JP2671316B2 - Harmonic generation solid state laser device - Google Patents

Harmonic generation solid state laser device

Info

Publication number
JP2671316B2
JP2671316B2 JP62241074A JP24107487A JP2671316B2 JP 2671316 B2 JP2671316 B2 JP 2671316B2 JP 62241074 A JP62241074 A JP 62241074A JP 24107487 A JP24107487 A JP 24107487A JP 2671316 B2 JP2671316 B2 JP 2671316B2
Authority
JP
Japan
Prior art keywords
state laser
solid
optical element
laser device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62241074A
Other languages
Japanese (ja)
Other versions
JPS6482683A (en
Inventor
鈴木  誠
祥治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP62241074A priority Critical patent/JP2671316B2/en
Publication of JPS6482683A publication Critical patent/JPS6482683A/en
Application granted granted Critical
Publication of JP2671316B2 publication Critical patent/JP2671316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は大きなレーザ出力の高調波を発生させる固体
レーザ装置に関するものである。 [従来技術] ND3:YAG等の結晶を用いた固体レーザは従来、励起光
にアークランプ等を用いていたが、半導体レーザを用い
た小型で高効率の後方励起型固体レーザが提案され、使
用されはじめている(第2図)。この固体レーザはND3:
YAGの場合1064nmの波長で発振するが、より短波長の必
要性が高いため、非線形光学素子を用いて第二高調波を
発生させて532nmの光を利用している。この第二高調波
を効率良く発生するには、非線形光学素子の変換効率が
光密度に比例するため、非線形光学素子を光共振器内に
配置している。 [発明が解決しようとする問題点] しかしながら、第二高調波の変換効率を高くするに
は、光の密度を上げる必要があるため、レンズ等の光学
系が複雑になった。また非線形光学素子の位相整合をと
るには、通常、温度制御を行なわなくても使用温度範囲
の広い角度位相整合を行うが、部品点数が多くなるため
安定性に不安があった。 [発明の目的] 本発明は、上述した問題点を解決するためなされたも
のであり、固体レーザ材料と非線形光学素子を光学樹脂
で接着することにより、高効率で調整の容易な固定レー
ザの高調波発生方法を提供することを目的としている。 [問題点を解決するための手段] この目的を達成するために本発明の高調波発生固体レ
ーザ装置は、光共振系に配置される固定レーザ材料の一
端面に光軸に対してブリュースタ角をなす面を構成する
と共に、該固体レーザ材料の他端面は光軸に対して垂直
面をなし、かつ該垂直面若しくは該ブリュースタ角のな
す面のいずれかに非線形光学素子を接合配置してなるこ
とを特徴としている。 [作用] 上記の構成を有する発明において、固定レーザ材料に
励起光が入射すると蛍光を発し、これが光共振系内で増
幅されレーザ発振する。この時、固体レーザ材料に接合
された非線形光学素子によって第二高調波を発生する。 [実施例] 以下、本発明を具体化した一実施例を図面を参照にし
て説明する。 第1図は本発明の固体レーザの高調波発生手段の一実
施例を示す。 YAGロッド130は片面を光軸に対してブリュースタ角で
切断、研磨し、他端は光軸に垂直に研磨する。ブリュー
スタ角はYAG結晶の場合、光軸に対して61.2度である。N
d3の濃度は0.8〜1.0at%程度の材料が好適に利用でき
る。この垂直に研磨した面に角度位相整合条件を満足す
るように非線形光学素子120の角度を調整して紫外線硬
化樹脂で接着する。調整は概略軸方向を合わせた後、実
際にレーザ発振させて、第二高調波の強度が最大になる
角度で接着する。この非線形光学素子120にはKTP等が適
している。接着する紫外線硬化樹脂は屈折率1.55程度の
ものを使用すれば、接合部分での反射は約1.1%である
が、誘電体薄膜をつけることで、さらに小さくできる。
非線形光学素子120の接合面と反対側は、810nmの光は透
過し、1064nmと532nmの光を反射するように薄膜を付着
する。YAGロッド130のブリュースタ角で切断した側は10
64nmと532nmの光を透過するように薄膜を付着する。出
射ミラー140は片面がR60mmの平凹レンズの凹側に1064nm
の光を100%反射し、532nmの光を透過する薄膜を作成す
る。非線形光学素子120の反射面と、出射ミラー140の反
射面は約35mm離して、共焦点型光共振器を二分した形状
を持つ。この時、ビーム径は非線形光学素子120の反射
面上で0.2mm、出射ミラー140上で0.28mmであって、非線
形光学素子120の反射面上で最も光密度が高い。半導体
レーザ100は波長810nmの光を出射する。半導体レーザ10
0と非線形光学素子120の間には集光レンズ110を配す
る。 半導体レーザ100の810nmの光は、集光レンズ110で光
共振領域に集光する。半導体レーザ100の光でYAGロッド
130中のNd3が励起されて、蛍光を発し、非線形光学素子
120のミラー面と出射ミラー140からなる光共振器で波長
1064nmでレーザ発振する。この時、YAGロッド130の一方
がブリュースタ角で切断されているため、レーザ光は光
軸と出射面の法線を含む面に平行な電場ベクトルを持つ
直線偏光となる。このレーザ光は光共振器内で高い強度
を持ち、また光密度は非線形光学素子120で最も高いた
め、効率良く第二高調波に変換されて出射ミラー140か
ら出射される。 [発明の効果] 以上詳述したことから明らかなように、本発明によれ
ば、固体レーザ材料の一端面に光軸に対してブリュース
タ角をなす面を構成するようにしたので、光共振系内で
偏向を制御するための、いわゆるブリュースタ板を入れ
る必要がない。このため、反射、吸収による損失が少な
くなって、出力を増大させることができる。また、固体
レーザ材料の一端面あるいは他端面のいずれかに非線形
光学素子を接合するようにしたので、非線形光学素子や
ブリュースタ板等の各部材を、それぞれ独立した1個の
部品として組み付ける必要がなく、簡単な構成で安定し
た固体レーザの高調波を発生させることができ、しか
も、大きなレーザ出力を得ることができる。そのため光
ディスクのピックアップに用いれば情報記録密度の向上
が図れる等有益である。
TECHNICAL FIELD The present invention relates to a solid-state laser device for generating high-frequency laser output harmonics. [Prior art] ND 3: conventional solid state lasers using crystals such as YAG, which has been using an arc lamp or the like to the excitation light, backward pumping type solid-state laser with high efficiency have been proposed a compact using a semiconductor laser, It is beginning to be used (Fig. 2). This solid state laser is ND 3 :
In the case of YAG, it oscillates at a wavelength of 1064 nm, but since there is a high need for a shorter wavelength, a nonlinear optical element is used to generate the second harmonic, and light of 532 nm is used. In order to efficiently generate this second harmonic, the conversion efficiency of the nonlinear optical element is proportional to the light density, so the nonlinear optical element is arranged in the optical resonator. [Problems to be Solved by the Invention] However, since it is necessary to increase the density of light in order to increase the conversion efficiency of the second harmonic, the optical system such as a lens is complicated. Further, in order to achieve the phase matching of the non-linear optical element, generally, the angle phase matching in a wide operating temperature range is performed without performing the temperature control, but the stability is uncertain because the number of parts increases. [Object of the Invention] The present invention has been made to solve the above-mentioned problems, and by bonding a solid-state laser material and a non-linear optical element with an optical resin, a harmonic of a fixed laser that is highly efficient and easy to adjust is provided. The purpose is to provide a wave generation method. [Means for Solving the Problems] In order to achieve this object, a harmonic-generating solid-state laser device of the present invention is provided with a Brewster angle with respect to the optical axis at one end face of a fixed laser material arranged in an optical resonance system. And the other end surface of the solid-state laser material is perpendicular to the optical axis, and a non-linear optical element is bonded and arranged on either the perpendicular surface or the surface formed by the Brewster angle. It is characterized by becoming. [Operation] In the invention having the above configuration, when excitation light is incident on the fixed laser material, fluorescence is emitted, which is amplified and laser-oscillates in the optical resonance system. At this time, the second harmonic is generated by the nonlinear optical element bonded to the solid-state laser material. Embodiment An embodiment embodying the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the harmonic generating means of the solid-state laser of the present invention. The YAG rod 130 has one surface cut and polished at Brewster's angle with respect to the optical axis and the other end polished perpendicularly to the optical axis. In the case of YAG crystal, Brewster's angle is 61.2 degrees with respect to the optical axis. N
A material having a concentration of d 3 of about 0.8 to 1.0 at% can be preferably used. The angle of the non-linear optical element 120 is adjusted so as to satisfy the angle phase matching condition on this vertically polished surface, and the surface is bonded with an ultraviolet curable resin. For adjustment, after roughly aligning the axial directions, laser oscillation is actually carried out and bonding is performed at an angle at which the intensity of the second harmonic is maximized. KTP or the like is suitable for the nonlinear optical element 120. If the UV curable resin to be adhered has a refractive index of about 1.55, the reflection at the joint is about 1.1%, but it can be further reduced by attaching a dielectric thin film.
On the opposite side of the non-linear optical element 120 from the bonding surface, a thin film is attached so as to transmit 810 nm light and reflect 1064 nm and 532 nm light. The side cut at the Brewster's angle of YAG rod 130 is 10
A thin film is attached so as to transmit light of 64 nm and 532 nm. The exit mirror 140 is 1064nm on the concave side of a plano-concave lens with one side of R60mm.
A thin film that reflects 100% of light and transmits 532 nm light is created. The reflection surface of the non-linear optical element 120 and the reflection surface of the emission mirror 140 are separated by about 35 mm, and have a shape obtained by dividing the confocal optical resonator into two parts. At this time, the beam diameter is 0.2 mm on the reflecting surface of the nonlinear optical element 120 and 0.28 mm on the emitting mirror 140, and the light density is highest on the reflecting surface of the nonlinear optical element 120. The semiconductor laser 100 emits light having a wavelength of 810 nm. Laser diode 10
A condenser lens 110 is arranged between 0 and the nonlinear optical element 120. The 810 nm light of the semiconductor laser 100 is condensed in the optical resonance region by the condenser lens 110. Light of semiconductor laser 100 YAG rod
Nd 3 in 130 is excited and emits fluorescence, which is a nonlinear optical element.
An optical resonator consisting of the mirror surface of 120 and the exit mirror 140
Laser oscillation at 1064nm. At this time, since one of the YAG rods 130 is cut at the Brewster's angle, the laser light becomes linearly polarized light having an electric field vector parallel to the plane including the optical axis and the normal to the emitting surface. This laser light has a high intensity in the optical resonator and has the highest light density in the non-linear optical element 120, so it is efficiently converted into the second harmonic wave and emitted from the emission mirror 140. [Effects of the Invention] As is clear from the above description in detail, according to the present invention, one end face of the solid-state laser material is formed with a surface forming a Brewster angle with respect to the optical axis. It is not necessary to include a so-called Brewster plate for controlling the deflection in the system. Therefore, the loss due to reflection and absorption is reduced, and the output can be increased. Further, since the non-linear optical element is bonded to either one end surface or the other end surface of the solid-state laser material, it is necessary to assemble the respective members such as the non-linear optical element and the Brewster plate as independent parts. In addition, stable harmonics of a solid-state laser can be generated with a simple structure, and a large laser output can be obtained. Therefore, if it is used for a pickup of an optical disk, it is advantageous that the information recording density can be improved.

【図面の簡単な説明】 第1図は本発明を具体化した実施例の斜視図を示すもの
であり、第2図は従来の後方励起型固体レーザの一例で
ある。 図中100は半導体レーザ、120は非線形光学素子、130はY
AGロッド、140は出射ミラーである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an embodiment embodying the present invention, and FIG. 2 is an example of a conventional back-pumped solid-state laser. In the figure, 100 is a semiconductor laser, 120 is a nonlinear optical element, and 130 is Y.
AG rod, 140 is an output mirror.

Claims (1)

(57)【特許請求の範囲】 1.光共振系に固体レーザ材料と非線形光学素子とが一
体的に配置されてなる高調波発生固体レーザ装置におい
て、 前記固体レーザ材料の一端面に光軸に対してブリュース
タ角をなす面を構成すると共に、該固体レーザ材料の他
端面は光軸に対して垂直面をなし、かつ該垂直面または
該ブリュースタ角をなす面のいずれかに前記非線形光学
素子を接合配置してなることを特徴とする高調波発生固
体レーザ装置。
(57) [Claims] In a harmonic generation solid-state laser device in which a solid-state laser material and a nonlinear optical element are integrally arranged in an optical resonance system, one surface of the solid-state laser material has a surface forming a Brewster angle with respect to an optical axis. At the same time, the other end surface of the solid-state laser material forms a vertical surface with respect to the optical axis, and the nonlinear optical element is bonded and arranged on either the vertical surface or the surface forming the Brewster angle. Harmonic generation solid state laser device.
JP62241074A 1987-09-25 1987-09-25 Harmonic generation solid state laser device Expired - Fee Related JP2671316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62241074A JP2671316B2 (en) 1987-09-25 1987-09-25 Harmonic generation solid state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62241074A JP2671316B2 (en) 1987-09-25 1987-09-25 Harmonic generation solid state laser device

Publications (2)

Publication Number Publication Date
JPS6482683A JPS6482683A (en) 1989-03-28
JP2671316B2 true JP2671316B2 (en) 1997-10-29

Family

ID=17068908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62241074A Expired - Fee Related JP2671316B2 (en) 1987-09-25 1987-09-25 Harmonic generation solid state laser device

Country Status (1)

Country Link
JP (1) JP2671316B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210095A (en) * 1975-07-14 1977-01-26 Nippon Telegr & Teleph Corp <Ntt> Solid laser apparatus
JPS61253878A (en) * 1985-05-01 1986-11-11 スペクトラ−フイジツクス・インコ−ポレイテツド Nd-yag laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210095A (en) * 1975-07-14 1977-01-26 Nippon Telegr & Teleph Corp <Ntt> Solid laser apparatus
JPS61253878A (en) * 1985-05-01 1986-11-11 スペクトラ−フイジツクス・インコ−ポレイテツド Nd-yag laser

Also Published As

Publication number Publication date
JPS6482683A (en) 1989-03-28

Similar Documents

Publication Publication Date Title
RU2190910C2 (en) Vertical-cavity laser with radiation output through surface; set of lasers and method for raising laser efficiency
JPH10256638A (en) Solid state laser
JPH07507901A (en) High power compact diode pump tunable laser
US20070264734A1 (en) Solid-state laser device and method for manufacturing wavelength conversion optical member
JPH09162470A (en) 2-wavelength laser oscillator
US6628692B2 (en) Solid-state laser device and solid-state laser amplifier provided therewith
JP2671316B2 (en) Harmonic generation solid state laser device
JPH05121803A (en) Semiconductor excitation solid-state laser
JP7012311B2 (en) Ultraviolet laser device
KR100416600B1 (en) Harmonic wave generating apparatus
JPH0388380A (en) Solid state laser device
JPH11177167A (en) Small semiconductor laser excitation solid state laser device
JP2666548B2 (en) Semiconductor laser pumped solid-state laser device
JPH09232665A (en) Output stabilizing second harmonics light source
KR100366699B1 (en) Apparatus for generating second harmonic having internal resonance type
JPH04158588A (en) Semiconductor laser exciting solid laser device
JP2596462B2 (en) Semiconductor laser pumped solid-state laser device
JPH033377A (en) Semiconductor laser pumping solid-state laser device
JP2501694B2 (en) Second harmonic generator in solid-state laser equipment
JP2500760B2 (en) Solid laser
JPH08307017A (en) Laser device
JPH0482282A (en) Semiconductor laser exciting solid laser device and manufacture thereof
JPH04162686A (en) Semiconductor laser-excited solid state laser device
JP2981671B2 (en) Laser diode pumped solid state laser
JP2000138405A (en) Semiconductor laser-excited solid-state laser system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees