)(c)
(d)は本発明の第1の実施例で用いられた符号列V,X,
Y,Zのある領域での後方散乱光を示す説明図である。 図面中、 1は光源、 2は方向性結合器、 3は受光器、 4は光コネクタ、 5はサンプラ、 6はアベレージャ、 7は相関器、 8はコントローラ、 9はオシロスコープ、 13は被測定ファイバである。
FIG. 1 is a flow chart showing a pulse compression procedure in the first embodiment of the present invention in which the Golay code is applied to an optical pulse tester, and FIGS. 2 (a), (b) and (c) are Golay codes used in the present invention. Graph showing an example of the autocorrelation of
FIGS. 3 (a), (b), (c), and (d) are graphs showing the correlation generated in the processing process when the Golay code shown in FIG. 2 is used in the present optical compression method, and FIG. FIG. 5 is a flow chart showing the pulse compression procedure in the second embodiment of the present invention in which the code is applied to the optical pulse tester, and FIG. 5 is the pulse compression in the third embodiment of the present invention in which the Golay code is applied to the optical pulse tester. Flowchart showing the procedure, No. 6
FIG. 7 is a flow chart showing the pulse compression procedure in the fourth embodiment of the present invention in which the Golay code is applied to the optical pulse tester, and FIG. 7 is the fifth embodiment of the present invention in which the Golay code is applied to the optical pulse tester. 8 is a flow chart showing a pulse compression procedure in FIG. 8, FIG. 8 is a flow chart showing a pulse compression procedure in a sixth embodiment of the present invention in which a Golay code is applied to an optical pulse tester, and FIG. 9 is used in a conventional optical pulse tester. Fig. 10 is a graph showing an example of the autocorrelation of the optical Barker code that is used, Fig. 10 is a block diagram of the OTDR that performs code compression based on the autocorrelation of the code sequence, and Fig. 11 is an optical pulse tester that uses the optical Barker code. Explanatory drawing showing backscattered light in a certain region when there is a light, FIG. 12 (a) (b) (c)
(D) is the code string V, X, used in the first embodiment of the present invention.
FIG. 6 is an explanatory diagram showing backscattered light in a certain Y, Z region. In the drawing, 1 is a light source, 2 is a directional coupler, 3 is a light receiver, 4 is an optical connector, 5 is a sampler, 6 is an averager, 7 is a correlator, 8 is a controller, 9 is an oscilloscope, and 13 is a fiber under test. Is.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】「+1」または「−1」のいずれかの値を
とるN個の符号からなり、下式(1)の条件を満足する
2種の符号列A={ai},B={bi}(i=1,2,…,N)で
表わされるゴーレー信号に対し、下式(2)の演算によ
り4種の符号列V={vi},X={xi},Y={yi},Z=
{zi}(i=1,2,…,N)を生成し、該符号列に基づいて
ASK変調されたパルス幅τの光パルス列を被測定ファイ
バに入射し、かつ該光パルスを入射してt秒後に得られ
る各符号列V,X,Y,Zに対応した後方散乱光量p1(t),p2
(t),p3(t),p4(t)に対し下式(3)に示す信号
処理を施すことを特徴とする光ファイバにおける後方散
乱光の処理方法。
1. Two kinds of code strings A = {a i }, B each consisting of N codes having a value of "+1" or "-1" and satisfying the condition of the following expression (1). = {B i } (i = 1,2, ..., N), the four kinds of code strings V = {v i }, X = {x i } are calculated by the following formula (2). , Y = {y i }, Z =
{Z i } (i = 1,2, ..., N) is generated, and based on the code string
An ASK-modulated optical pulse train having a pulse width τ is incident on the measured fiber, and the backscattered light quantity p 1 (corresponding to each code sequence V, X, Y, Z obtained t seconds after the optical pulse is incident t), p 2
A method for processing backscattered light in an optical fiber, which comprises subjecting (t), p 3 (t), and p 4 (t) to signal processing represented by the following expression (3).
【請求項2】請求項(1)記載の前記符号列V,X,Y,Zの
うち2種以上の符号列を波長多重し被測定ファイバに同
時に入射し、戻ってくる後方散乱光を光フィルタによっ
て波長分離することにより、前記後方散乱光p1(t),p
2(t),p3(t),p4(t)のうち波長多重させた符号
列に対応した後方散乱光を得ることを特徴とする光ファ
イバにおける後方散乱光の処理方法。
2. The backscattered light which is wavelength-multiplexed with two or more kinds of the code strings V, X, Y, and Z of claim 1 and is incident on the fiber under test at the same time, and which returns the backscattered light. By separating the wavelengths by a filter, the backscattered light p 1 (t), p
A method for treating backscattered light in an optical fiber, which comprises obtaining backscattered light corresponding to a code string wavelength-multiplexed among 2 (t), p 3 (t), and p 4 (t).
【請求項3】請求項(1)記載の前記符号列V=
{vi},X={xi},Y={yi},Z={zi}(i=1,2,…,
N)に基づいて、FSK変調されたパルス幅τの光パルス列
を被測定ファイバに入射し、各符号列を入射してt秒後
にコヒーレント検波して得られる後方散乱光量p
1(t),p2(t),p3(t),p4(t)に対して、式
(3)で表される信号処理を施すことを特徴とする光フ
ァイバにおける後方散乱光の処理方法。
3. The code string V = according to claim 1.
{V i }, X = {x i }, Y = {y i }, Z = {z i } (i = 1,2, ...,
Based on N), an FSK-modulated optical pulse train with a pulse width τ is incident on the fiber under measurement, and each code sequence is incident, and after t seconds, coherent detection is performed to obtain the backscattered light amount p.
1 (t), p 2 (t), p 3 (t), p 4 (t) is subjected to signal processing represented by equation (3) Processing method.
【請求項4】請求項(1)記載の前記符号列V=
{vi},X={xi},Y={yi},Z={zi}(i=1,2,…,
N)に基づいて、FSK変調されたパルス幅τの光パルス列
のうち2種以上の符号列を波長多重し被測定ファイバに
同時に入射し、戻ってくる後方散乱光を光フィルタによ
って波長分離し、かつ各符号列を入射してt秒後にコヒ
ーレント検波して得られる後方散乱光量p1(t),p
2(t),p3(t),p4(t)に対して、式(3)で表さ
れる信号処理を施すことを特徴とする光ファイバにおけ
る後方散乱光の処理方法。
4. The code string V = according to claim 1.
{V i }, X = {x i }, Y = {y i }, Z = {z i } (i = 1,2, ...,
Based on N), two or more types of code trains of FSK-modulated optical pulse trains of pulse width τ are wavelength-multiplexed and simultaneously incident on the measured fiber, and the backscattered light that returns is wavelength-separated by an optical filter, Also, the backscattered light amount p 1 (t), p obtained by coherent detection t seconds after each code string is incident
A method of processing backscattered light in an optical fiber, which comprises subjecting 2 (t), p 3 (t), and p 4 (t) to signal processing represented by formula (3).
【請求項5】請求項(1)記載の前記ゴーレー符号A,B
において、符号「+1」,「−1」に対応してそれぞれ
光の周波数でf1及びf2にFSK変調されたパルス幅τの光
パルス列をそれぞれ独立に被測定ファイバに入射し、か
つ符号Aに基づいてFSK変調されたパルス列による後方
散乱光のうちで光の周波数f1,f2の成分をそれぞれp
1(t),p2(t)とし、符号Bに基づいてFSK変調され
たパルス列による後方散乱光のうちで光の周波数f1,f2
の成分をそれぞれp3(t),p4(t)としたときに、p1
(t),p2(t),p3(t),p4(t)に対して式(3)
で表される信号処理を施すことを特徴とする光ファイバ
における後方散乱光の処理方法。
5. The Golay codes A and B according to claim 1.
, The optical pulse trains of the pulse width τ which are FSK-modulated at f 1 and f 2 at the optical frequencies respectively corresponding to the symbols “+1” and “−1” are independently incident on the measured fiber, and the symbol A frequency f 1 of the light, f 2 of the component, respectively p among the backscattered light by the FSK modulated pulse train on the basis of
1 (t), p 2 (t), and among the backscattered light by the FSK-modulated pulse train based on the code B, the light frequencies f 1 and f 2
The components are p 3 (t), when p 4 and (t), p 1
For (t), p 2 (t), p 3 (t), p 4 (t), equation (3)
A method of processing backscattered light in an optical fiber, characterized by performing signal processing represented by.
【請求項6】請求項(1)記載の前記ゴーレー符号A,B
において、符号「+1」,「−1」に対応して符号Aに
おいてはそれぞれ光の周波数でf1及びf2に、符号Bにお
いては光の周波数でf3及びf4に、FSK変調されたパルス
幅τの光パルス列を同時に被測定ファイバに入射し、戻
ってくる後方散乱光のうちで光の周波数f1,f2,f3,f4
成分をそれぞれp1(t),p2(t),p3(t),p4(t)
としたときに、p1(t),p2(t),p3(t),p4(t)
に対して式(3)で表される信号処理を施すことを特徴
とする光ファイバにおける後方散乱光の処理方法。
6. The Golay codes A and B according to claim 1.
In the code A, the code A is FSK modulated to f 1 and f 2 at the light frequency, and the code B is fSK modulated to f 3 and f 4 at the light frequency. An optical pulse train having a pulse width τ is simultaneously incident on the measured fiber, and components of optical frequencies f 1 , f 2 , f 3 and f 4 in the returning backscattered light are respectively p 1 (t) and p 2 (T), p 3 (t), p 4 (t)
, P 1 (t), p 2 (t), p 3 (t), p 4 (t)
A method for processing backscattered light in an optical fiber, characterized in that the signal processing represented by the formula (3) is applied to.
JP28754688A 1988-11-16 1988-11-16 Method of treating backscattered light in optical fiber Expired - Fee Related JP2672988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28754688A JP2672988B2 (en) 1988-11-16 1988-11-16 Method of treating backscattered light in optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28754688A JP2672988B2 (en) 1988-11-16 1988-11-16 Method of treating backscattered light in optical fiber

Publications (2)

Publication Number Publication Date
JPH02134532A JPH02134532A (en) 1990-05-23
JP2672988B2 true JP2672988B2 (en) 1997-11-05

Family

ID=17718737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28754688A Expired - Fee Related JP2672988B2 (en) 1988-11-16 1988-11-16 Method of treating backscattered light in optical fiber

Country Status (1)

Country Link
JP (1) JP2672988B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933981B2 (en) * 2007-08-14 2012-05-16 横河電機株式会社 Optical fiber characteristic measuring device
FR2958399B1 (en) * 2010-03-31 2012-05-04 Alcatel Lucent MONITORING A SYSTEM BY OPTICAL REFLECTOMETRY

Also Published As

Publication number Publication date
JPH02134532A (en) 1990-05-23

Similar Documents

Publication Publication Date Title
US6512610B1 (en) Device and method for testing of multi-branch optical network
WO1992011710A1 (en) Optical communications system
US5412464A (en) Apparatus and method for monitoring losses in a branched optical fibre network
EP1912049A1 (en) Method and apparatus for acoustic sensing using multiple optical pulses
WO2012165587A1 (en) Device for analyzing optical fiber path characteristics and method for analyzing same
US8280253B2 (en) Optical telecommunications network terminal, an installation including the terminal, and a method of detecting a break in optical transmission means
EP1130806A3 (en) A system and method for optically testing broadcasting systems
US4743753A (en) Method and apparatus for carrying out fiber optic time domain reflectomery wherein Golay complementary sequences are applied
EP3593468A1 (en) High resolution correlation optical time domain reflectometer
JP5731631B2 (en) System monitoring using optical reflectometry
JP2672988B2 (en) Method of treating backscattered light in optical fiber
JP2023055698A (en) Optical transmission device
US6850314B2 (en) Method for optical sensing
JP5761862B2 (en) Optical branch line characteristic analyzer and its characteristic analysis method
JP2023526842A (en) Distributed Acoustic Sensing Using Multiband Time-Gated Digital Orthogonal Frequency-Domain Reflectometry
EP0887624A3 (en) Device and method for optical fiber distortion measurement
EP0864081B1 (en) Device for interrogating an optical fibre network
JP2014159987A (en) Characteristic analyzer for optical branch line and characteristic analysis method therefor
JP3306815B2 (en) Optical frequency domain reflectometer
WO2022029412A1 (en) Distributed fibre optic sensing
WO2021245826A1 (en) Optical fiber testing method and optical fiber testing device
JPS63145938A (en) Time area reflectometer
JP6202732B2 (en) Branched optical fiber characteristic analyzer and analysis method thereof
CN113252088B (en) Multi-wavelength distributed optical fiber sensing system and method
CN111030752A (en) OXC optical fiber ID recognition device and method based on OFDR

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees