JP2671341B2 - Optical transceiver module - Google Patents

Optical transceiver module

Info

Publication number
JP2671341B2
JP2671341B2 JP63003078A JP307888A JP2671341B2 JP 2671341 B2 JP2671341 B2 JP 2671341B2 JP 63003078 A JP63003078 A JP 63003078A JP 307888 A JP307888 A JP 307888A JP 2671341 B2 JP2671341 B2 JP 2671341B2
Authority
JP
Japan
Prior art keywords
transmission
optical
signal
pulse
latch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63003078A
Other languages
Japanese (ja)
Other versions
JPH01180137A (en
Inventor
宏 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63003078A priority Critical patent/JP2671341B2/en
Publication of JPH01180137A publication Critical patent/JPH01180137A/en
Application granted granted Critical
Publication of JP2671341B2 publication Critical patent/JP2671341B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bidirectional Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信方式に関し,特に光ファイバデータリ
ンク等で双方向伝送を行う際の信号の送受信方式に関す
る。
Description: TECHNICAL FIELD The present invention relates to an optical communication system, and more particularly to a signal transmission / reception system for bidirectional transmission in an optical fiber data link or the like.

〔従来の技術〕[Conventional technology]

単芯光ファイバを用いて双方向伝送を行う方式の例を
第6図及び第7図に示す。
FIGS. 6 and 7 show an example of a method for bidirectional transmission using a single-core optical fiber.

第6図において,送信信号はモジュール11の入録端子
1から入力され,ドライバ2,発光素子3により光信号に
変換され,光結合器4,光コネクタ5を通して光ファイバ
6に結合し,相手先モジュールに伝送される。逆に,受
信信号は光ファイバ6から光コネクタ5,光結合器4を通
り受光素子7に入射する。受光素子7で光−電気変換を
行い,変換された信号はプリアンプ8により増幅され,
出力端子9に出力される。
In FIG. 6, a transmission signal is input from the recording terminal 1 of the module 11, converted into an optical signal by the driver 2 and the light emitting element 3, coupled to the optical fiber 6 through the optical coupler 4 and the optical connector 5, and Transmitted to the module. On the contrary, the received signal enters the light receiving element 7 from the optical fiber 6 through the optical connector 5 and the optical coupler 4. Light-to-electric conversion is performed by the light receiving element 7, and the converted signal is amplified by the preamplifier 8,
It is output to the output terminal 9.

ここで,送信の際には光コネクタ5において反射が生
じ,反射光が受光素子7に入射してクロストーク信号を
発生する。それ故,送信時には受信カット端子10からプ
リアンプ8に対しその動作を停止させる信号を与え,ク
ロストーク信号が出力されないようにする必要がある。
このため,伝送方式は半二重伝送となる。
Here, during transmission, reflection occurs in the optical connector 5, and the reflected light enters the light receiving element 7 to generate a crosstalk signal. Therefore, at the time of transmission, it is necessary to give a signal for stopping the operation to the preamplifier 8 from the reception cut terminal 10 so that the crosstalk signal is not output.
Therefore, the transmission method is half-duplex.

第7図は波長多重(WDM)による全二重伝送の例であ
る。WDMモジュール12は波長λの発光素子13,受光素子
14,光合波分波器15を内蔵し,対向するWDMモジュール16
は波長λの発光素子17,受光素子14,光合波分波器15を
内蔵している。この例では,送受信信号を光合波分波器
15により分離しているので,光コネクタ5で反射があっ
てもクロストークの発生がなく,全二重伝送が可能であ
る。
FIG. 7 shows an example of full-duplex transmission by wavelength division multiplexing (WDM). WDM module 12 consists of light emitting element 13 and light receiving element with wavelength λ 1.
14, WDM module 16 with built-in optical multiplexer / demultiplexer 15 and facing each other
Incorporates a light emitting element 17 having a wavelength λ 2, a light receiving element 14, and an optical multiplexer / demultiplexer 15. In this example, the transmitted / received signal is an optical demultiplexer
Since they are separated by 15, crosstalk does not occur even if there is reflection at the optical connector 5, and full-duplex transmission is possible.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

先に述べた2種類の光データリンクの問題点について
述べる。
The problems of the above-mentioned two types of optical data links will be described.

まず,第6図に示したデータリンクの欠点は,クロス
トークの発生のため同時双方向伝送が行えないことであ
り,全二重方式に比べると伝送効率が著しく低い。
First, the drawback of the data link shown in FIG. 6 is that simultaneous bidirectional transmission cannot be performed due to the occurrence of crosstalk, and the transmission efficiency is significantly lower than in the full-duplex system.

第7図に示した全二重伝送を行うWDM方式の欠点とし
ては,価格が高いことがあげられる。その原因は,光合
波分波器内に使用される波長分離用の光フィルタの作製
に高度の薄膜成長技術が必要となる結果,光合波分波器
が高価なものになってしまうことによる。また,高い波
長精度を有する2種の波長の光源が必要となるため,光
源自体の価格が高いことも,モジュールのコストアップ
につながる。
One of the drawbacks of the WDM system for full-duplex transmission shown in Fig. 7 is its high price. The reason for this is that the optical multiplexer / demultiplexer becomes expensive as a result of the need for advanced thin film growth technology to manufacture the optical filter for wavelength separation used in the optical multiplexer / demultiplexer. In addition, since a light source of two kinds of wavelengths having high wavelength accuracy is required, the cost of the light source itself is high, which also leads to an increase in the cost of the module.

その上,WDM方式では送受の波長を一致させてもモジュ
ールを対向させる必要があり,通信の相手方が自由に選
べないという欠点もある。
Moreover, in the WDM system, even if the wavelengths of transmission and reception are the same, the modules must face each other, and there is the disadvantage that the other party of communication cannot freely choose.

本発明の課題は,単芯光ファイバを用いて安価かつ伝
送効率の高い光データリンクを提供することにある。
An object of the present invention is to provide an optical data link that uses a single-core optical fiber and is inexpensive and has high transmission efficiency.

〔課題を解決するための手段〕[Means for solving the problem]

本発明による光送受信モジュールは、発光素子と受光
素子及び光結合器に加えて、送信側に、パルス状の入力
端子の送出タイミングを規定するためのDラッチと、該
Dラッチからのパルスの幅を圧縮するためのパルス幅圧
縮回路とを備え、受信側には、パルス状の受信信号があ
るとこれに同期したクロックを前記入力信号の送出タイ
ミング情報として前記Dラッチに出力するクロックジェ
ネレータを備えることにより、前記入力信号をそのパル
ス幅を小さくした後、受信パルス列の間隙を利用して1
ビットずつ送出するようにしたことを特徴とする。
In addition to the light emitting element, the light receiving element, and the optical coupler, the optical transceiver module according to the present invention has a D latch for defining the transmission timing of a pulsed input terminal on the transmitting side, and a pulse width from the D latch. A pulse width compression circuit for compressing the pulse width, and the receiving side is provided with a clock generator that outputs a clock synchronized with the pulsed reception signal to the D latch as transmission timing information of the input signal. This reduces the pulse width of the input signal, and then uses the gap of the received pulse train to
The feature is that it is transmitted bit by bit.

〔実施例〕〔Example〕

以下に本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described.

第1図を参照して,本発明の光送受信モジュールは,
発光素子3,光結合器4,受光素子7等の外,D−ラッチ18,
パルス幅圧縮回路19,クロックジェネレータ20を有す
る。
Referring to FIG. 1, the optical transceiver module of the present invention is
Outside the light emitting element 3, the optical coupler 4, the light receiving element 7, etc., the D-latch 18,
It has a pulse width compression circuit 19 and a clock generator 20.

入力端子1から入力された送信信号はD−ラッチ18,
パルス幅圧縮回路19を通り,発光素子3より光信号に変
換される。受信信号は,受光素子7,プリアンプ8を通
り,出力端子9およびクロックジェネレータ20に出力さ
れる。ここで,クロックジェネレータ20は受信信号が無
い時はフリーランであるが,受信信号が入るとそれに同
期したクロックをD−ラッチ18に出力する。また,パル
ス幅圧縮回路19の出力は,発光素子3とプリアンプ8と
に接続され,送信パルスがある時はプリアンプ8の動作
が停止する。
The transmission signal input from the input terminal 1 is the D-latch 18,
It passes through the pulse width compression circuit 19 and is converted into an optical signal by the light emitting element 3. The received signal passes through the light receiving element 7 and the preamplifier 8 and is output to the output terminal 9 and the clock generator 20. Here, the clock generator 20 is in free run when there is no received signal, but when the received signal enters, it outputs a clock synchronized with it to the D-latch 18. The output of the pulse width compression circuit 19 is connected to the light emitting element 3 and the preamplifier 8, and the operation of the preamplifier 8 is stopped when there is a transmission pulse.

第2図を用いてさらに動作を説明する。第2図(a)
はプリアンプ8の出力,(b)はクロックジェネレータ
20の出力,(c)は入力端子1の入力,(d)はD−ラ
ッチ18の出力,(e)はパルス幅圧縮回路19の出力であ
る。
The operation will be further described with reference to FIG. Fig. 2 (a)
Is the output of the preamplifier 8, (b) is the clock generator
20 is an output, (c) is an input of the input terminal 1, (d) is an output of the D-latch 18, and (e) is an output of the pulse width compression circuit 19.

受信信号が無い時は,送信信号のタイミングは特に定
まらないが,受信信号があるとクロックジェネレータ20
の出力はそれに同期し,入力信号の送出タイミング情報
としてD−ラッチ18にクロックを加える。送信信号はパ
ルス幅圧縮回路19を通りそのパルス幅を小さくした後,
同様にパルス幅を圧縮された状態で送られて来る受信パ
ルス列の間隙を利用して送信される。
When there is no received signal, the timing of the transmitted signal is not particularly fixed, but when there is a received signal, the clock generator 20
The output of is synchronized with that, and a clock is applied to the D-latch 18 as transmission timing information of the input signal. The transmission signal passes through the pulse width compression circuit 19 to reduce its pulse width,
Similarly, it is transmitted by utilizing the gap of the received pulse train that is transmitted with the pulse width compressed.

この方式では,基本的に半二重の伝送方式をとりなが
らも,パルスの間隔を利用して同時に送受信を行い得る
ため,従来の半二重伝送モジュールのような伝送効率の
低下無く全二重方式に近い双方向伝送が可能になる。ま
た,入力信号の変調方式は等間隔のパルス列であれば良
く,PCM方式の他,パルスアナログ変調の一種であるPAM
(パルス振幅変調)にも適用可能である。
In this method, although the transmission method of the half-duplex is basically adopted, since the transmission and reception can be performed simultaneously by using the pulse interval, the full-duplex transmission without the decrease of the transmission efficiency of the conventional half-duplex transmission module. It enables bidirectional transmission similar to the method. The modulation method of the input signal may be a pulse train with equal intervals. In addition to the PCM method, PAM which is a kind of pulse analog modulation
It is also applicable to (pulse amplitude modulation).

本発明の光送受信モジュールの最大伝送距離は,発光
素子の出力,受光素子およびプリアンプの感度の他,パ
ルス列の間隔にも依存する。以下に,パルス列の間隔と
最大伝送距離との関係について述べる。
The maximum transmission distance of the optical transceiver module of the present invention depends on the output of the light emitting element, the sensitivity of the light receiving element and the preamplifier, as well as the interval of the pulse train. The relationship between the pulse train interval and the maximum transmission distance is described below.

本発明の光送受信モジュールのように,パルスを相手
側と自分側とで交互に送出する場合,1個目のパルスを送
出後,相手からのパルスが到着するまで2個目のパルス
は送出できない。すなわち,送出するパルスの間隔はパ
ルスが伝送路を1往復する時間よりも大きいことが必要
である。
When the pulse is alternately transmitted between the partner side and the self side as in the optical transceiver module of the present invention, the second pulse cannot be transmitted until the pulse from the partner arrives after the first pulse is transmitted. . That is, it is necessary that the interval between the pulses to be sent is larger than the time required for the pulses to make one round trip in the transmission path.

この条件は(1)式で表される。 This condition is expressed by equation (1).

2nL/C<T−τ ……(1) ここで,nはコアの屈折率,Lは伝送距離,Cは光速,Tはパ
ルス周期,τはパルス幅である。
2nL / C <T-τ (1) where n is the refractive index of the core, L is the transmission distance, C is the speed of light, T is the pulse period, and τ is the pulse width.

いま,n=1.45,C=3×108mとし,パルスのデューティ
比τ/TをパラメータにとってビットレートB(≡1/T)
と最大伝送距離Lmaxとの関係を示したのが第5図であ
る。同一のビットレートでは,デューティ比が小さいほ
どパルス間隔が広がるので長距離伝送が可能である。
Now, n = 1.45, C = 3 × 10 8 m, and bit rate B (≡1 / T) with the pulse duty ratio τ / T as a parameter.
FIG. 5 shows the relationship between the maximum transmission distance Lmax and the maximum transmission distance Lmax. At the same bit rate, the smaller the duty ratio, the wider the pulse interval, so long-distance transmission is possible.

次に本発明の具体例について説明する。 Next, specific examples of the present invention will be described.

第3図は第1図におけるパルス幅圧縮回路19としてワ
ンショット・マルチバイブレータ21を用い,プリアンプ
8の動作停止回路としてアナログスイッチ22を用いた例
である。
FIG. 3 shows an example in which a one-shot multivibrator 21 is used as the pulse width compression circuit 19 in FIG. 1 and an analog switch 22 is used as an operation stop circuit of the preamplifier 8.

また,第4図は,従来形の半二重モジュール23の外付
け用ユニット24としてD−ラッチ18,パルス幅圧縮回路1
9,クロックジェネレータ20から成るものを取りつけ,簡
単に光データリンクの性能向上を実現した例である。パ
ルス幅圧縮回路19の出力は入力端子1及び受信カット端
子10に,出力端子9の出力はクロックジェネレータ20に
それぞれ結線すれば,従来の半二重モジュール23を利用
したまま伝送効率を大幅に改善できる。
Also, FIG. 4 shows a D-latch 18, a pulse width compression circuit 1 as an external unit 24 of the conventional half-duplex module 23.
This is an example of easily improving the performance of an optical data link by installing a device consisting of a clock generator 20. If the output of the pulse width compression circuit 19 is connected to the input terminal 1 and the reception cut terminal 10, and the output of the output terminal 9 is connected to the clock generator 20, respectively, the transmission efficiency is greatly improved while using the conventional half-duplex module 23. it can.

〔発明の効果〕〔The invention's effect〕

以上説明したように,本発明の光送受信モジュール
は,簡単な構成で全二重方式と同等の高い伝送効率を有
する安価な光データリンクを実現可能であり,広汎な応
用が期待できる。
As described above, the optical transmission / reception module of the present invention can realize an inexpensive optical data link having a high transmission efficiency equivalent to that of the full-duplex method with a simple configuration, and can be expected to have a wide range of applications.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の光送受信モジュールのブロック図,第
2図は第1図の各部の信号パターンを示した図,第3図
は第1図を更に具体的に示したブロック図,第4図は本
発明の変形例を示した図,第5図は本発明の光送受信モ
ジュールのビットレートと伝送距離との関係を示した特
性図,第6図,第7図は従来の光送受信モジュールのブ
ロック図。 1……入力端子,2……ドライバ,3……発光素子,4……光
結合器,5……光コネクタ,6……光ファイバ,7……受光素
子,8……プリアンプ,9……出力端子,10……受信カット
端子,11……モジュール,12,16……WDMモジュール,13…
…波長λの発光素子,14……受光素子,15……光合波分
波器,17……波長λの発光素子,18……D−ラッチ,19
……パルス幅圧縮回路,20……クロックジェネレータ,21
……ワンショット・マルチバイブレータ,22……アナロ
グスイッチ,23……従来形半二重モジュール。
FIG. 1 is a block diagram of an optical transmitter / receiver module of the present invention, FIG. 2 is a diagram showing a signal pattern of each part of FIG. 1, and FIG. 3 is a block diagram showing more specifically FIG. FIG. 5 is a diagram showing a modification of the present invention, FIG. 5 is a characteristic diagram showing the relationship between the bit rate and the transmission distance of the optical transceiver module of the present invention, and FIGS. 6 and 7 are conventional optical transceiver modules. Block diagram of. 1 …… Input terminal, 2 …… Driver, 3 …… Light emitting device, 4 …… Optical coupler, 5 …… Optical connector, 6 …… Optical fiber, 7 …… Light receiving device, 8 …… Preamplifier, 9 …… Output terminal, 10 …… Reception cut terminal, 11 …… Module, 12,16 …… WDM module, 13…
… Light emitting element with wavelength λ 1 , 14 …… Light receiving element, 15 …… Optical multiplexer / demultiplexer, 17 …… Light emitting element with wavelength λ 2 , 18 …… D-latch, 19
...... Pulse width compression circuit, 20 …… Clock generator, 21
…… One-shot multivibrator, 22 …… Analog switch, 23 …… Conventional half-duplex module.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】発光素子と受光素子及び光結合器を有する
光送受信モジュールにおいて、送信側に、パルス状の入
力信号の送出タイミングを規定するためのDラッチと、
該Dラッチからのパルスの幅を圧縮するためのパルス幅
圧縮回路とを備え、受信側には、パルス状の受信信号が
あるとこれに同期したクロックを前記入力信号の送出タ
イミング情報として前記Dラッチに出力するクロックジ
ェネレータを備えることにより、前記入力信号をそのパ
ルス幅を小さくした後、受信パルス列の間隙を利用して
1ビットずつ送出するようにしたことを特徴とする光送
受信モジュール。
1. An optical transmission / reception module having a light emitting element, a light receiving element, and an optical coupler, and a D latch for defining a transmission timing of a pulsed input signal on a transmission side,
A pulse width compression circuit for compressing the width of the pulse from the D latch, and when there is a pulsed reception signal on the receiving side, a clock synchronized with this is used as the transmission timing information of the input signal for the D signal. An optical transceiver module comprising a clock generator for outputting to a latch so that the pulse width of the input signal is reduced and then the input signal is transmitted bit by bit by utilizing a gap of a received pulse train.
JP63003078A 1988-01-12 1988-01-12 Optical transceiver module Expired - Lifetime JP2671341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63003078A JP2671341B2 (en) 1988-01-12 1988-01-12 Optical transceiver module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63003078A JP2671341B2 (en) 1988-01-12 1988-01-12 Optical transceiver module

Publications (2)

Publication Number Publication Date
JPH01180137A JPH01180137A (en) 1989-07-18
JP2671341B2 true JP2671341B2 (en) 1997-10-29

Family

ID=11547306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63003078A Expired - Lifetime JP2671341B2 (en) 1988-01-12 1988-01-12 Optical transceiver module

Country Status (1)

Country Link
JP (1) JP2671341B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763945A (en) * 1980-10-07 1982-04-17 Nec Corp Single-core two-way optical communication system
JPS6082892A (en) * 1983-10-13 1985-05-11 日揮株式会社 Method of treating organic group chemical decontaminated radioactive waste liquor
JPS6282892A (en) * 1985-10-08 1987-04-16 Fujitsu Ltd Optical bidirectional transmission system

Also Published As

Publication number Publication date
JPH01180137A (en) 1989-07-18

Similar Documents

Publication Publication Date Title
EP1432149B1 (en) Optical waveguide grating interrogation system and sensor system
CN101904116B (en) Wavelength division multiplexing-passive optical network using external seed light source
US5119223A (en) Bidirectional light waveguide (LWG) telecommunication system and method for wavelength separation mode (bidirectional wavelength separation mode (WDM) between a central telecommunication location and plurality of decentralized telecommunication locations
US4955014A (en) Broadband optical communication system, particularly in the subscriber area
GB2181921A (en) Optical communications system
US5384651A (en) Optical transmission system
JP3293565B2 (en) Optical amplification repeater
EP0841768A2 (en) Method of and device for controlling the phase of a clock signal in a point-to-point optical transmission
JP3511445B2 (en) Optical two-way transmission system
Caplan et al. A quantum-limited optically-matched communication link
US4430572A (en) Device for separating two light signals emitted by sources having different wavelengths and transmitted in a single optical fiber
US20230353470A1 (en) Optical link time-of-flight and traffic latency determination using optical transceiver
JP2671341B2 (en) Optical transceiver module
JP4116244B2 (en) Transceiver for wavelength division multiplexing
TR26000A (en) PROCEDURE FOR THE OPERATION OF HATERODINE WITH A LASER EXERCISE FOR OPTIC TRANSMISSION OF INFORMATION BETWEEN TRANSMITTER AND RECEIVER AS A SPACE FROM ONE.
CN109802745B (en) 8-channel wavelength division multiplexing/demultiplexing device for 200G/400G optical transceiver module
CN201383811Y (en) 40Gb/s photoelectric forwarding module adopting flexible connection of radio frequency head
JPS6318901B2 (en)
US6301032B1 (en) Optical multiplexing/demultiplexing device
WO2024001688A1 (en) Passive communication terminal, passive communication system, and passive communication method
US7127178B2 (en) Optical communication device
JPH0586713B2 (en)
JPH0650841A (en) Method and equipment for detecting breaking of optical fiber line
US6198859B1 (en) Dispersion compensating device using dispersion compensating fiber module
KR100494859B1 (en) Common coupler of optical line