JP2671316B2 - Harmonic generating solid-state laser apparatus - Google Patents

Harmonic generating solid-state laser apparatus

Info

Publication number
JP2671316B2
JP2671316B2 JP62241074A JP24107487A JP2671316B2 JP 2671316 B2 JP2671316 B2 JP 2671316B2 JP 62241074 A JP62241074 A JP 62241074A JP 24107487 A JP24107487 A JP 24107487A JP 2671316 B2 JP2671316 B2 JP 2671316B2
Authority
JP
Japan
Prior art keywords
state laser
solid
optical element
harmonic generating
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62241074A
Other languages
Japanese (ja)
Other versions
JPS6482683A (en
Inventor
祥治 山田
鈴木  誠
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Priority to JP62241074A priority Critical patent/JP2671316B2/en
Publication of JPS6482683A publication Critical patent/JPS6482683A/en
Application granted granted Critical
Publication of JP2671316B2 publication Critical patent/JP2671316B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a non-linear optical device, e.g. exhibiting Brillouin- or Raman-scattering
    • H01S3/109Frequency multiplying, e.g. harmonic generation

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は大きなレーザ出力の高調波を発生させる固体レーザ装置に関するものである。 DETAILED DESCRIPTION OF THE INVENTION [FIELD OF THE INVENTION The present invention relates to a solid-state laser apparatus for generating harmonics of a large laser output. [従来技術] ND 3 :YAG等の結晶を用いた固体レーザは従来、励起光にアークランプ等を用いていたが、半導体レーザを用いた小型で高効率の後方励起型固体レーザが提案され、使用されはじめている(第2図)。 [Prior art] ND 3: conventional solid state lasers using crystals such as YAG, which has been using an arc lamp or the like to the excitation light, backward pumping type solid-state laser with high efficiency have been proposed a compact using a semiconductor laser, It is beginning to be used (Figure 2). この固体レーザはND 3 : The solid-state laser ND 3:
YAGの場合1064nmの波長で発振するが、より短波長の必要性が高いため、非線形光学素子を用いて第二高調波を発生させて532nmの光を利用している。 Although oscillation at a wavelength of YAG case 1064 nm, more because it is highly necessary for short wavelength, and using light 532nm by generating second harmonic by using a nonlinear optical element. この第二高調波を効率良く発生するには、非線形光学素子の変換効率が光密度に比例するため、非線形光学素子を光共振器内に配置している。 This second harmonic wave efficiently occur, because the conversion efficiency of the nonlinear optical element is proportional to the light density, it is disposed non-linear optical element in the optical resonator. [発明が解決しようとする問題点] しかしながら、第二高調波の変換効率を高くするには、光の密度を上げる必要があるため、レンズ等の光学系が複雑になった。 [INVENTION Problems to be Solved point] However, in order to increase the conversion efficiency of the second harmonic, it is necessary to increase the density of light, an optical system such as a lens becomes complicated. また非線形光学素子の位相整合をとるには、通常、温度制御を行なわなくても使用温度範囲の広い角度位相整合を行うが、部品点数が多くなるため安定性に不安があった。 Also in phase matching of the nonlinear optical element is usually performed even temperature range wide angle phase matching without performing the temperature control, there is anxiety in stability because the number of parts is increased. [発明の目的] 本発明は、上述した問題点を解決するためなされたものであり、固体レーザ材料と非線形光学素子を光学樹脂で接着することにより、高効率で調整の容易な固定レーザの高調波発生方法を提供することを目的としている。 The present invention OBJECTS OF THE INVENTION has been made to solve the problems described above, by bonding the solid-state laser material and a non-linear optical element in the optical resin, easy harmonics of the fixed laser adjustment at high efficiency and its object is to provide a wave generation method. [問題点を解決するための手段] この目的を達成するために本発明の高調波発生固体レーザ装置は、光共振系に配置される固定レーザ材料の一端面に光軸に対してブリュースタ角をなす面を構成すると共に、該固体レーザ材料の他端面は光軸に対して垂直面をなし、かつ該垂直面若しくは該ブリュースタ角のなす面のいずれかに非線形光学素子を接合配置してなることを特徴としている。 [Means for solving the problems] harmonic generating solid-state laser apparatus of the present invention to achieve this object, the Brewster angle with respect to the optical axis on one end face of the stationary laser material disposed in the optical resonator system together constitute a surface which forms the other end surface of the solid laser material forms a vertical plane with respect to the optical axis, and a nonlinear optical element are joined located either plane formed said vertical face or the Brewster angle It is characterized in that it comprises. [作用] 上記の構成を有する発明において、固定レーザ材料に励起光が入射すると蛍光を発し、これが光共振系内で増幅されレーザ発振する。 [Operation] In the invention having the configuration described above, it emits fluorescence when excitation light is incident on the stationary laser material, which laser oscillation is amplified in the optical resonator system. この時、固体レーザ材料に接合された非線形光学素子によって第二高調波を発生する。 At this time, to generate a second harmonic by a nonlinear optical element which is joined to the solid-state laser material. [実施例] 以下、本発明を具体化した一実施例を図面を参照にして説明する。 [Example] Hereinafter, an embodiment embodying the present invention with reference to the drawings. 第1図は本発明の固体レーザの高調波発生手段の一実施例を示す。 Figure 1 shows an embodiment of a harmonic generation unit of the solid-state laser of the present invention. YAGロッド130は片面を光軸に対してブリュースタ角で切断、研磨し、他端は光軸に垂直に研磨する。 YAG rod 130 is cut at Brewster angle on one side with respect to the optical axis, polished, and the other end is polished perpendicularly to the optical axis. ブリュースタ角はYAG結晶の場合、光軸に対して61.2度である。 Brewster angle in the case of YAG crystal, which is 61.2 degrees to the optical axis. N N
d 3の濃度は0.8〜1.0at%程度の材料が好適に利用できる。 The concentration of d 3 material about 0.8~1.0At% can be suitably used. この垂直に研磨した面に角度位相整合条件を満足するように非線形光学素子120の角度を調整して紫外線硬化樹脂で接着する。 The angle adjustment of the nonlinear optical element 120 so as to satisfy the angular phase matching condition to the polishing surface was vertically bonding ultraviolet curing resin. 調整は概略軸方向を合わせた後、実際にレーザ発振させて、第二高調波の強度が最大になる角度で接着する。 Adjustment after adjusting the schematic axial, so actually lasing intensity of the second harmonic is bonded at an angle of maximum. この非線形光学素子120にはKTP等が適している。 KTP or the like is suitable for the nonlinear optical element 120. 接着する紫外線硬化樹脂は屈折率1.55程度のものを使用すれば、接合部分での反射は約1.1%であるが、誘電体薄膜をつけることで、さらに小さくできる。 If the ultraviolet curing resin to adhere them use a refractive index of about 1.55, although the reflection at the junction is about 1.1%, by attaching a dielectric thin film, it can be further reduced.
非線形光学素子120の接合面と反対側は、810nmの光は透過し、1064nmと532nmの光を反射するように薄膜を付着する。 Opposite to the bonding surface of the nonlinear optical element 120, the light of 810nm is transmitted, attaching the film to reflect light of 1064nm and 532 nm. YAGロッド130のブリュースタ角で切断した側は10 Side cut at Brewster angle of the YAG rod 130 is 10
64nmと532nmの光を透過するように薄膜を付着する。 Depositing a thin film to transmit light of 64nm and 532 nm. 出射ミラー140は片面がR60mmの平凹レンズの凹側に1064nm Exit mirror 140 1064nm to the concave side of the plano-concave lens of one side R60mm
の光を100%反射し、532nmの光を透過する薄膜を作成する。 It reflects the light 100%, to a thin film that transmits light of 532 nm. 非線形光学素子120の反射面と、出射ミラー140の反射面は約35mm離して、共焦点型光共振器を二分した形状を持つ。 A reflecting surface of the nonlinear optical element 120, the reflecting surface of the radiating mirror 140 is a distance of about 35 mm, having a shape bisecting the confocal optical resonator. この時、ビーム径は非線形光学素子120の反射面上で0.2mm、出射ミラー140上で0.28mmであって、非線形光学素子120の反射面上で最も光密度が高い。 At this time, the beam diameter is a 0.28mm over 0.2 mm, the exit mirror 140 on the reflective surface of the nonlinear optical element 120, most optical density is high on the reflecting surface of the nonlinear optical element 120. 半導体レーザ100は波長810nmの光を出射する。 The semiconductor laser 100 emits light with a wavelength of 810 nm. 半導体レーザ10 Semiconductor laser 10
0と非線形光学素子120の間には集光レンズ110を配する。 Between 0 and a non-linear optical element 120 to distribution of the converging lens 110. 半導体レーザ100の810nmの光は、集光レンズ110で光共振領域に集光する。 Light of 810nm semiconductor laser 100 is focused on the optical resonance region by the condensing lens 110. 半導体レーザ100の光でYAGロッド YAG rod in the light of the semiconductor laser 100
130中のNd 3が励起されて、蛍光を発し、非線形光学素子 Nd 3 in 130 is excited, fluoresce, non-linear optical element
120のミラー面と出射ミラー140からなる光共振器で波長 Wavelength optical resonator 120 mirror surface and made of radiating mirror 140
1064nmでレーザ発振する。 Laser oscillation at 1064nm. この時、YAGロッド130の一方がブリュースタ角で切断されているため、レーザ光は光軸と出射面の法線を含む面に平行な電場ベクトルを持つ直線偏光となる。 In this case, since one of the YAG rod 130 is cut at Brewster angle, the laser light is linearly polarized light having an electric field vector parallel to the plane including the normal line of the optical axis exit surface. このレーザ光は光共振器内で高い強度を持ち、また光密度は非線形光学素子120で最も高いため、効率良く第二高調波に変換されて出射ミラー140から出射される。 The laser light has a high intensity in the optical resonator, and because the optical density is highest in the non-linear optical element 120, and is emitted from the emission mirror 140 is efficiently converted into second harmonic. [発明の効果] 以上詳述したことから明らかなように、本発明によれば、固体レーザ材料の一端面に光軸に対してブリュースタ角をなす面を構成するようにしたので、光共振系内で偏向を制御するための、いわゆるブリュースタ板を入れる必要がない。 As is clear from the above described [Effect of the Invention] According to the present invention, since the constituting a surface which forms a Brewster angle with respect to the optical axis on one end surface of the solid-state laser materials, optical resonance for controlling the deflection in the system, there is no need to put the so-called Brewster plate. このため、反射、吸収による損失が少なくなって、出力を増大させることができる。 Therefore, reflection loss due to absorption becomes small, it is possible to increase the output. また、固体レーザ材料の一端面あるいは他端面のいずれかに非線形光学素子を接合するようにしたので、非線形光学素子やブリュースタ板等の各部材を、それぞれ独立した1個の部品として組み付ける必要がなく、簡単な構成で安定した固体レーザの高調波を発生させることができ、しかも、大きなレーザ出力を得ることができる。 Moreover, since so as to bond the non-linear optical element to one end surface or other end surface of the solid-state laser materials, each member of such a non-linear optical element and Brewster plate, is required to assemble as separate single parts were no, it is possible to generate harmonics of the stable solid-state laser with a simple configuration, moreover, it is possible to obtain a large laser output. そのため光ディスクのピックアップに用いれば情報記録密度の向上が図れる等有益である。 Therefore it is equal beneficial can be improved in the information recording density be used to pick up the optical disk.

【図面の簡単な説明】 第1図は本発明を具体化した実施例の斜視図を示すものであり、第2図は従来の後方励起型固体レーザの一例である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is shows a perspective view of an embodiment embodying the present invention, FIG. 2 shows an example of a conventional backward pumping solid-state laser. 図中100は半導体レーザ、120は非線形光学素子、130はY Figure 100 is a semiconductor laser, 120 is a non-linear optical element, the 130 Y
AGロッド、140は出射ミラーである。 AG rod 140 is radiating mirror.

Claims (1)

  1. (57)【特許請求の範囲】 1. (57) [the claims] 1. 光共振系に固体レーザ材料と非線形光学素子とが一体的に配置されてなる高調波発生固体レーザ装置において、 前記固体レーザ材料の一端面に光軸に対してブリュースタ角をなす面を構成すると共に、該固体レーザ材料の他端面は光軸に対して垂直面をなし、かつ該垂直面または該ブリュースタ角をなす面のいずれかに前記非線形光学素子を接合配置してなることを特徴とする高調波発生固体レーザ装置。 In a solid-state laser material and a non-linear optical elements arranged integrally with the optical resonator system harmonic generating solid state laser device, constituting a surface which forms a Brewster angle with respect to the optical axis on one end surface of the solid-state laser material with the other end face of the solid laser material and characterized by being arranged joining said non-linear optical element to one of the surfaces perpendicular forms a plane, and said vertical face or the Brewster angle with respect to the optical axis harmonic generating solid state laser device.
JP62241074A 1987-09-25 1987-09-25 Harmonic generating solid-state laser apparatus Expired - Fee Related JP2671316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62241074A JP2671316B2 (en) 1987-09-25 1987-09-25 Harmonic generating solid-state laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62241074A JP2671316B2 (en) 1987-09-25 1987-09-25 Harmonic generating solid-state laser apparatus

Publications (2)

Publication Number Publication Date
JPS6482683A JPS6482683A (en) 1989-03-28
JP2671316B2 true JP2671316B2 (en) 1997-10-29

Family

ID=17068908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62241074A Expired - Fee Related JP2671316B2 (en) 1987-09-25 1987-09-25 Harmonic generating solid-state laser apparatus

Country Status (1)

Country Link
JP (1) JP2671316B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210095A (en) * 1975-07-14 1977-01-26 Nippon Telegr & Teleph Corp <Ntt> Solid laser apparatus
JPS61253878A (en) * 1985-05-01 1986-11-11 Spectra Physics Nd-yag laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210095A (en) * 1975-07-14 1977-01-26 Nippon Telegr & Teleph Corp <Ntt> Solid laser apparatus
JPS61253878A (en) * 1985-05-01 1986-11-11 Spectra Physics Nd-yag laser

Also Published As

Publication number Publication date
JPS6482683A (en) 1989-03-28

Similar Documents

Publication Publication Date Title
US6940880B2 (en) Optically pumped semiconductor ring laser
US5327447A (en) Waveguide optical resonant cavity laser
US5446749A (en) Diode pumped, multi axial mode, intracavity doubled laser
AU732161B2 (en) High power laser devices
US4739507A (en) Diode end pumped laser and harmonic generator using same
US6590911B1 (en) Passively modelocked harmonic-generating laser
US5256164A (en) Method of fabricating a microchip laser
US5341388A (en) Laser light beam generating apparatus
US4847851A (en) Butt-coupled single transverse mode diode pumped laser
US5663979A (en) Fiber stub end-pumped laser
JP4969021B2 (en) Harmonic laser device and harmonic laser welding method
EP0826258B1 (en) Diode pumped, multiaxial mode, intracavity doubled laser
US6370168B1 (en) Intracavity frequency-converted optically-pumped semiconductor laser
US6259711B1 (en) Laser
US5123025A (en) Miniature optical source
US6567434B2 (en) CW far-UV laser system with two active resonators
US20030021324A1 (en) Waveguide device with mode control and pump light confinement and method of using same
US6931037B2 (en) Diode pumped, multi axial mode intracavity doubled laser
EP0452069B1 (en) Ring laser
US5638388A (en) Diode pumped, multi axial mode intracavity doubled laser
US6501782B1 (en) Compact laser apparatus
JP2007142384A (en) High efficient second harmonic generation vertical external cavity surface light emitting laser
US5410559A (en) Diode pumped laser with strong thermal lens crystal
US4809291A (en) Diode pumped laser and doubling to obtain blue light
JP2002528921A (en) Frequency-converted optically pumped semiconductor laser in a cavity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees