JP2670512B2 - Heat transfer element plate stack - Google Patents
Heat transfer element plate stackInfo
- Publication number
- JP2670512B2 JP2670512B2 JP63100404A JP10040488A JP2670512B2 JP 2670512 B2 JP2670512 B2 JP 2670512B2 JP 63100404 A JP63100404 A JP 63100404A JP 10040488 A JP10040488 A JP 10040488A JP 2670512 B2 JP2670512 B2 JP 2670512B2
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- fluid
- transfer element
- type
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D19/00—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
- F28D19/04—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
- F28D19/041—Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier with axial flow through the intermediate heat-transfer medium
- F28D19/042—Rotors; Assemblies of heat absorbing masses
- F28D19/044—Rotors; Assemblies of heat absorbing masses shaped in sector form, e.g. with baskets
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、再生式熱交換器の拡大伝熱面を有する伝熱
要素板の複数枚を積層して構成された積層体の改良に関
する。Description: TECHNICAL FIELD The present invention relates to an improvement in a laminate formed by laminating a plurality of heat transfer element plates having an enlarged heat transfer surface of a regenerative heat exchanger.
[従来の技術] 流体の流路を構成する伝熱要素板の積層体の単位体積
当りの熱伝達率をできるだけ高くし、且つ単位体積の流
路を通過する流体の圧力損失をできるだけ低くした各種
の積層体が提案されてきた。[Prior Art] Various types in which a heat transfer coefficient per unit volume of a laminated body of heat transfer element plates constituting a fluid passage is made as high as possible and a pressure loss of a fluid passing through a unit volume passage is made as low as possible. Have been proposed.
これら提案の中に見られる一般的傾向として、熱伝達
率を大きくすればする程、単位体積内に占める伝熱要素
板が稠密化されて圧力損失は増し、狭溢化した流路断面
を流体に含有されたダストが閉塞する可能性を増大して
いる。As a general tendency seen in these proposals, the larger the heat transfer coefficient, the denser the heat transfer element plate in the unit volume and the pressure loss increases. The likelihood of clogging of the dust contained in the dust increases.
このような技術的傾向の中にあって、熱伝達率、圧力
損失、流体流れの均等分布性、流路の耐閉塞性、製造の
容易性等の各種性能を最も釣合よく有する代表的な伝熱
要素板の積層体として、CU型およびDU型の積層体が既に
存在しており、以下にその構造、機能等を述べる。Among such technical trends, a typical one having various performances such as heat transfer coefficient, pressure loss, uniform distribution of fluid flow, blocking resistance of flow passage, and ease of manufacturing in a most balanced manner. As the laminated body of the heat transfer element plates, CU type and DU type laminated bodies already exist, and the structure, function, etc. thereof will be described below.
第2図(a)はCU型の伝熱要素板の1対の積層体の断
面図であり、第2図(b)はその上面図である。2 (a) is a cross-sectional view of a pair of laminated bodies of CU type heat transfer element plates, and FIG. 2 (b) is a top view thereof.
この積層体は、大波型1(Corrugated groove型)の
高さH1の2倍以下のピッチP1の波を有する拡大伝熱面を
形成してある伝熱要素板2と、小波型3(Undulated gr
oove型)の高さH2の6倍以下のピッチP2の波を有する拡
大伝熱面を形成してある伝熱要素板4とを交互に積層
し、積層された伝熱要素板2,4間に構成される流体の流
路断面16の水力直径が7mm以下である伝熱要素板の積層
体(CU型と称す)である。This laminated body comprises a heat transfer element plate 2 having an enlarged heat transfer surface having waves having a pitch P 1 which is not more than twice the height H 1 of a large wave type 1 (Corrugated groove type), and a small wave type 3 ( Undulated gr
the heat transfer element plates 4 having an expanded heat transfer surface having a wave having a pitch P 2 which is not more than 6 times the height H 2 of the A laminated body (referred to as a CU type) of heat transfer element plates in which a hydraulic diameter of a fluid passage cross-section 16 constituted between 4 is 7 mm or less.
流体の流路は複数対の積層体が積層されて構成され
る。The fluid flow path is configured by stacking a plurality of pairs of stacked bodies.
伝熱要素板2の大波型1の山5の方向は積層体へ流入
する流体の流入方向6と同一方向に通っており、伝熱要
素板4の小波型3の山5の方向は流入方向6と角度A
(35゜以下)の傾斜を成して通っている。The direction of the peaks 5 of the large wave type 1 of the heat transfer element plate 2 is the same as the inflow direction 6 of the fluid flowing into the laminated body, and the direction of the peaks 5 of the small wave type 3 of the heat transfer element plate 4 is the inflow direction. 6 and angle A
It runs through a slope (35 ° or less).
CU型の積層体の熱伝達機構は、CU型の伝熱要素板の1
対の積層体の1ピッチ分の波の断面図を示す第3図を利
用して以下の如く説明することができる。The heat transfer mechanism of the CU type laminate is one of the CU type heat transfer element plates.
The following description can be made with reference to FIG. 3, which shows a cross-sectional view of a wave of one pitch of a pair of laminated bodies.
大波型1の伝熱表面に接して流れる薄層の流体7は、
該表面と熱伝達により効率良く熱交換を行う。流体7に
接して流れる流体8は、流体7と混合して、初期に有し
ていた自己の熱伝達率を効率良く高める。小波型3の伝
熱表面に接して流れる薄層の流体9は、該表面と熱伝導
により効率良く熱交換を行うと共に、流体の流れに斜交
した小波型3の山5によって、流体9に接して流れる流
体10と激しく混合して流体10を混乱流とし、流体10の熱
伝達率を効率良く高める。更に流体7,8,9および流体10
は流体7および流体9に接することなく流れる流体11と
混合して流体11を混乱流とし流体11の熱伝達率を改善す
る。The thin layer fluid 7 that flows in contact with the heat transfer surface of the large wave type 1 is
Heat is efficiently exchanged by heat transfer with the surface. The fluid 8 flowing in contact with the fluid 7 mixes with the fluid 7 to efficiently increase its own heat transfer coefficient that it originally had. The thin-layer fluid 9 flowing in contact with the heat transfer surface of the small wave type 3 efficiently exchanges heat with the surface, and at the same time, the peaks 5 of the small wave type 3 oblique to the flow of the fluid cause the fluid 9 to change to the fluid 9. The fluid 10 is vigorously mixed with the fluid 10 that is in contact with the fluid 10 to form a turbulent flow, and the heat transfer coefficient of the fluid 10 is efficiently increased. Fluid 7, 8, 9 and fluid 10
Mixes with the fluid 11 flowing without contacting the fluid 7 and the fluid 9 to make the fluid 11 a turbulent flow and improve the heat transfer coefficient of the fluid 11.
伝熱要素板2,4間に構成されている流路断面における
前述の各部分流体がそれぞれ有する伝熱機構を総合して
考察すると、該流路断面を流れる流体は全体として激し
い混乱流となっていて高い熱伝達率を有している。Comprehensively considering the heat transfer mechanism of each of the aforementioned partial fluids in the flow path cross section formed between the heat transfer element plates 2 and 4, the fluid flowing in the flow path cross section becomes a violent turbulent flow as a whole. And has a high heat transfer coefficient.
しかし、激しい混乱流のために、相当に大きな圧力損
失を生ずることを免れ得ない。However, due to the violent turbulent flow, it is unavoidable to cause a considerable pressure loss.
更に、流路断面の水力直径が7mm以下であって流路の
断面が狭溢であることにより、流体に含有されるダスト
によって流路が閉塞され易い。Furthermore, since the hydraulic diameter of the cross section of the flow channel is 7 mm or less and the cross section of the flow channel is narrow and overflows, the flow channel is easily blocked by the dust contained in the fluid.
第4図(a)はDU型の伝熱要素板の1対の積層体の断
面図であり、第4図(b)はその上面図である。FIG. 4 (a) is a sectional view of a pair of laminated bodies of DU type heat transfer element plates, and FIG. 4 (b) is a top view thereof.
この積層体は、大波型1(Notched groove型)の高さ
H1の5倍以下のピッチP1の波を有し、更に波のピッチP1
の中間部に小波型12(Undulated groove型)の高さH3の
6倍以下のピッチP3の波を有する拡大伝熱面を形成して
ある伝熱要素板13と、小波型3(Undulated groove型)
の高さH2の6倍以下のピッチP2の波を有する拡大伝熱面
を形成してある伝熱要素板14とを交互に積層し、積層さ
れた伝熱要素板13,14間に構成される流体の流路断面16
の水力直径が8.5mm以上である伝熱要素板の積層体(DU
型と称す)である。This laminate has a height of large wave type 1 (Notched groove type).
Have 5 times or less of the wave pitch P 1 of the H 1, further pitch P 1 of the wave
In the middle part of the wavelet 12 (Undulated groove type), a heat transfer element plate 13 having an expanded heat transfer surface having a wave having a pitch P 3 which is 6 times or less of the height H 3 of the wavelet 3 and the wavelet 3 (Undulated groove type)
The is formed an enlarged heat transfer surface having a height 6 times or less of the wave pitch P 2 of the H 2 and the heat transfer element plates 14 are alternately stacked, between the stacked heat transfer element plates 13 and 14 Cross-section of the fluid flow path 16
Of heat transfer element plates with a hydraulic diameter of 8.5 mm or more (DU
Type).
流体の流路は複数対の積層体が積層されて構成され
る。The fluid flow path is configured by stacking a plurality of pairs of stacked bodies.
伝熱要素板13の大波型1の山5の方向は積層体へ流入
する流体の流入方向6と同一方向に通っており、小波型
12の山5の方向は流入方向6と角度B(35゜以下)の傾
斜を成して通っており、伝熱要素板14の小波型3の山5
の方向も同様に角度A(35゜以下)の傾斜を成し通って
いる DU型の積層体の熱伝達機構は、DU型の伝熱要素板の1
対の積層体の1ピッチ分の波の断面図を示す第5図を利
用して以下の如く説明することができる。The peaks 5 of the large wave type 1 of the heat transfer element plate 13 pass in the same direction as the inflow direction 6 of the fluid flowing into the laminated body.
The ridges 5 of 12 pass through the inflow direction 6 at an angle B (35 ° or less), and the ridges 5 of the wave-shaped 3 of the heat transfer element plate 14
The heat transfer mechanism of the DU type laminated body, which also passes through the inclination of the angle A (35 ° or less), is the same as that of the DU type heat transfer element plate.
The following description can be made with reference to FIG. 5, which shows a cross-sectional view of a wave of one pitch of a pair of laminated bodies.
大波型1の伝熱表面に接して流れる薄層の流体7は、
該表面と熱伝達により効率良く熱交換を行う。流体7に
接して流れる流体8は、流体7と混合して、初期に有し
ていた自己の熱伝達率を効率良く高める。小波型12の伝
熱表面に接して流れる薄層の流体7′は、該表面と熱伝
達により効率良く熱交換を行うと共に、流体の流れに斜
交した小波型12の谷15によって、流体7′に接して流れ
る流体8と激しく混合して流体8を混乱流とし、流体8
の初期に有していた自己の熱伝達率を効率良く高める。
更に流体7,7′および流体8は、流体7,7′および流体9
に接することなく流れる流体11と混合して流体11を混乱
流とし流体11の熱伝達率をも改善する。小波型3の伝熱
表面に接して流れる薄層の流体9は、該表面と熱伝達に
より効率良く熱交換を行うと共に、流体の流れに斜交し
た小波型3の山5によって、流体9に接して流れる流体
10と激しく混合して流体10を混乱流とし、流体10の初期
に有していた自己の熱伝達率を高める。更に流体9およ
び流体10は、流体7,7′および流体8と同様に、流体7,
7′および流体9に接することなく流れる流体11と混合
して流体11を混乱流とし、流体11の熱伝達率をも改善す
る。しかし、流体11の熱伝達率は、この積層体の流路断
面の水力直径がCU型のそれより大きいため、第3図にお
ける流体11が激しく混合されて、その熱伝達率を改善さ
れる程度には改善されない。The thin layer fluid 7 that flows in contact with the heat transfer surface of the large wave type 1 is
Heat is efficiently exchanged by heat transfer with the surface. The fluid 8 flowing in contact with the fluid 7 mixes with the fluid 7 to efficiently increase its own heat transfer coefficient that it originally had. The thin-layer fluid 7'flowing in contact with the heat transfer surface of the wavelet 12 efficiently exchanges heat with the surface, and at the same time, the valley 15 of the wavelet 12 obliquely intersects with the flow of the fluid. 'And violently mix with the fluid 8 flowing in contact with the
Efficiently increase the heat transfer coefficient of self that it had at the beginning of.
Further, the fluids 7, 7'and the fluid 8 are the fluids 7, 7'and the fluid 9
The fluid 11 is mixed with the fluid 11 flowing without contacting the to make the fluid 11 a turbulent flow, and the heat transfer coefficient of the fluid 11 is also improved. The fluid 9 in a thin layer flowing in contact with the heat transfer surface of the wavelet 3 efficiently exchanges heat with the surface, and is converted into the fluid 9 by the peaks 5 of the wavelet 3 oblique to the flow of the fluid. Fluid flowing in contact
Vigorous mixing with the fluid 10 makes the fluid 10 a turbulent flow, increasing the heat transfer coefficient of the fluid 10 that it originally had. Further, the fluid 9 and the fluid 10 are the same as the fluid 7, 7 ′ and the fluid 8,
The fluid 11 is mixed with the fluid 11 which does not come into contact with 7'and the fluid 9 to make the fluid 11 a turbulent flow and also improve the heat transfer coefficient of the fluid 11. However, the heat transfer coefficient of the fluid 11 is larger than that of the CU type in which the hydraulic diameter of the flow passage cross section of this laminated body is larger, so that the fluid 11 in FIG. 3 is vigorously mixed to improve the heat transfer coefficient. Is not improved.
伝熱要素板13,14間に構成されている流路断面におけ
る前述の各部分流体がそれぞれ有する伝熱機構を総合し
て考察すると、該流路断面を流れる流体は、全体として
CU型の積層体における程度に激しい混乱流とはなってい
ないので、CU型よりも低い熱伝達率を有しており、又全
体としてCU型よりも低い圧力損失を有している。Considering the heat transfer mechanisms of the respective partial fluids in the cross section of the flow path formed between the heat transfer element plates 13 and 14 in total, the fluid flowing in the cross section of the flow path is
It has a lower heat transfer coefficient than the CU type and, as a whole, a lower pressure drop than the CU type, as it is not as turbulently turbulent as in the CU type.
更に、流路断面の水力直径が8.5mm以上であって流路
の断面がCU型よりも広い断面を有していることにより、
流体に含有されるダストによって流路が閉塞され難い。Furthermore, the hydraulic diameter of the channel cross section is 8.5 mm or more, and the cross section of the channel has a cross section wider than the CU type,
The flow path is unlikely to be blocked by the dust contained in the fluid.
第2図(a)のCU型の積層体において、伝熱要素板2,
4間に構成された流路断面16を流れる流束の大部分は、
第2図(b)に示す流体の流入方向6と同一の方向に通
っている大波型1内を直進し、流束の小部分が流体の流
入方向6と角度Aの傾斜を成して通っている小波型3の
山5に案内されて直進方向から左側にそらされるため、
流路断面16を流れる流束とそれの両隣りの流路断面1
6′,16″を流れる流束とは、ある程度は混合するものゝ
その混合は不充分である。In the CU type laminated body of FIG. 2 (a), the heat transfer element plate 2,
Most of the flux flowing through the flow path cross section 16 formed between 4 is
In the large wave type 1 passing through the same direction as the inflow direction 6 of the fluid shown in FIG. 2B, a small portion of the flux passes through the inflow direction 6 of the fluid and forms an angle A. Since it is guided by the mountain 5 of the small wave type 3 and is deflected to the left from the straight direction,
Flux flowing through flow channel cross section 16 and flow channel cross section 1 on both sides of it
The flux flowing through 6 ', 16 "is something which mixes to a certain extent, but the mixing is insufficient.
第4図(a)のDU型の積層体において、伝熱要素板1
3,14間に構成された流路断面16を流れる流束の大部分
は、第4図(b)に示す流体の流入方向6と同一の方向
に通っている大波型1に案内されて流路断面16内を直進
し、流束の小部分が流体の流入方向6と角度Bの傾斜を
成して通っている小波型12の谷15および小波型3の山5
に案内されて直進方向から左側にそらされるため、流路
断面16を流れる流束とその両隣りの流路断面16′,16″
を流れる流束とは、ある程度は混合するものゝその混合
は不充分である。In the DU type laminate shown in FIG. 4 (a), the heat transfer element plate 1
Most of the flux flowing in the flow path cross section 16 formed between 3 and 14 is guided by the large wave type 1 passing in the same direction as the inflow direction 6 of the fluid shown in FIG. 4 (b). The valley 15 of the small wave type 12 and the peak 5 of the small wave type 3 in which the small part of the flux passes straight at an angle B with the inflow direction 6 of the fluid.
Is deflected to the left from the direction of straight travel, so that the flux flowing in the channel cross section 16 and the channel cross sections 16 ′, 16 ″ on both sides thereof
The flux that flows through is something that mixes to some extent; the mixing is inadequate.
[発明が解決しようとする課題] 再生式熱交換器に採用される伝熱要素板の積層体にお
いて、単位体積当りに有する熱伝達率および圧力損失、
流体流れの均等分布性、積層体の耐閉塞性、製造性等に
対する要求は年々厳しさを増すものがあり、従来型の伝
熱要素板の積層体の性能を以ってはそれ等を満足させる
ことができなくなってきた。[Problems to be Solved by the Invention] In a laminate of heat transfer element plates employed in a regenerative heat exchanger, a heat transfer coefficient and a pressure loss per unit volume,
The demands for uniform distribution of fluid flow, blockage resistance of stacks, manufacturability, etc. are becoming more and more stringent year by year, and they are satisfied with the performance of stacks of conventional heat transfer element plates. I can't let it happen.
積層体の熱伝達率を高くすれば、一般的に拡大伝熱面
の形状が複雑となって圧力損失を増すと共に、流体中の
ダストによる流路の閉塞性を増し、更に伝熱要素板の製
造性を低める結果をもたらす。Increasing the heat transfer coefficient of the laminate generally complicates the shape of the expanded heat transfer surface and increases the pressure loss, and also increases the blockage of the flow path due to dust in the fluid. This results in reduced manufacturability.
又積層体の流路を流れる流体の不均等流れによる偏流
は、積層体中に局部的低温部を生じさせて、酸露点によ
る酸凝縮を生じさせ、排ガスに含有されるダストと酸の
発生の基となるSOxとを充分に混合させて、ダストによ
るSOxの吸着による浮遊SOxを低減することができず、結
果的に伝熱要素板の腐蝕をもたらす。Further, the uneven flow due to the uneven flow of the fluid flowing through the flow path of the laminated body causes a local low temperature portion in the laminated body to cause acid condensation due to the acid dew point, thereby generating dust and acid contained in the exhaust gas. It is not possible to sufficiently mix with the base SOx to reduce the floating SOx due to the adsorption of SOx by dust, resulting in corrosion of the heat transfer element plate.
本発明の目的とする所は、従来型の伝熱要素板の積層
体よりも高い熱伝達率と流体流れの均等分布性を有する
にもかかわらず、相対的に圧力損失が低く、その上拡大
伝熱面の構造に簡素化による製造性の改善された伝熱要
素板の積層体を提供することにある。The object of the present invention is to have a higher heat transfer coefficient and a uniform distribution of fluid flow than the conventional stack of heat transfer element plates, but the pressure loss is relatively low, and further the expansion is achieved. It is an object of the present invention to provide a laminate of heat transfer element plates with improved productivity due to the simplification of the structure of the heat transfer surface.
[課題を解決するための手段と作用] 伝熱要素板の積層体は、波型の高さの7.5倍以下のピ
ッチを有する波であって、更に波型の高さのほぼ中央部
に位置し、且つ波のピッチの中間部に位置し波型の山を
結ぶ線にほぼ平行であって波型の巾より広い巾を持った
平板部を有する波である拡大伝熱面を形成した伝熱要素
板と、該伝熱要素板と鏡面対称の形状を有する他の伝熱
要素板とを交互に積層して構成され、積層後の伝熱要素
板間に構成される流体の流路断面の水力直径が7.5mm以
上である伝熱要素板の積層体である。[Means and Actions for Solving the Problems] The laminated body of the heat transfer element plates is a wave having a pitch of 7.5 times or less the height of the corrugation, and is located substantially at the center of the height of the corrugation. And an expanded heat transfer surface that is a wave that has a flat plate portion that is located in the middle of the wave pitch and is substantially parallel to the line that connects the wave-shaped peaks and has a width wider than the width of the wave shape. A flow path cross section of a fluid, which is configured by alternately stacking heat element plates and another heat transfer element plate having a mirror-symmetrical shape with the heat transfer element plates, and is formed between the heat transfer element plates after being stacked. Is a laminated body of heat transfer element plates having a hydraulic diameter of 7.5 mm or more.
伝熱要素板間の流路を流れる流体の均等な混合を促進
するため、伝達要素板の波型の山の方向は積層体へ流入
する流体の方向と15゜〜35゜の傾斜を成して通ってい
る。In order to promote uniform mixing of the fluid flowing in the flow path between the heat transfer element plates, the direction of the wave-shaped peaks of the transfer element plates forms an inclination of 15 ° to 35 ° with the direction of the fluid flowing into the stack. I am passing through.
波型のウエブは、伝熱要素板の製造時および積層時に
加えられる押圧力に対して充分な剛性を伝熱要素板に付
与するため、波のピッチの中間部に位置する平板部に垂
直な面に対し角度C(35゜以下)の傾斜を成している。Since the corrugated web imparts sufficient rigidity to the heat transfer element plates against the pressing force applied during the production and stacking of the heat transfer element plates, the corrugated web is perpendicular to the flat plate portion located in the middle of the wave pitch. It is inclined at an angle C (35 ° or less) with respect to the plane.
[実施例] 以下、本発明の実施例について図面を参照しながら説
明する。Example An example of the present invention will be described below with reference to the drawings.
第1図(a)はFNC型の伝熱要素板の1対の積層体の
断面図であり、第1図(b)はその上面図である。FIG. 1 (a) is a cross-sectional view of a pair of laminates of FNC type heat transfer element plates, and FIG. 1 (b) is a top view thereof.
この積層体は、大波型1(Notched groove型)の高さ
H1の7.5倍以下のピッチP1の波を有する断面であって、
更に平板部17(Flat plate)の上面と大波型1の山5,5
を連ねた線との距離と、平板部17の下面と大波型1の谷
15,15を連ねた線との距離とを等しくすることによっ
て、伝熱要素板18,19間に構成されている流路断面16の
面積を大波型1の谷15,15を連ねた線で2等分するため
に、大波型1の高さH1の中央部に谷15,15を連ねた線に
平行に配置し、且つ波のピッチP1の中間部に配置し、流
路断面16の水力直径を小さい値に押えるために、大型波
1の巾Wより広い巾F(図は省略図であってWより狭い
巾となっている)を持った平板部17を有する断面である
拡大伝熱面を形成している伝熱要素板18と、該伝熱要素
板18を前後を反転することによって鏡面対称の形状とし
た伝熱要素板19とを交互に積層し、積層された伝熱要素
板18,19間に構成される流体の流路断面16の水力直径が
7.5mm以上である伝熱要素板の積層体(FNC型と称する)
である。流体の流路は複数対の積層体が積層されて構成
される。The height of this laminated body is large wave type 1 (Notched groove type)
A cross-section having a wave pitch P 1 of 7.5 times or less H 1,
Furthermore, the upper surface of the flat plate part 17 (flat plate) and the crests of the large wave type 1 5,5
, The lower surface of the flat plate portion 17 and the valley of the large wave type 1
By making the distance from the line connecting 15 and 15 equal, the area of the flow passage cross section 16 formed between the heat transfer element plates 18 and 19 is defined by the line connecting the valleys 15 and 15 of the large wave type 1. In order to divide it into two equal parts, they are arranged parallel to the line connecting the valleys 15 and 15 in the center of the height H 1 of the large wave type 1 and in the middle of the wave pitch P 1 , and the flow path cross section 16 In order to hold down the hydraulic diameter of the small wave to a small value, the cross section has a flat plate portion 17 having a width F wider than the width W of the large wave 1 (the width is narrower than W in the figure). The heat transfer element plates 18 forming the heat transfer surface and the heat transfer element plates 19 having a mirror-symmetrical shape formed by reversing the heat transfer element plates 18 are alternately stacked, and the stacked heat transfer elements are stacked. The hydraulic diameter of the cross section 16 of the flow path of the fluid formed between the thermal element plates 18 and 19 is
A stack of heat transfer element plates with a size of 7.5 mm or more (referred to as FNC type)
It is. The fluid flow path is configured by stacking a plurality of pairs of stacked bodies.
伝熱要素板18又は19の大波型1の山5の方向は、積層
された伝熱要素板18,19間に構成される流体の流路断面1
6と該断面16に隣接する流路断面16′,16″とを流れるそ
れぞれの流体を相互に均等に混合することを促進するた
めに、積層体へ流入する流体の流入方向6と角度D(15
゜〜35゜)の傾斜を成して通っている。The direction of the peaks 5 of the large wave type 1 of the heat transfer element plates 18 or 19 is such that the flow path cross section 1 of the fluid formed between the stacked heat transfer element plates 18 and 19 is
In order to promote uniform mixing of the respective fluids flowing through 6 and the flow passage cross sections 16 ', 16 "adjacent to the cross section 16 with each other, the inflow direction 6 of the fluid flowing into the stack and the angle D ( 15
゜ ~ 35 ゜) with a slope.
大波型1のウエブ20は、伝熱要素板18又は19の製造お
よび積層時に加えられる押圧力に対して伝熱要素板18又
は19に強い剛性を付与するため、平板部17に対する垂直
面21と角度C(35゜以下)の傾斜を有している。The web 20 of the large wave type 1 has a vertical surface 21 with respect to the flat plate portion 17 in order to impart strong rigidity to the heat transfer element plate 18 or 19 against a pressing force applied during manufacturing and stacking of the heat transfer element plate 18 or 19. It has an inclination of an angle C (35 ° or less).
FNC型の積層体の熱伝達機構は、FNC型の伝熱要素板の
1対の積層体の1ピッチ分の波の断面図を示す第6図を
利用して、以下の如く説明することができる。The heat transfer mechanism of the FNC type laminated body can be explained as follows using FIG. 6 which shows a sectional view of a wave of one pitch of a pair of laminated bodies of the FNC type heat transfer element plates. it can.
伝熱要素板18および19の伝熱表面に接して流れる薄層
の流体7は、該表面と熱伝達により効率良く熱交換を行
う。流体7に接して流れる流体8は、流体7と混合して
初期に有していた自己の熱伝達率を効率よく改善する。The thin fluid 7 flowing in contact with the heat transfer surfaces of the heat transfer element plates 18 and 19 efficiently exchanges heat with the surfaces by heat transfer. The fluid 8 flowing in contact with the fluid 7 mixes with the fluid 7 to efficiently improve its own heat transfer coefficient that it originally had.
流体7に接することなく流れる流体11は流体7および
流体8と混合して混乱流となる。流体11の熱伝達率は、
この積層体の流路断面の水力直径がCU型のそれより大き
いため、第3図における流体11が激しく混合されて、そ
の熱伝達率を改善される程度には改善されないが、この
積層体の流路断面の水力直径がDU型のそれより小さいに
もかゝわらず、第5図における流体11が混合されると同
じ又はやゝ少ない程度に混合され、即ち第7図を利用し
て以下に説明する伝熱機構の要因によって混合されるた
め、第5図における流体11が混合されて、その熱伝達率
を改善される程度より大きく改善される。The fluid 11 flowing without contacting the fluid 7 mixes with the fluid 7 and the fluid 8 to form a turbulent flow. The heat transfer coefficient of the fluid 11 is
Since the hydraulic diameter of the flow passage cross section of this laminated body is larger than that of the CU type, the fluid 11 in FIG. 3 is vigorously mixed and its heat transfer coefficient is not improved to the extent that it is improved. Although the hydraulic diameter of the cross section of the flow path is smaller than that of the DU type, the fluid 11 in FIG. 5 is mixed to the same extent as or slightly less than that of the fluid 11, that is, using FIG. The fluid 11 in FIG. 5 is mixed by the factors of the heat transfer mechanism described in FIG.
第7図はFNC型の伝熱要素板の1対の積層体の斜視図
を示す。FIG. 7 shows a perspective view of a pair of laminates of FNC type heat transfer element plates.
積層体に対して流入方向6の方向に流入する流体の内
で、上半分の流路22を通過した流体の大部分は、流体の
流入方向6と15゜〜35゜の傾斜を以って右側に向って斜
交する上側の伝熱要素板23の大波型1に案内されて矢印
24の方向に流れ、一方、下半分の流路25を通過した流体
の大部分は流体の流入方向6と15゜〜35゜の傾斜を以っ
て左側に向って斜交する下側の伝熱要素板26の大波型1
に案内されて矢印27の方向に流れる。Among the fluids that flow in the inflow direction 6 with respect to the stack, most of the fluid that has passed through the upper half flow path 22 has an inclination of 15 ° to 35 ° with the inflow direction 6 of the fluid. The arrow is guided by the large wave type 1 of the upper heat transfer element plate 23 obliquely crossing to the right.
24, while most of the fluid that has passed through the lower half flow path 25 intersects the inflow direction 6 of the fluid to the left with an inclination of 15 ° to 35 °. Large wave type 1 of heat element plate 26
It is guided by and flows in the direction of arrow 27.
流路22と流路25との断面の面積は等しく、その上両平
板部17,17は平行であって、各対応部分が断面の中央を
表示する点線28からそれぞれ等距離にあるため、矢印24
の如く流れる流体と、矢印27の如く流れる流体との流量
と流速とは、流路の全断面に亙って略等しいと考えて差
支えない。The cross-sectional areas of the flow path 22 and the flow path 25 are equal, and both flat plate portions 17, 17 are parallel to each other, and the corresponding portions are equidistant from the dotted line 28 indicating the center of the cross section. twenty four
It can be considered that the flow rate and the flow velocity of the fluid flowing as described above and the fluid flowing as indicated by the arrow 27 are substantially equal over the entire cross section of the flow path.
流入方向6の流体の分流である矢印24の流体と流入方
向6″の流体の分流である矢印27″の流体とは上下の位
置関係の流れとなって斜交する。流入方向6の流体と流
入方向6′の流体とのそれぞれの分流である矢印27の流
体と矢印24′の流体とも同様に斜交する。The fluid indicated by the arrow 24, which is a branch of the fluid in the inflow direction 6, and the fluid indicated by the arrow 27 ″, which is a branch of the fluid in the inflow direction 6 ″, have a vertical positional relationship and intersect obliquely. Similarly, the fluid of the arrow 27 and the fluid of the arrow 24 ', which are shunts of the fluid in the inflow direction 6 and the fluid in the inflow direction 6', intersect in the same manner.
従って、上半分の流路22の流れと下半分の流路25の流
れとは、両流れの接触面において常に剪断力が作用する
ことになり、両流体は剪断時に相互に混合して混乱流と
なって流れる。Therefore, the flow in the upper half of the flow path 22 and the flow in the lower half of the flow path 25 are always subjected to a shearing force at the contact surface between the two flows, and the two fluids are mixed with each other at the time of shearing to cause a turbulent flow. Flows.
上側を流れる流体の有する運動量と下側を流れる流体
の有する運動量とは、それぞれの流体の流量と流速とが
略等しいことにより等しくなる。そのため、両流体の混
合状態が過不足のない必要にして充分な混合状態となる
ことによって、発生する圧力損失に対して熱伝達率が極
大値を取る現象を生じさせることができる。この必要に
して充分な混合状態を生じさせる原因となるものは上下
両流体の運動量が等しいことのみではなく、本発明の伝
熱要素板の積層体の断面の形態の条件と隣接して積層さ
れた伝熱要素板の斜交の角度15゜〜35゜の範囲を有して
いることゝが大前提となっているのは勿論のことであ
る。The momentum of the fluid flowing on the upper side and the momentum of the fluid flowing on the lower side are equal because the flow rate and the flow velocity of the respective fluids are substantially equal. Therefore, when the mixed state of the two fluids is a necessary and sufficient mixed state without excess and deficiency, it is possible to cause a phenomenon that the heat transfer coefficient has a maximum value with respect to the generated pressure loss. What causes this necessary and sufficient mixed state is not only that the momentums of the upper and lower fluids are equal, but also that they are laminated adjacent to the conditions of the cross-sectional form of the heat transfer element plate laminate of the present invention. Needless to say, it is premised that the heat transfer element plate has an oblique angle range of 15 ° to 35 °.
流路22と流路25を流れる流体とを略等分に分離させる
ことに着目したのは、上半分の流体と下半分の流体とが
有するそれぞれの運動量が不均等である場合には、運動
量の少ない側の流体が運動量の多い側の流体によって過
剰な渦流動を持った混乱流とされて熱伝達率を改善され
る効果以上に圧力損失を増し、一方、運動量の多い側の
流体が運動量の少い側の流体によって不充分な渦流動を
持った混乱流とされて、熱伝達率を改善されない割には
圧力損失を不必要に増し、これら両流体の流れの挙動を
総合した結果は、圧力損失を増した割には熱伝達率が改
善されず、熱伝達率を極大値に達せしめることができな
いという現象の発生を回避するためである。Focusing on separating the fluid flowing through the flow passage 22 and the flow passage 25 into substantially equal parts is that when the respective momentums of the upper half fluid and the lower half fluid are unequal, the momentum The fluid on the side with less momentum becomes a turbulent flow with excessive vortex flow by the fluid on the side with high momentum, increasing the pressure loss more than the effect of improving the heat transfer coefficient, while the fluid on the side with high momentum has momentum The turbulent flow with insufficient vortex flow due to the fluid on the side of the lower side increases the pressure loss unnecessarily even though the heat transfer coefficient cannot be improved. This is to avoid the occurrence of the phenomenon that the heat transfer coefficient is not improved in spite of the increased pressure loss and the heat transfer coefficient cannot reach the maximum value.
同一の流路長さを有するCU型、DU型およびFNC型の各
積層体の単位体積当りの伝熱特性の比較を示すと次の通
りである。The following is a comparison of the heat transfer characteristics per unit volume of each of the CU type, DU type and FNC type laminates having the same flow path length.
CU型 DU型 FNC型 熱伝達率の比 110 100 106 圧力損失の比 138 100 98 重量の比 132 100 105 FNC型が圧力損失の割には高い熱伝達率を有してお
り、DU型よりやゝ重い重量を有していることを示してい
る。CU type DU type FNC type Heat transfer coefficient ratio 110 100 106 Pressure loss ratio 138 100 98 Weight ratio 132 100 105 FNC type has a high heat transfer rate for pressure loss,ゝ It indicates that it has a heavy weight.
従来型のCU型およびDU型の積層体の伝熱機構と、本発
明の実施例のFNC型の積層体の伝熱要素板18,19間に構成
されている流路断面16における前述の各部分流体がそれ
ぞれ有する伝熱機構とを比較して総合的に考察すると、
全体として、FNC型での流体の渦流の程度は、CU型での
流体の渦流の程度より低いが、DU型での流体渦流の程度
と同程度でありながらDU型での渦流よりも流れ全体に均
一に分布した渦流であるため、FNC型の熱伝達率はCU型
とDU型との中間的な値を示し、圧力損失はCU型より低
く、DU型と同程度又はより低い値を示している。The heat transfer mechanism of the conventional CU type and DU type laminates, and each of the aforementioned in the flow path cross section 16 configured between the heat transfer element plates 18 and 19 of the FNC type laminate of the embodiment of the present invention. Comparing the heat transfer mechanism of each partial fluid and considering comprehensively,
As a whole, the degree of fluid vortex in the FNC type is lower than that in the CU type, but it is the same as that in the DU type, but the flow is larger than that in the DU type. Since it is a vortex flow that is evenly distributed in the FNC type, the heat transfer coefficient of the FNC type shows an intermediate value between the CU type and the DU type, and the pressure loss is lower than the CU type and shows the same or lower value as the DU type. ing.
第8図は、伝熱要素板の積層体29をバスケット30内に
充填して、該積層体29の流路に空気を流入方向6の方向
に供給し、該流路の出口で空気圧をピトー管31を矢印32
の方向に移動しながら計測する装置を示す。FIG. 8 shows that a basket 30 is filled with a laminated body 29 of heat transfer element plates, air is supplied to the flow path of the laminated body 29 in the direction of the inflow direction 6, and the air pressure is pitted at the outlet of the flow path. Tube 31 to arrow 32
An apparatus for measuring while moving in the direction of is shown.
積層体29として、CU型を充填した場合の空気の圧力分
布は第9図の如くであり、DU型を充填した場合は第10図
の如くであり、FNC型を充填した場合は第11図の如くで
ある。The pressure distribution of air when the CU type is filled as shown in FIG. 9 is as shown in FIG. 9, when the DU type is filled, as shown in FIG. 10, and when the FNC type is filled, FIG. It is like.
CU型およびDU型の圧力分布においては、バスケット30
の右端壁に接近するにつれて圧力が低下して行くことを
示しており、積層体29の左右方向に並んだ流路間での流
体の相互の混合が均等に行なわれていないことを示して
いる。これに引き替えFNC型の圧力分布においては、そ
のような圧力の低下は見られず一定になっており、流体
の相互の混合が均等に行なわれていることを示してい
る。For CU and DU type pressure distribution, basket 30
It is shown that the pressure decreases as it approaches the right end wall of the, and it shows that the mutual mixing of the fluid is not uniformly performed between the flow paths arranged in the left-right direction of the laminate 29. . On the other hand, in the pressure distribution of the FNC type, such a decrease in the pressure is not observed but is constant, which indicates that the fluids are evenly mixed with each other.
第1図(a)において、FNC型の伝熱要素板18および1
9は、波のピッチP1の中間部に存在する平板部17には第
4図(a)のDU型の伝熱要素板13に存在するような小波
型12を有していないため、剛性が小さくなる傾向にあ
る。この傾向を改善するため、FNC型の伝熱要素板18お
よび19の大波形1のウエブ20の平板部17の垂直面21から
傾斜が35゜以下の範囲となるようにして、剛性の強化を
計っている。この強化手段によって、FNC型の伝熱要素
板18および19を裁断機で所望の寸法に切断する時に加え
られる押圧力、又伝熱要素板18および19を積層する時に
作用する伝熱要素板18,19間の圧縮力に対し充分に対抗
することができる 以上詳述してきた如く、FNC型の伝熱要素板の積層体
は、接触熱伝達機構の理論を採用しながら、幾多の形状
の伝熱要素板の積層体について実験を繰返し、従来型の
伝熱要素板の積層体によっては得ることのできなかった
圧力損失の低い割には熱伝達率が高く、流体の混合性が
良くて圧力分布が均等であり、簡素な形状の拡大伝熱面
でありながら剛性の高い伝熱要素板の最善の形状を見付
け出すことができたものである。In FIG. 1 (a), FNC type heat transfer element plates 18 and 1
9 shows that the flat plate portion 17 existing in the middle portion of the wave pitch P 1 does not have the small wave type 12 existing in the DU type heat transfer element plate 13 of FIG. Tend to be smaller. In order to improve this tendency, the rigidity is strengthened by setting the inclination within 35 ° or less from the vertical surface 21 of the flat plate portion 17 of the web 20 of the large corrugation 1 of the FNC type heat transfer element plates 18 and 19. I am measuring. By this strengthening means, the pressing force applied when the FNC type heat transfer element plates 18 and 19 are cut into a desired size by a cutting machine, and the heat transfer element plates 18 that act when the heat transfer element plates 18 and 19 are stacked. As described in detail above, the stack of FNC-type heat transfer element plates adopts the theory of contact heat transfer mechanism while transferring many shapes of heat transfer. The experiment was repeated on the laminated body of heat element plates, and the heat transfer coefficient was high despite the low pressure loss that could not be obtained by the conventional laminated body of heat transfer element plates, and the fluid mixability was good and the pressure was high. It was possible to find the best shape of the heat transfer element plate, which has a uniform distribution and a simple shape of the expanded heat transfer surface, but has high rigidity.
[発明の効果] 本発明の伝熱要素板の積層体は、熱交換器の熱交換流
体の流路長さを一定とすれば、各種形状の伝熱要素板の
積層体の中で圧力損失の大きさに比べて最高の熱伝達率
を示し、一方、熱交換器の積層体の熱伝達率を一定とす
れば、最低の圧力損失を示す。[Effect of the Invention] The laminate of the heat transfer element plates of the present invention has a pressure loss in the laminate of the heat transfer element plates of various shapes, provided that the flow length of the heat exchange fluid of the heat exchanger is constant. Shows the highest heat transfer coefficient, while the heat transfer stack has a constant heat transfer coefficient, the lowest pressure loss.
伝熱要素板の積層体の流体の混合性が均等であって熱
交換器の流路に偏流を生じることがないため、熱交換器
の積層体の低温端における局部的低温を発生することが
なく、水腐蝕を生じないことは勿論のことSOxを含有す
る排ガスが流通する場合にも酸凝縮を生じることはな
く、又排ガスがSOx以外に多量のダストを含有する場合
にはSOxとダストとが均等に混合されてダストへのSOxの
吸着が促進され浮遊SOxによる酸の発生が抑制されるこ
とゝなる。そのため、積層体の腐蝕を低減することがで
きると共に、排ガスの脱硝装置内にNH3が投入される場
合には、該装置から該装置の後流の排ガス中に漏洩する
微量のNH3と浮遊SOxとの化合によって伝熱面に析出する
ことになる酸性硫安の発生を抑制し、積層体の流路の閉
塞を防止することができる。Since the fluidity of the laminate of the heat transfer element plates is even and the flow path of the heat exchanger does not flow unevenly, a local low temperature may be generated at the low temperature end of the laminate of the heat exchanger. No, it does not cause water corrosion and does not cause acid condensation even when exhaust gas containing SOx flows, and when the exhaust gas contains a large amount of dust in addition to SOx, SOx and dust Are evenly mixed to promote the adsorption of SOx on dust and suppress the generation of acid due to floating SOx. Therefore, it is possible to reduce the corrosion of the laminated body, and when NH 3 is introduced into the exhaust gas denitration device, a trace amount of NH 3 that leaks from the device into the exhaust gas downstream of the device and floats. Generation of acidic ammonium sulfate, which is deposited on the heat transfer surface by combination with SOx, can be suppressed, and blockage of the flow path of the laminate can be prevented.
伝熱要素板の拡大伝熱面の形状が簡素化されているた
め、伝熱要素板の加工度は単純化され、一方、形状が簡
素化されていることに起因する伝熱要素板の剛性の低下
を大波型のウエブの傾斜角を特定化することによって防
止し、伝熱要素板の積層体の製造費を低減することがで
きると共に熱交換器の軽量化に寄与することができる。Enlargement of heat transfer element plateSince the shape of the heat transfer surface is simplified, the workability of the heat transfer element plate is simplified, while the rigidity of the heat transfer element plate due to the simplified shape Can be prevented by specifying the inclination angle of the large wave type web, the manufacturing cost of the laminate of the heat transfer element plates can be reduced, and the weight of the heat exchanger can be reduced.
第1図はFNC型の積層体の断面図と上面図であり、第2
図はCU型の積層体の断面図と上面図であり、第3図はCU
型の積層体の1ピッチ分の断面図であり、第4図はDU型
の積層体の断面図と上面図であり、第5図はDU型の積層
体の1ピッチ分の断面図であり、第6図はFNC型の積層
体の1ピッチ分の断面図であり、第7図はFNC型の積層
体の斜視図であり、第8図は積層体の流路の圧力分布計
測装置であり、第9図はCU型の積層体の圧力分布であ
り、第10図はDU型の積層体の圧力分布であり、第11図は
FNC型の積層体の圧力分布である。 1……大波型、2……伝熱要素板、3……小波型、4…
…伝熱要素板、5……山、6,6′6″……流入方向、7,
7′,8,9,10,11……流体、12……小波型、13,14……伝熱
要素板、15……谷、16,16′,16″……流路断面、17……
平板部、18,19……伝熱要素板、20……ウエブ、21……
垂直面、22……流路、23……伝熱要素板、24,24′,24″
……矢印、25……流路、26……伝熱要素板、27,27′2
7″……矢印、28……点線、29……積層体、30……バス
ケット、31……ピトー管、32……矢印。FIG. 1 is a cross-sectional view and a top view of the FNC type laminated body.
The figure is a cross-sectional view and top view of a CU type laminated body.
FIG. 4 is a sectional view of a 1-pitch laminated body, FIG. 4 is a sectional view and a top view of a DU-shaped laminated body, and FIG. 5 is a 1-pitch sectional view of a DU-shaped laminated body. FIG. 6 is a sectional view of the FNC type laminated body for one pitch, FIG. 7 is a perspective view of the FNC type laminated body, and FIG. 8 is a pressure distribution measuring device of the flow passage of the laminated body. Yes, FIG. 9 shows the pressure distribution of the CU type laminated body, FIG. 10 shows the pressure distribution of the DU type laminated body, and FIG. 11 shows
It is a pressure distribution of a FNC type laminated body. 1 ... Large wave type, 2 ... Heat transfer element plate, 3 ... Small wave type, 4 ...
... heat transfer element plate, 5 ... mountain, 6, 6'6 "... inflow direction, 7,
7 ′, 8,9,10,11 …… Fluid, 12 …… Small wave type, 13,14 …… Heat transfer element plate, 15 …… Valley, 16,16 ′, 16 ″ …… Flow section, 17… …
Flat plate part, 18, 19 ... Heat transfer element plate, 20 ... Web, 21 ...
Vertical surface, 22 ... Channel, 23 ... Heat transfer element plate, 24, 24 ', 24 "
...... Arrows, 25 ...... Flow paths, 26 ...... Heat transfer element plates, 27,27'2
7 ″ …… Arrow, 28 …… Dotted line, 29 …… Stack, 30 …… Basket, 31 …… Pitot tube, 32 …… Arrow.
Claims (1)
し、波型の高さの中央部にあって、しかも波のピッチの
中間部にあり、波の山を結ぶ線に平行であって、しかも
波型の巾より広い巾である平板部を有し、積層体へ流入
する流体の方向と15゜〜35゜の傾斜をなす方向の波型の
山を有し、該平板部に対する垂直面と35゜以下の傾斜を
なす波型のウエブを有する伝熱要素板と、該伝熱要素板
と鏡面対称の形状を有する伝熱要素板とを交互に積層
し、積層された伝熱要素板間に構成される流路断面の水
力直径が7.5mm以上であることを特徴とする伝熱要素板
の積層体。1. A line having a wave with a pitch not more than 7.5 times the height of the corrugation, located at the center of the height of the corrugation, and in the middle of the pitch of the corrugation, connecting the peaks of the corrugations. Has a flat plate portion that is parallel to and is wider than the width of the corrugation, and has a corrugated peak in a direction that makes an inclination of 15 ° to 35 ° with the direction of the fluid flowing into the laminated body, A heat transfer element plate having a wave-shaped web having a vertical surface with respect to the flat plate portion and an inclination of 35 ° or less, and a heat transfer element plate having a mirror-symmetrical shape with the heat transfer element plate are alternately laminated and laminated. A laminate of heat transfer element plates, characterized in that the hydraulic diameter of the flow path cross section formed between the heat transfer element plates is 7.5 mm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63100404A JP2670512B2 (en) | 1988-04-25 | 1988-04-25 | Heat transfer element plate stack |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63100404A JP2670512B2 (en) | 1988-04-25 | 1988-04-25 | Heat transfer element plate stack |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01273996A JPH01273996A (en) | 1989-11-01 |
JP2670512B2 true JP2670512B2 (en) | 1997-10-29 |
Family
ID=14273042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63100404A Expired - Lifetime JP2670512B2 (en) | 1988-04-25 | 1988-04-25 | Heat transfer element plate stack |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2670512B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09280761A (en) * | 1996-04-09 | 1997-10-31 | Abb Kk | Heat exchanger having laminated body of heat transfer element prate |
GB2429054A (en) * | 2005-07-29 | 2007-02-14 | Howden Power Ltd | A heating surface element |
DE102006003317B4 (en) | 2006-01-23 | 2008-10-02 | Alstom Technology Ltd. | Tube bundle heat exchanger |
US9557119B2 (en) | 2009-05-08 | 2017-01-31 | Arvos Inc. | Heat transfer sheet for rotary regenerative heat exchanger |
US8622115B2 (en) * | 2009-08-19 | 2014-01-07 | Alstom Technology Ltd | Heat transfer element for a rotary regenerative heat exchanger |
US9200853B2 (en) * | 2012-08-23 | 2015-12-01 | Arvos Technology Limited | Heat transfer assembly for rotary regenerative preheater |
US10175006B2 (en) | 2013-11-25 | 2019-01-08 | Arvos Ljungstrom Llc | Heat transfer elements for a closed channel rotary regenerative air preheater |
US10094626B2 (en) | 2015-10-07 | 2018-10-09 | Arvos Ljungstrom Llc | Alternating notch configuration for spacing heat transfer sheets |
-
1988
- 1988-04-25 JP JP63100404A patent/JP2670512B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01273996A (en) | 1989-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4449573A (en) | Regenerative heat exchangers | |
US6415855B2 (en) | Corrugated fin with partial offset for a plate-type heat exchanger and corresponding plate-type heat exchanger | |
US8453719B2 (en) | Heat transfer surfaces with flanged apertures | |
US6938685B2 (en) | Heat exchanger | |
US10677538B2 (en) | Indirect heat exchanger | |
JP6614140B2 (en) | Fluid channel with performance enhancing features and devices incorporating the same | |
US20130153184A1 (en) | Heat exchanger | |
US20060090887A1 (en) | Heat exchanger | |
US4830102A (en) | Turbulent heat exchanger | |
US5301747A (en) | Heat exchanger comprised of individual plates | |
JP2019530845A (en) | Heat exchange plate and heat exchanger | |
KR100445821B1 (en) | Heat and mass transfer element assembly | |
JP4827905B2 (en) | Plate type heat exchanger and air conditioner equipped with the same | |
US20040144525A1 (en) | Heat exchanger with brazed plates | |
JP2670512B2 (en) | Heat transfer element plate stack | |
CN104110996A (en) | Mixed type fin for plate-fin heat exchanger | |
WO2017002819A1 (en) | Inner fin for heat exchanger | |
US20140054017A1 (en) | Heat exchange apparatus | |
US4915878A (en) | Packing structure especially for use in a column mainly for contacting liquid and gas phases | |
PL118511B1 (en) | Plate-type heat exchanger | |
US6435268B1 (en) | Evaporator with improved condensate drainage | |
US4407357A (en) | Thin sheet metal heat exchanger | |
US2090222A (en) | Radiator core | |
JPH035511B2 (en) | ||
WO2019234756A1 (en) | A plate of plate heat exchangers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080711 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |