JP2672348B2 - Catalyst for heavy oil hydrotreating - Google Patents

Catalyst for heavy oil hydrotreating

Info

Publication number
JP2672348B2
JP2672348B2 JP63243968A JP24396888A JP2672348B2 JP 2672348 B2 JP2672348 B2 JP 2672348B2 JP 63243968 A JP63243968 A JP 63243968A JP 24396888 A JP24396888 A JP 24396888A JP 2672348 B2 JP2672348 B2 JP 2672348B2
Authority
JP
Japan
Prior art keywords
catalyst
metal component
pore
vicinity
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63243968A
Other languages
Japanese (ja)
Other versions
JPH0295442A (en
Inventor
研司 小森
俊昭 久光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP63243968A priority Critical patent/JP2672348B2/en
Publication of JPH0295442A publication Critical patent/JPH0295442A/en
Application granted granted Critical
Publication of JP2672348B2 publication Critical patent/JP2672348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、重質油を水素加圧下に脱硫、脱金属、脱窒
素、脱残炭或いは分解等を行うための水素化処理用触媒
に関する。
TECHNICAL FIELD The present invention relates to a hydrotreating catalyst for performing desulfurization, demetalization, denitrification, decarburization or cracking of heavy oil under hydrogen pressure. .

[従来の技術] 直留系、分解系重質油、天然ビチューメン、シェール
オイル、石炭系重質油などの重質油はエネルギー源とし
て重要であり、原料の多様化の傾向に伴いこれらを総合
的に利用することはエネルギーの有効利用のためにきわ
めて重要である。
[Prior Art] Heavy oil such as straight-run, cracked heavy oil, natural bitumen, shale oil, and coal-based heavy oil is important as an energy source. Energy use is extremely important for effective use of energy.

しかし重質油中には硫黄、窒素および金属が含まれて
おり、燃焼させた場合の大気汚染の原因となるのみなら
ず、石油精製プロセスにおいては触媒毒となるのでこれ
らをあらかじめ除去しなければならない。これらの不純
物の除去法としては水素化処理方法がよく知られてい
る。
However, heavy oil contains sulfur, nitrogen and metals, which not only cause air pollution when burned but also become a catalyst poison in the oil refining process, so these must be removed in advance. I won't. A hydrotreating method is well known as a method for removing these impurities.

重質油の水素化処理用触媒としては、多孔質の耐火性
担体に周期率表第VI b族及び第V III族から選ばれる1
種以上の金属成分を担持したものが使用されている。特
に、モリブデン−コバルト、モリブデン−ニッケル、或
いはモリブデン−コバルト−ニッケル等の金属成分を担
持した触媒は、脱硫、脱窒素、分解等の初期活性が高い
ため、重質油の水素化脱硫用触媒として最も広く用いら
れている。しかし、この種の触媒は、重質油中に含まれ
る重金属や炭素質物質が触媒外表面に付着し、当該触媒
の細孔を塞ぐことによる脱硫活性の劣化が著しく、触媒
の寿命が短いという欠点があった。特に最近の原料多様
化の傾向に伴い、多量のニッケルやバナジウムを含有
し、しかも高分子量であるアスファルテンの含有量の多
い重質油なども使用することが多くなっているので、重
金属や炭素質物質の吸着による触媒の劣化を防ぎ、触媒
寿命を延ばすことは重質油の有効利用のための重要な課
題である。
As a catalyst for hydrotreating heavy oil, a porous refractory carrier is selected from Group VIb and Group VIII of the periodic table.
Those carrying more than one metal component are used. In particular, a catalyst supporting a metal component such as molybdenum-cobalt, molybdenum-nickel, or molybdenum-cobalt-nickel has a high initial activity such as desulfurization, denitrification, and decomposition, and thus is used as a catalyst for hydrodesulfurization of heavy oil. Most widely used. However, in this type of catalyst, heavy metals and carbonaceous substances contained in heavy oil adhere to the outer surface of the catalyst, and the desulfurization activity is significantly deteriorated by closing the pores of the catalyst, and the life of the catalyst is short. There was a flaw. In particular, due to the recent trend of diversification of raw materials, heavy oil containing a large amount of nickel and vanadium and having a high content of high molecular weight asphaltene is often used. Preventing catalyst deterioration due to adsorption of substances and extending catalyst life are important issues for effective utilization of heavy oil.

上記の課題に対して、初期活性をある程度犠牲にして
金属保持能力を高めることにより、脱金属性能を高め、
モリブデン等、第VI b族の金属成分のいずれか一種を含
有させた触媒を上記脱硫触媒のガード用触媒として用
い、これによって先ず重質油中の金属除去を行なわせ、
ついで金属を除去した重質油をモリブデン−コバルト等
の複合金属酸化物触媒と接触させて、脱硫、脱窒素、分
解等を行なう方法が行われている。このガード用触媒
は、当該触媒の外表面へ金属が集中的に付着することを
防止でき、触媒寿命は長くなるが、脱硫、脱窒素、分解
等の活性は一般的に低い。
For the above problems, the metal removal performance is enhanced by sacrificing the initial activity to some extent and increasing the metal retention ability.
A catalyst containing any one of Group VIb metal components such as molybdenum is used as a guard catalyst for the desulfurization catalyst, whereby metal in heavy oil is first removed.
Then, the heavy oil from which the metal has been removed is brought into contact with a composite metal oxide catalyst such as molybdenum-cobalt to carry out desulfurization, denitrification, decomposition and the like. This guard catalyst can prevent metal from intensively adhering to the outer surface of the catalyst and prolongs the life of the catalyst, but generally has low activity such as desulfurization, denitrification, and decomposition.

上記課題に対するもう一つの対策として、触媒外周部
の重金属及びコークによる閉塞劣化をうけ易い部分の活
性金属の濃度を低くして活性金属成分の濃度分布を触媒
粒子の中心にいくほど高くした触媒が提案されている
(特開昭61−283351号公報)。しかしながら、かかる触
媒でも、触媒活性及び寿命の観点から充分満足できるも
のではなかった。また小さい細孔部分(メソポアー)と
大きい細孔部分(マクロポアー)との二分散性の細孔分
布を有する触媒担体を用いる方法も提案されているが
(特開昭62−262750号公報)、同一触媒表面上に小細孔
と大細孔が共存するために、大細孔径表面は重金属およ
びコーク質による閉塞に耐えうるが、小細孔径表面は耐
久性が殆どなく、触媒寿命の点から満足できるものとは
言えない。
As another measure against the above problem, a catalyst in which the concentration of the active metal in the outer periphery of the catalyst and the concentration of the active metal in the portion susceptible to blockage deterioration due to coke are lowered to increase the concentration distribution of the active metal component toward the center of the catalyst particle It has been proposed (JP-A 61-283351). However, even such a catalyst was not sufficiently satisfactory from the viewpoint of catalyst activity and life. A method using a catalyst carrier having a bidisperse pore distribution of small pore portions (mesopores) and large pore portions (macropores) has also been proposed (JP-A-62-262750), but the same Since small pores and large pores coexist on the catalyst surface, the large pore diameter surface can withstand blockage by heavy metals and coke, but the small pore diameter surface has little durability and is satisfactory from the viewpoint of catalyst life. It cannot be said that it can be done.

[発明が解決しようとする課題] 本発明者は上記の問題を解決するために鋭意研究を進
めた結果、触媒活性は触媒細孔の大きさによって影響を
受けるが、脱硫、脱窒素、分解活性と脱金属及び脱残炭
活性とでは触媒の細孔の大きさによる影響が異なること
に着目し、触媒の中心付近の担体を小細孔のものとし、
触媒の外表面付近の担体を大細孔のものとすれば、金属
の除去率を長期にわたり高く維持できるとともに、触媒
の細孔の閉塞が防止され、重質油が触媒内部までよく浸
透し、活性の大きい小細孔の触媒が有効に活用できるの
で、脱硫、脱窒素、分解活性の寿命も著しく延ばすこと
ができることを見い出した。
[Problems to be Solved by the Invention] As a result of intensive studies conducted by the present inventor to solve the above problems, the catalytic activity is affected by the size of the catalyst pores, but desulfurization, denitrification, and decomposition activities Focusing on the effect of the size of the pores of the catalyst being different between the demetallization and demetallizing activity, the carrier near the center of the catalyst has small pores,
If the support near the outer surface of the catalyst has large pores, the removal rate of the metal can be kept high for a long period of time, the pores of the catalyst are prevented from being blocked, and the heavy oil penetrates well into the catalyst, It has been found that a catalyst having a large activity and small pores can be effectively utilized, and thus the life of desulfurization, denitrification, and decomposition activity can be remarkably extended.

本発明は、このような知見に基づき、上記問題を解決
するためになされたもので、本発明の目的は、脱硫、脱
窒素、分解活性の寿命を長時間延ばすとともに脱金属活
性や脱残炭活性も高く、重質油を品質の優れた精製油に
効率良く転換できる触媒を提供することにある。
The present invention has been made based on such knowledge to solve the above problems, and an object of the present invention is to prolong the life of desulfurization, denitrification, and decomposition activity for a long time, and to remove metallization activity and decarburization. An object of the present invention is to provide a catalyst which has high activity and can efficiently convert heavy oil into refined oil of excellent quality.

[課題を解決するための手段] 本発明の触媒は、多孔質の耐火性無機物担体に少なく
とも周期律表第VI b族金属成分及び/または鉄族の金属
成分とを担持させた触媒において、触媒の中心部及びそ
の近傍における細孔容積がB.E.T法による測定値で0.5〜
0.8ml/gであり、直径50〜150Åの細孔が直径600Å以下
の全細孔容積の50〜90%である細孔分布を有するもので
あり、且つ触媒の外表面部及びその近傍における細孔容
積がB.E.T法による測定値で0.6〜1.5ml/gであり、直径1
50〜600Åの細孔が直径600Å以下の全細孔容積の50〜90
%である細孔分布を有すことを特徴とするものである。
[Means for Solving the Problems] The catalyst of the present invention is a catalyst obtained by supporting a porous refractory inorganic carrier with at least a Group VIb metal component and / or an iron group metal component of the periodic table. The pore volume in and around the center of the is 0.5-0.5 as measured by the BET method.
0.8 ml / g, the pores with a diameter of 50 to 150 Å have a pore distribution of 50 to 90% of the total pore volume with a diameter of 600 Å or less, and the fine particles on the outer surface of the catalyst and in the vicinity thereof. Pore volume is 0.6-1.5 ml / g as measured by BET method, diameter 1
50-600Å pores have a diameter of 600Å or less and 50-90
It is characterized by having a pore distribution of%.

このように中心部と外表面部に細孔容積及び細孔径分
布の異なる触媒を配置することにより、脱金属活性が高
く、かつ、触媒中心部への金属吸着による被毒が少ない
ため、金属及び炭素質物質の除去率を長期にわたり高く
維持できるとともに、脱硫、脱窒素、分解活性の寿命が
長い重質油の水素化処理用触媒を得ることに成功した。
By arranging the catalysts having different pore volumes and pore size distributions in the central portion and the outer surface portion in this manner, the metal removal activity is high, and the poisoning due to the metal adsorption on the catalyst central portion is small, and We have succeeded in obtaining a catalyst for hydrotreating heavy oil, which can maintain a high removal rate of carbonaceous substances for a long period of time and has a long life of desulfurization, denitrification, and cracking activity.

本発明で用いる多孔質の耐火性無機物は、例えば、周
期率表の第II族、第III族、第IV族元素の無機酸化物か
らなるものが挙げることができるが、特に、アルミナ、
シリカ、マグネシア、トリア、ボリア、チタニア、ジル
コニア等の酸化物及びこれらを二種以上混合したものを
用いることができる。これらの中でも特に、アルミナ、
シリカ−アルミナ、アルミナ−マグネシア、アルミナ−
ジルコニア、アルミナ−チタニア、アルミナ−ボリアが
好ましく、特に、アルミナおよびシリカが好ましい。ア
ルミナとしては、γ−アルミナ及びη−アルミナを好適
に用いることができる。
The porous refractory inorganic material used in the present invention may be, for example, those composed of inorganic oxides of Group II, Group III and Group IV elements of the periodic table, in particular, alumina,
It is possible to use oxides of silica, magnesia, thoria, boria, titania, zirconia, and mixtures of two or more thereof. Among these, especially alumina,
Silica-alumina, alumina-magnesia, alumina-
Zirconia, alumina-titania and alumina-boria are preferred, and alumina and silica are particularly preferred. As the alumina, γ-alumina and η-alumina can be preferably used.

本発明においては触媒の中心部及びその近傍における
触媒の細孔容積をB.E.T法による測定値で0.3〜1.0ml/g
とし、細孔径分布を直径50〜150Åの細孔が30〜95%を
有するものとするのであるが、このために用いる担体と
しては特にγ−アルミナ及びη−アルミナが好ましい。
In the present invention, the pore volume of the catalyst in the central portion of the catalyst and its vicinity is 0.3 to 1.0 ml / g as measured by the BET method.
The pore size distribution is such that pores having a diameter of 50 to 150Å have 30 to 95%, and γ-alumina and η-alumina are particularly preferable as the carrier used for this purpose.

また触媒の外表面部及びその近傍における細孔容積は
B.E.T法による測定値で0.5〜1.5ml/gであり、細孔径分
布は直径150〜600Åの細孔が30〜95%を有するものであ
り、これに用いる担体としてはシリカが好適である。
Also, the pore volume on the outer surface of the catalyst and its vicinity is
The value measured by the BET method is 0.5 to 1.5 ml / g, and the pore size distribution is such that the pores having a diameter of 150 to 600 Å have 30 to 95%, and silica is suitable as a carrier used for this.

本発明触媒は、上記の多孔質の耐火性無機物担体に少
なくとも周期律表第VI b族金属成分及び/または鉄族の
金属成分とを含有させたものであるが、これらの金属成
分として好適に用いることができるのは、モリブデン、
タングステン、鉄、コバルト、ニッケルであり、特にモ
リブデン、コバルトおよびニッケルが重質油の水素化処
理用触媒として最適である。二種以上の金属の組み合わ
せで用いる場合特に好ましい組み合わせは、ニッケル−
モリブデン、コバルト−モリブデン、ニッケル−コバル
ト−モリブデンである。
The catalyst of the present invention comprises the above-mentioned porous refractory inorganic carrier containing at least a Group VIb metal component and / or an iron group metal component of the Periodic Table, and is suitable as these metal components. It is possible to use molybdenum,
Tungsten, iron, cobalt and nickel, especially molybdenum, cobalt and nickel are most suitable as catalysts for heavy oil hydrotreating. When used in combination of two or more metals, a particularly preferred combination is nickel-
Molybdenum, cobalt-molybdenum, nickel-cobalt-molybdenum.

これらの金属成分は通常酸化物又は金属の状態で担体
に担持させる。
These metal components are usually supported on the carrier in the form of oxide or metal.

本発明においては触媒の中心部及びその近傍部と外表
面部及びその近傍部にそれぞれ異なる金属成分を含有さ
せることが好ましいが、内部と外部に均一に含有してい
ても良い。特に重油質の水素化処理用触媒においては、
触媒の中心部及びその近傍部と外表面部及びその近傍部
とを、触媒細孔容積および、細孔径分布の異なるものと
する手段に加えて、それぞれの担体層に別個の金属成分
を含有させることは有効な方法であり、これによって本
発明の効果を更に向上させることができる。
In the present invention, it is preferable that different metal components are contained in the central portion and the vicinity thereof and the outer surface portion and the vicinity thereof, respectively, but the catalyst may be uniformly contained inside and outside. Especially in heavy oil hydrotreating catalysts,
In addition to the means for making the catalyst central volume and its vicinity and the outer surface and its vicinity different in the catalyst pore volume and the pore size distribution, each carrier layer contains a separate metal component. This is an effective method, which can further improve the effects of the present invention.

すなわち、触媒の中心部及びその近傍の層に脱硫、脱
窒素、分解活性を有する少なくとも周期律表第VI b族金
属成分と鉄族の金属成分を含有させ、触媒の外表面部及
びその近傍には脱金属活性を有する周期律表第VI b族金
属成分を含有させることにより触媒中心部およびその近
傍への重金属の付着による活性の劣化が防止され、触媒
寿命が延長される。
That is, at least the metal component of Group VIb metal group of the periodic table and the metal component of the iron group having desulfurization, denitrification, and decomposition activity are contained in the central portion of the catalyst and the layer in the vicinity thereof, and the catalyst is applied to the outer surface of the catalyst and its vicinity. By containing a metal component of Group VIb of the periodic table having demetallizing activity, the deterioration of the activity due to the adhesion of heavy metals to the central part of the catalyst and its vicinity is prevented, and the catalyst life is extended.

このように成形体の中心部及びその近傍部と、成形体
の外表面部及びその近傍部に別個の触媒を含有させる実
施態様においては、成形体の中心部及びその近傍に含有
される触媒は、少なくともモリブデン、タングステンの
いずれか一種以上と鉄、コバルト、ニッケルの一種以上
とを組み合わせて用いるのが最適である。この中で、特
に好ましい組み合わせは、ニッケル−モリブデン、コバ
ルト−モリブデン、ニッケル−コバルト−モリブデンで
ある。
In this way, in the embodiment in which the catalyst is contained in the central part of the molded body and its vicinity and in the outer surface part of the molded body and its vicinity, the catalyst contained in the central part of the molded body and its vicinity is It is optimal to use at least one of molybdenum and tungsten in combination with one or more of iron, cobalt and nickel. Among these, particularly preferable combinations are nickel-molybdenum, cobalt-molybdenum, and nickel-cobalt-molybdenum.

第VI b族の金属成分と鉄族の金属成分の含有量の比率
は、第VI b族の金属1原子に対して鉄族金属が0.05〜1.
5、特に0.1〜1.0原子の範囲とするのが好ましい。
The content ratio of the metal component of the group VIb and the metal component of the iron group is 0.05-1.
The range of 5, especially 0.1 to 1.0 atom is preferred.

一方、成形体の外表面部及びその近傍に含有させる第
VI b族の金属成分としては、特にモリブデンが優れてい
る。
On the other hand, the outer surface of the compact and the first
Molybdenum is particularly excellent as the VIb group metal component.

なお、本発明の触媒においては、上記成形体の中心部
及びその近傍の層と外表面部及びその近傍の層との間に
さらに他の層を複数層設けることもできる。
In the catalyst of the present invention, a plurality of other layers may be provided between the central portion of the molded body and the layer in the vicinity thereof and the outer surface portion and the layer in the vicinity thereof.

また、本発明の触媒において、細孔容積がB.E.T法に
よる測定値で0.5〜0.8ml/g、であり、直径50〜150Åの
細孔が直径600Å以下の全細孔容積の50〜90%である細
孔分布を有する触媒の中心部及びその近傍の層は、触媒
の全容積の1/5〜2/3とし、細孔容積がB.E.T法による測
定値で0.6〜1.5ml/gであり、直径150〜600Åの細孔が直
径600Å以下の全細孔容積の50〜90%である細孔分布を
有する触媒の外表面部及びその近傍の層は全触媒容積の
1/5〜2/3とすることが好ましい。細孔径の小さい中心部
の触媒層の容積が小さいと、脱硫の初期活性が小さく、
細孔径の大きい外表面部の触媒層の容積が小さいと、重
金属や炭素質物質の触媒外表面への寸着による触媒の細
孔の閉塞のため脱硫活性が低下し、触媒の寿命を縮める
ので本発明の目的を達成することができない。
Further, in the catalyst of the present invention, the pore volume is 0.5 to 0.8 ml / g as measured by the BET method, and the pores with a diameter of 50 to 150 Å are 50 to 90% of the total pore volume with a diameter of 600 Å or less. The central portion of the catalyst having a certain pore distribution and the layer in the vicinity thereof are 1/5 to 2/3 of the total volume of the catalyst, and the pore volume is 0.6 to 1.5 ml / g as measured by the BET method, The outer surface of the catalyst with a pore distribution in which the pores with a diameter of 150 to 600 Å have a pore distribution of 50 to 90% of the total pore volume with a diameter of 600 Å or less
It is preferably 1/5 to 2/3. When the volume of the catalyst layer in the central portion having a small pore size is small, the initial activity of desulfurization is small,
If the volume of the catalyst layer on the outer surface with a large pore diameter is small, desulfurization activity is reduced due to clogging of the pores of the catalyst due to adhesion of heavy metals and carbonaceous substances to the outer surface of the catalyst, which shortens the life of the catalyst. The object of the present invention cannot be achieved.

このような本発明の触媒は、細孔径の小さい担体原料
を含む混練物を細孔径の大きい担体原料を含む混練物で
被覆し、乾燥、焼成して製造することができる。
Such a catalyst of the present invention can be produced by coating a kneaded material containing a carrier raw material having a small pore diameter with a kneaded material containing a carrier raw material having a large pore diameter, drying and firing.

触媒担体の混練物を調製するには、ニーダー等の混練
機を用い、細孔径の小さい多孔質の耐火性無機物に、水
及び所望により鉱酸等の解膠剤又は成形助剤等を添加混
練し、第1の混練物を調製する。次に、この第1の混練
物の表面を、同様の方法で得られる細孔径の大きい多孔
質の耐火性無機物からなる第2の混練物で被覆し、乾
燥、焼成する。
To prepare a kneaded product of the catalyst carrier, a kneader such as a kneader is used, and water and optionally a deflocculating agent such as a mineral acid or a molding auxiliary is added to the porous refractory inorganic material having a small pore size and kneaded. Then, the first kneaded product is prepared. Next, the surface of the first kneaded material is coated with a second kneaded material made of a porous refractory inorganic material having a large pore size obtained by the same method, dried and fired.

触媒成分はあらかじめ担体原料と混練しても良いが、
担体原料のみまたは触媒成分の一部とを混練し、混練物
を乾燥、焼成した後触媒成分を含浸させ、乾燥、焼成す
ることによって触媒成分を含んだ担持触媒を製造するこ
とができる。
The catalyst component may be kneaded with the carrier raw material in advance,
A supported catalyst containing a catalyst component can be produced by kneading only the carrier raw material or a part of the catalyst component, drying and firing the kneaded product, impregnating the catalyst component, and drying and firing.

触媒の中心部及びその近傍に周期律表第VI b族の金属
成分と鉄族の金属成分を含有させ、触媒の外表面部及び
その近傍には周期律表第VI b族金属成分を含有させる場
合には、触媒の中心部及びその近傍の担体原料にのみ周
期律表第鉄族の金属成分を含有させ、得られた第1の混
練物を鉄族の金属成分を含まない第2の混練物で被覆
し、乾燥、焼成して得られたペレットに周期律表第VI b
族金属成分を含浸することによって所望の触媒を得るこ
とができる。
A metal component of Group VIb of the periodic table and a metal component of the iron group are contained in the central part of the catalyst and its vicinity, and a metal component of Group VIb of the periodic table is contained in the outer surface part of the catalyst and its vicinity. In this case, the metal raw material of the iron group of the periodic table is contained only in the carrier raw material in the central part of the catalyst and its vicinity, and the obtained first kneaded product is the second kneaded material containing no metal component of the iron group. The periodic table VI b
The desired catalyst can be obtained by impregnating with a group metal component.

また、第1の混練物の表面を第2の混練物を被覆する
方法としては、第1図に示す押出成形装置を用いると簡
便である。すなわち、第1図中の内筒1内に上記第1の
混練物を供給し、外筒2と内筒1との間に第2混練物を
入れ、上から圧力をかけて押し出す。内筒および外筒の
出口の内径をそれぞれaおよびbとすれば、直径aの混
練物1を直径bの混練物2で被覆したストランドが得ら
れるので、これを適当な長さにカットすることにより、
ペレット状に形成された触媒を得ることができる。ま
た、装置出口部3の水平断面形状を円、4つ葉、3つ葉
等とすることにより、これらの断面形状を有する触媒を
調製することができる。この場合、触媒層を3層以上形
成する場合は、内筒の数を複数にした装置を用いて製造
すれば良い。また、別の被覆方法としては転動造粒機
(マルメライザー)等、又はこれと混練法とを併用する
ことによっても行なうことができる。
As a method of coating the surface of the first kneaded material with the second kneaded material, it is convenient to use the extrusion molding apparatus shown in FIG. That is, the first kneaded material is supplied into the inner cylinder 1 in FIG. 1, the second kneaded material is put between the outer cylinder 2 and the inner cylinder 1, and pressure is applied from above to extrude. If the inner diameters of the outlets of the inner cylinder and the outer cylinder are set to a and b, respectively, a kneaded material 1 having a diameter a is coated with a kneaded material 2 having a diameter b, so that a strand can be cut to an appropriate length. Due to
The catalyst formed into pellets can be obtained. Further, by making the horizontal cross-sectional shape of the apparatus outlet part 3 into a circle, four leaves, three leaves, etc., a catalyst having these cross-sectional shapes can be prepared. In this case, when three or more catalyst layers are formed, it may be manufactured using an apparatus having a plurality of inner cylinders. Further, as another coating method, a rolling granulator (Marmelizer) or the like or a combination thereof with a kneading method can be used.

すなわち、上記の第1の混練物に相当する組成物粉体
を転動造粒機にて球状に成形し、次いで第2の混練物に
相当する組成物粉体を用いて被覆する方法、或いは、第
1の混練物を転動造粒機にて球状に成形し、その後第2
の混練物またはそれに相当する組成物粉体を転動造粒機
にて被覆する方法である。
That is, a method in which the composition powder corresponding to the above-mentioned first kneaded product is formed into a spherical shape by a rolling granulator and then coated with the composition powder corresponding to the second kneaded product, or , The first kneaded product was formed into a spherical shape by a rolling granulator, and then the second kneaded product
Is a method of coating the kneaded product or the composition powder corresponding thereto with a rolling granulator.

本発明の触媒を用いて処理される重質油は、従来から
水素化処理の対象となっている常圧蒸溜残油、減圧蒸溜
残油、石炭液化油、或いはシェールオイル等を用いるこ
とができるが、特に、アスファルテン分を3重量%以上
含有し、バナジウム、ニッケル等を合計で50ppm以上含
む重質油を原料として用いた場合に、本発明の効果は顕
著となる。
As the heavy oil treated using the catalyst of the present invention, atmospheric distillation residual oil, reduced pressure distillation residual oil, coal liquefied oil, shale oil, etc. which have been conventionally subjected to hydrotreatment can be used. However, the effect of the present invention becomes remarkable especially when a heavy oil containing 3 wt% or more of asphaltene content and 50 ppm or more in total of vanadium, nickel and the like is used as a raw material.

また、水素化処理の反応条件は、原料重質油の種類、
反応装置上の制限、所望する製品構成、触媒の種類等に
応じて適宜選定されるが、通常は、温度300〜500℃、圧
力100〜200kg/cm2、液時空間速度0.1〜5Hr-1、水素と原
料重質油との供給量比率400〜3000Nm3−H2/kl−原料重
質油の範囲から選定される。
In addition, the reaction conditions of the hydrotreating are based on the type of raw heavy oil,
It is appropriately selected depending on the restrictions on the reactor, the desired product structure, the type of catalyst, etc., but is usually a temperature of 300 to 500 ° C., a pressure of 100 to 200 kg / cm 2 , and a liquid hourly space velocity of 0.1 to 5 Hr −1. , Hydrogen to feedstock heavy oil supply ratio 400 to 3000 Nm 3 −H 2 / kl − selected from the range of feedstock heavy oil.

[実施例] 実施例1 触媒の調製(触媒A) アルミナ(カイザー社製、Versa1−250)を双腕形混
練機に入れ、水を加えながら30分混練し混練物1を得
た。この混練物を混練機より取り出し、混練物の水分が
揮散しないように保存した。
[Examples] Example 1 Preparation of catalyst (Catalyst A) Alumina (Versa 1-250 manufactured by Kaiser) was placed in a double-arm kneader and kneaded for 30 minutes while adding water to obtain a kneaded product 1. The kneaded product was taken out from the kneader and stored so that the water content of the kneaded product did not evaporate.

次にシリカゲル(水沢化学社製、ミズカシル)に、水
のみを加えて同様の混練機で30分混練し、混練物2を得
た。
Next, only water was added to silica gel (Mizukasil manufactured by Mizusawa Chemical Co., Ltd.) and the mixture was kneaded for 30 minutes with the same kneader to obtain a kneaded product 2.

次に、第1図に示した装置の内筒1の内側に上記の混
練物1を、内筒1と外筒2との間に混練物2を入れ、上
より加圧して押し出し、混練物1の層と混練物2の層と
の容積比が1:1となるようにペレット状に成形した。成
形したペレットを120℃で12時間乾燥し、通風式のキル
ンを用いて、550℃で、1時間焼成した。
Next, the above-mentioned kneaded material 1 is put inside the inner cylinder 1 of the apparatus shown in FIG. 1, and the kneaded material 2 is put between the inner cylinder 1 and the outer cylinder 2, and the kneaded material is extruded by pressing from above. The mixture was molded into pellets so that the volume ratio of the layer 1 to the layer of the kneaded material 2 was 1: 1. The formed pellets were dried at 120 ° C. for 12 hours and calcined at 550 ° C. for 1 hour using a ventilation kiln.

ついで焼成ペレットに硝酸コバルト水溶液を含浸さ
せ、乾燥後パラモリブデン酸アンモニウム水溶液を含浸
させ、担体に対し、コバルト金属量として2重量%、モ
リブデン金属量として8重量%になるように担体し、12
0℃で12時間乾燥した後に、通風式のキルンを用い、550
℃で1時間焼成して、触媒Aを調製した。また触媒Aの
細孔構造を推定するために、この触媒製造と並行して混
練物1、混練物2を別々に成形し、上記の方法で乾燥焼
成した後、上記方法でモリブデンを担持し、乾燥焼成し
て触媒A′(混練物1を用いたもの)及びA″(混練物
2を用いたもの)も得た。
Then, the calcined pellets are impregnated with an aqueous solution of cobalt nitrate, dried and then impregnated with an aqueous solution of ammonium paramolybdate, and the carrier is supported so that the amount of cobalt metal is 2% by weight and the amount of molybdenum metal is 8% by weight.
After drying at 0 ℃ for 12 hours, use a ventilation kiln to
The catalyst A was prepared by calcining at 0 ° C. for 1 hour. Further, in order to estimate the pore structure of the catalyst A, the kneaded material 1 and the kneaded material 2 are separately molded in parallel with the production of the catalyst, dried and fired by the above method, and molybdenum is supported by the above method, It was dried and calcined to obtain catalysts A '(using the kneaded material 1) and A "(using the kneaded material 2).

触媒Aは含有する金属成分は内外層とも同一である
が、B.E.T法による細孔構造は内層(A′)が表面積230
m2/g、細孔容積0.70ml/g、細孔直径50〜150Åの割合が7
5%であり、外層(A″)は表面積120m2/g、細孔容積0.
85ml/g、細孔直径150〜600Åの割合が85%であった。
The catalyst A contains the same metal components as the inner and outer layers, but the BET method has a pore structure in which the inner layer (A ') has a surface area of 230
m 2 / g, pore volume 0.70 ml / g, pore diameter 50-150Å ratio is 7
The outer layer (A ″) has a surface area of 120 m 2 / g and a pore volume of 0.
The proportion of 85 ml / g and the pore diameter of 150 to 600Å was 85%.

重質油の水素化処理 内径25mm、長さ1000mmの固定床式リアクターに触媒A
を100ml充填し、アラビアンヘビー原油の常圧残油であ
る第1表に記載した性状を有する重質油を、第2表に示
す条件で水素化処理した。
Hydroprocessing of heavy oil Catalyst A in a fixed bed reactor with an inner diameter of 25 mm and a length of 1000 mm
Was filled with 100 ml, and a heavy oil having the properties shown in Table 1 which is an atmospheric residual oil of Arabian heavy crude oil was hydrotreated under the conditions shown in Table 2.

第1表 比 重 :0.9896 硫 黄 :4.27wt% 窒 素 :0.27wt% 粘度(50℃) :2000cst バナジウム :90ppm ニッケル :30ppm アスファルテン:6.5wt% 第2表 圧 力:140kg/cm2G LHSV :0.30hr-1 水素/油:700Nl/ 反応温度:405℃ 水素化処理を行なった結果得られた生成油中の硫黄及
びバナジウム、ニッケル量を測定し、脱硫率及び脱金属
率(バナジウムとニッケルの合計量で算出)を求めた。
この結果を第2図および第3図に示した。
Table 1 Specific gravity: 0.9896 Sulfur yellow: 4.27wt% Nitrogen: 0.27wt% Viscosity (50 ℃): 2000cst Vanadium: 90ppm Nickel: 30ppm Asphaltene: 6.5wt% Table 2 Pressure: 140kg / cm 2 G LHSV: 0.30hr -1 Hydrogen / Oil: 700Nl / Reaction temperature: 405 ℃ Measure the amount of sulfur, vanadium and nickel in the product oil obtained as a result of hydrogenation treatment, and measure the desulfurization rate and demetalization rate (vanadium and nickel Calculated as the total amount).
The results are shown in FIGS. 2 and 3.

実施例2 触媒の調製(触媒B) アルミナ(カイザー社製、Versa1−250)を双腕形混
練機に入れ、水を加えながら2時間混練した。次に、こ
のアルミナに対して、コバルト量で2.0重量%になるよ
うに硝酸コバルト水溶液を添加し、さらに15分間混練
し、混練物1′を得た。混練物1′を第1図の内筒1の
内側に供給し、別に実施例1で得られた混練物2を内筒
1と外筒2の間に供給し、実施例1と同様に成形し、乾
燥、焼成してペレットを得た。焼成後のペレットに、ア
ルミナに対しモリブデン金属量として8重量%になるよ
うにパラモリブデン酸アンモニウム水溶液を含浸、担持
し、120℃で12時間乾燥した後に、通風式のキルンを用
い、550℃で1時間焼成して、触媒Bを調製した。また
並行して実施例1と同様に触媒B′,B″を得た。
Example 2 Preparation of catalyst (Catalyst B) Alumina (Versa1-250, manufactured by Kaiser) was placed in a double-arm type kneader and kneaded for 2 hours while adding water. Next, an aqueous cobalt nitrate solution was added to this alumina so that the cobalt amount was 2.0% by weight, and the mixture was further kneaded for 15 minutes to obtain a kneaded material 1 '. The kneaded material 1'is supplied to the inner side of the inner cylinder 1 in FIG. 1, and the kneaded material 2 obtained in Example 1 is separately supplied between the inner cylinder 1 and the outer cylinder 2 to form the same as in the first embodiment. Then, it was dried and baked to obtain pellets. The fired pellets were impregnated with and supported with an ammonium paramolybdate aqueous solution so that the molybdenum metal content was 8% by weight with respect to alumina, dried at 120 ° C for 12 hours, and then at 550 ° C using a ventilation kiln. The catalyst B was prepared by firing for 1 hour. In parallel, catalysts B ′ and B ″ were obtained in the same manner as in Example 1.

触媒Bは内層がモリブデンとコバルトを含み、外層が
モリブデンのみからなる2重層の触媒であり、B.E.T法
による細孔構造は内層(B′)が表面積230m2/g、細孔
容積0.70ml/g、細孔直径50〜150Åの割合が75%であ
り、外層(B″)は表面積115m2/g、細孔容積0.83ml/
g、細孔直径150〜600Åの割合が86%であった。
Catalyst B is a double-layer catalyst in which the inner layer contains molybdenum and cobalt and the outer layer consists of molybdenum, and the pore structure according to the BET method is that the inner layer (B ') has a surface area of 230 m 2 / g and a pore volume of 0.70 ml / g. , The proportion of pore diameter 50 to 150Å is 75%, the outer layer (B ″) has a surface area of 115 m 2 / g, pore volume of 0.83 ml /
g, and the ratio of pore diameters of 150 to 600Å was 86%.

重質油の水素化処理 触媒Bを用いて実施例1と同様に重質油の水素化処理
を行ない、生成油中の硫黄およびバナジウム、ニッケル
料を測定し、脱硫及び脱金属率を求めた。この結果を第
2図及び第3図に示した。
Hydrotreatment of Heavy Oil Using the catalyst B, the heavy oil was hydrotreated in the same manner as in Example 1, and the sulfur, vanadium, and nickel materials in the produced oil were measured to determine the desulfurization and demetalization rates. . The results are shown in FIGS. 2 and 3.

比較例1 比較触媒Cの調製 アルミナ(カイザー社製、Versa1−250)を双腕形混
練機に入れ、水を加えながら2時間混練した。この混練
物を第1図の内筒1の内側および内筒1と外筒2の間に
同量づつ入れて実施例1と同様に成形し、乾燥、焼成し
てペレットを得た。これに触媒Aと同様の方法でコバル
トとモリブデンを担持し、乾燥、焼成して触媒Cを得
た。触媒Cは、内層、外層ともに同一の細孔構造及び同
一の金属成分を有する触媒であり、B.E.T法による細孔
構造が表面積230m2/g、細孔容積0.70ml/g、細孔直径50
〜150Åの割合が75%であった。
Comparative Example 1 Preparation of Comparative Catalyst C Alumina (Versa 1-250, manufactured by Kaiser) was placed in a double-arm type kneader and kneaded for 2 hours while adding water. This kneaded product was put into the inner cylinder 1 of FIG. 1 and between the inner cylinder 1 and the outer cylinder 2 in the same amount and molded in the same manner as in Example 1, dried and fired to obtain pellets. Cobalt and molybdenum were supported on this by the same method as for catalyst A, dried and calcined to obtain catalyst C. The catalyst C is a catalyst having the same pore structure and the same metal component in both the inner layer and the outer layer, and the BET method has a pore structure having a surface area of 230 m 2 / g, a pore volume of 0.70 ml / g, and a pore diameter of 50.
The proportion of ~ 150Å was 75%.

重質油の水素化処理 比較触媒Cを用いて実施例1と同様に重質油の水素化
処理を行ない、生成油中の硫黄およびバナジウム、ニッ
ケル料を測定し、脱硫及び脱金属率を求めた。この結果
を第2図及び第3図に示した。この結果から明らかなよ
うに、外表面部の細孔径を大きく、中心部の細孔径を小
さくした本発明の触媒AおよびBは、内外層とも同じ小
さな細孔径を有する触媒Cに比べて、長期間にわたっ
て、高い脱硫、脱金属活性を維持できることが分かる。
また、内層にモリブデン−コバルト、外層にモリブデン
のみを担持させた触媒Bは脱金属活性の低下が殆どな
く、さらに優れた性能を有している。
Hydrotreatment of Heavy Oil Using the comparative catalyst C, the heavy oil was hydrotreated in the same manner as in Example 1, and the sulfur, vanadium and nickel materials in the produced oil were measured to determine the desulfurization and demetalization rates. It was The results are shown in FIGS. 2 and 3. As is clear from these results, the catalysts A and B of the present invention in which the pore diameter of the outer surface portion is large and the pore diameter of the central portion is small are longer than the catalyst C having the same small pore diameter in the inner and outer layers. It can be seen that high desulfurization and demetalization activities can be maintained over a period of time.
Further, the catalyst B in which molybdenum-cobalt is supported in the inner layer and only molybdenum is supported in the outer layer has almost no decrease in demetallizing activity, and has further excellent performance.

[発明の効果] 本発明は、触媒の外表面部の細孔径を大きくしたこと
によって、脱金属活性を高め、かつ、触媒中心部への金
属吸着による被毒を防止し、金属の除去率を長期にわた
り高く維持できるとともに、脱硫、脱窒素、分解活性の
寿命も著しく延ばすことができる。
[Advantages of the Invention] The present invention increases the demetalization activity by increasing the pore size of the outer surface portion of the catalyst, and prevents poisoning due to metal adsorption to the catalyst central portion, thereby improving the metal removal rate. It can be maintained at a high level for a long period of time, and the life of desulfurization, denitrification, and decomposition activity can be significantly extended.

また、本発明において、触媒の中心部に周期律表第VI
b族金属成分と鉄族の金属成分を含有させ、触媒の外表
面部及びその近傍には周期律表第VI b族金属成分を含有
させることによって、脱金属活性、脱硫活性を更に高め
ることができる。
Further, in the present invention, the VI of the periodic table is added to the center of the catalyst.
By adding a group b metal component and an iron group metal component, and a group VIb metal component of the periodic table on the outer surface portion and its vicinity of the catalyst, the demetalization activity and the desulfurization activity can be further enhanced. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の触媒を製造するための装置の一例を示
す概略図である。 1……内筒 2……外筒 3……出口 a……内筒出口の内径 b……外筒出口の内径 第2図は重質油を水素化処理したときの脱硫率の経時変
化、第3図はそのときの脱金属率(V+Ni)の経時変化
を示すものである。
FIG. 1 is a schematic diagram showing an example of an apparatus for producing the catalyst of the present invention. 1 …… Inner cylinder 2 …… Outer cylinder 3 …… Outlet a …… Inner cylinder outlet inner diameter b …… Outer cylinder outlet inner diameter Fig. 2 shows changes in desulfurization rate with time when heavy oil is hydrotreated, FIG. 3 shows the change over time in the demetalization rate (V + Ni) at that time.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔質の耐火性無機物担体に少なくとも周
期律表第VI b族金属成分及び/または鉄族の金属成分と
を担持させた触媒において、全触媒容積の1/5〜2/3から
なる触媒の中心部及びその近傍における細孔容積がB.E.
T法による測定値で0.5〜0.8ml/g、であり、直径50〜150
Åの細孔が直径600Å以下の全細孔容積の50〜90%であ
る細孔径分布を有するものであり、且つ全触媒容積の1/
5〜2/3からなる触媒の外表面部及びその近傍における細
孔容積がB.E.T法による測定値で0.6〜1.5ml/gであり、
直径150〜600Åの細孔が直径600Å以下の全細孔容積の5
0〜90%である細孔径分布を有することを特徴とする重
質油の水素化処理用触媒。
1. A catalyst comprising a porous refractory inorganic carrier on which at least a metal component of Group VIb of the Periodic Table and / or a metal component of an iron group is supported, which is 1/5 to 2/3 of the total catalyst volume. The pore volume of the catalyst consisting of
The value measured by the T method is 0.5 to 0.8 ml / g, and the diameter is 50 to 150.
The Å pores have a pore size distribution of 50 to 90% of the total pore volume of 600 Å or less in diameter, and 1 / of the total catalyst volume.
The outer surface of the catalyst consisting of 5 to 2/3 and the pore volume in the vicinity thereof is 0.6 to 1.5 ml / g as measured by the BET method,
Pore with a diameter of 150 to 600Å is 5
A catalyst for hydrotreating heavy oil, which has a pore size distribution of 0 to 90%.
【請求項2】触媒の中心部及びその近傍に少なくとも周
期律表第VI b族金属成分と鉄族の金属成分を担持させ、
触媒の外表面部及びその近傍に周期律表第VI b族金属成
分を担持させることを特徴とする請求項1記載の触媒。
2. A metal component of the Group VIb metal group and a metal component of the iron group of at least the periodic table are supported on and in the vicinity of the center of the catalyst,
2. The catalyst according to claim 1, wherein a metal component of Group VIb of the periodic table is supported on the outer surface of the catalyst and in the vicinity thereof.
【請求項3】周期律表第VI b族金属成分がモリブデンで
ある請求項1または2に記載の触媒。
3. The catalyst according to claim 1, wherein the metal component of Group VIb of the periodic table is molybdenum.
【請求項4】鉄族金属成分がコバルトまたはニッケルで
ある請求項1ないし3のいずれかに記載の触媒。
4. The catalyst according to claim 1, wherein the iron group metal component is cobalt or nickel.
【請求項5】触媒の中心部及びその近傍の触媒担持がア
ルミナであり、触媒の外表面部及びその近傍の触媒担持
がシリカである請求項1ないし4のいずれかに記載の触
媒。
5. The catalyst according to any one of claims 1 to 4, wherein the catalyst supported on the central portion of the catalyst and its vicinity is alumina, and the catalyst supported on the outer surface portion of the catalyst and its vicinity is silica.
JP63243968A 1988-09-30 1988-09-30 Catalyst for heavy oil hydrotreating Expired - Fee Related JP2672348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63243968A JP2672348B2 (en) 1988-09-30 1988-09-30 Catalyst for heavy oil hydrotreating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63243968A JP2672348B2 (en) 1988-09-30 1988-09-30 Catalyst for heavy oil hydrotreating

Publications (2)

Publication Number Publication Date
JPH0295442A JPH0295442A (en) 1990-04-06
JP2672348B2 true JP2672348B2 (en) 1997-11-05

Family

ID=17111728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63243968A Expired - Fee Related JP2672348B2 (en) 1988-09-30 1988-09-30 Catalyst for heavy oil hydrotreating

Country Status (1)

Country Link
JP (1) JP2672348B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672347B2 (en) * 1988-09-30 1997-11-05 株式会社ジャパンエナジー Catalysts for heavy oil hydrotreating
US8852438B2 (en) 1995-08-11 2014-10-07 Zenon Technology Partnership Membrane filtration module with adjustable header spacing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672347B2 (en) * 1988-09-30 1997-11-05 株式会社ジャパンエナジー Catalysts for heavy oil hydrotreating

Also Published As

Publication number Publication date
JPH0295442A (en) 1990-04-06

Similar Documents

Publication Publication Date Title
US4328127A (en) Residua demetalation/desulfurization catalyst
JP2631712B2 (en) Catalyst composition for hydrotreating heavy hydrocarbon oil and hydrotreating method using the same
US5494568A (en) Hydrocarbon conversion process
US4404097A (en) Residua demetalation/desulfurization catalyst and methods for its use
US5277794A (en) Hydrocarbon conversion utilizing a nickel-tungsten-phosphorus catalyst
US10563134B2 (en) Catalyst and its use for the selective hydrodesulfurization of an olefin containing hydrocarbon feedstock
US5403806A (en) Phosphorous-containing hydroprocessing catalyst and method of preparation
JPS62199687A (en) Hydrogenation using catalyst having large pores
JPH0433835B2 (en)
US4657664A (en) Process for demetallation and desulfurization of heavy hydrocarbons
KR20010022784A (en) Hydrogenation catalyst and method of hydrogenating heavy oil
US4048115A (en) Hydrodesulfurization catalyst and method of preparation
US20170306250A1 (en) Ebullated bed process for high conversion of heavy hydrocarbons with a low sediment yield
US5100855A (en) Mixed catalyst system for hyproconversion system
WO2002032570A2 (en) Hydrodemetallation catalyst and method for making same
US4394302A (en) Hydrodesulfurization catalyst on lithium-containing support and method for its preparation
JP2631704B2 (en) Catalyst composition for hydrotreating heavy hydrocarbon oils
JPH0431737B2 (en)
US20240157344A1 (en) Heavy hydrocarbon hydroprocessing catalyst and methods of making and using thereof
US4908344A (en) Hydroprocessing catalyst and support having bidisperse pore structure
US4791090A (en) Hydroprocessing catalyst and support having bidisperse pore structure
CA1284982C (en) Hydroprocessing catalyst and support having bidisperse pore structure
JP2672348B2 (en) Catalyst for heavy oil hydrotreating
CA1195278A (en) Layered residua treatment catalyst process and temperature profile
JPH09248460A (en) Catalyst for hydrogenating treatment of heavy oil and hydrogenating treatment method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees