JP2670165B2 - How to recover iron oxide from petroleum sludge - Google Patents

How to recover iron oxide from petroleum sludge

Info

Publication number
JP2670165B2
JP2670165B2 JP3971390A JP3971390A JP2670165B2 JP 2670165 B2 JP2670165 B2 JP 2670165B2 JP 3971390 A JP3971390 A JP 3971390A JP 3971390 A JP3971390 A JP 3971390A JP 2670165 B2 JP2670165 B2 JP 2670165B2
Authority
JP
Japan
Prior art keywords
iron oxide
impurities
petroleum sludge
petroleum
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3971390A
Other languages
Japanese (ja)
Other versions
JPH03247513A (en
Inventor
敏彦 今本
勝征 植田
利美 大塚
博久 ▲吉▼田
行男 林
弘明 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3971390A priority Critical patent/JP2670165B2/en
Publication of JPH03247513A publication Critical patent/JPH03247513A/en
Application granted granted Critical
Publication of JP2670165B2 publication Critical patent/JP2670165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鉄分を含む石油スラッジを処理して高純度の
酸化鉄を回収する方法に関する。
TECHNICAL FIELD The present invention relates to a method for treating petroleum sludge containing iron to recover high-purity iron oxide.

〔従来の技術〕[Conventional technology]

従来、石油タンカーの船底から陸揚げした石油スラッ
ジは廃棄物として処理した後、廃棄していた。
Conventionally, petroleum sludge unloaded from the bottom of a petroleum tanker has been treated as waste and then discarded.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

石油タンカーの船底スラッジの主成分は鉄さび(各種
酸化鉄及び水酸化鉄)であるが、他にカルシウム、マグ
ネシウム、マンガン、亜鉛及び銅等の各種化合物が、ま
た石膏などの異物が混在し、かつかなりの油が付着して
いるため廃棄処分していたが、その処理コストはかなり
高額であった。
The main component of the bottom sludge of petroleum tankers is iron rust (various iron oxides and iron hydroxides), but other various compounds such as calcium, magnesium, manganese, zinc and copper, and foreign substances such as gypsum are mixed, and It was disposed of because of the large amount of oil attached, but the disposal cost was quite high.

本発明は上記技術水準に鑑み、従来多大なコストを支
払って廃棄処分していた石油スラッジから、高純度の酸
化鉄、すなわち高純度の赤色顔料用のベンガラ(α−Fe
2O3)又は高純度の磁性酸化鉄(Fe3O4)を回収する方法
を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention is based on the fact that petroleum sludge, which has been conventionally disposed of at a great cost, is disposed of, and is converted into high-purity iron oxide, that is, red iron oxide (α-Fe) for high-purity red pigment.
An object of the present invention is to provide a method for recovering 2 O 3 ) or high-purity magnetic iron oxide (Fe 3 O 4 ).

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、 (1) 鉄分を含む石油スラッジを脱油した後、酸化性
雰囲気中500〜1000℃で前処理焼成により不純物を除去
し、これを超微粉砕した後、更に酸洗して混在している
不純物を溶解除去する第1工程と、第1工程で得られた
鉄分を脱水・乾燥した後酸化性雰囲気中500〜1000℃で
焼成して酸化第二鉄を生成し、分級する第2工程よりな
ることを特徴とする石油スラッジから高純度の酸化第二
鉄を回収する方法(以下第1発明という)及び (2) 鉄分を含む石油スラッジを脱油した後、酸化性
雰囲気中250〜400℃で焼成して未燃分を燃焼除去し、こ
れを超微粉砕した後、更に酸洗して混在している不純物
を溶解除去する第1工程と、第1工程で得られた鉄分を
脱水・乾燥した後還元性雰囲気中400〜500℃で焼成して
磁性酸化鉄を生成し、分級する第2工程よりなることを
特徴とする石油スラッジから高純度の磁性酸化鉄を回収
する方法(以下第2発明という) である。
The present invention includes: (1) After deoiling petroleum sludge containing iron, pretreatment and calcination in an oxidizing atmosphere at 500 to 1000 ° C. to remove impurities, which are then ultrafinely pulverized, and then pickled and mixed. The first step of dissolving and removing the impurities that have been removed and the iron content obtained in the first step are dehydrated and dried, and then calcined in an oxidizing atmosphere at 500 to 1000 ° C. to produce ferric oxide and then classified. A method for recovering high-purity ferric oxide from petroleum sludge, which comprises two steps (hereinafter referred to as the first invention), and (2) after deoiling the petroleum sludge containing iron, in an oxidizing atmosphere 250 The first step of burning and removing unburned components by burning at ~ 400 ° C, ultra-fine pulverization, and further acid pickling to dissolve and remove mixed impurities, and the iron content obtained in the first step Is dehydrated and dried, and then calcined in a reducing atmosphere at 400 to 500 ° C to produce magnetic iron oxide, which is then classified. From oil sludge, characterized in that made of the second step is a method of recovering high-purity iron oxide of (hereinafter referred to as second invention).

〔作 用〕(Operation)

本発明の第1発明は、鉄分を含む石油スラッジを脱油
した後、酸化性雰囲気の中500〜1000℃、好ましくは600
〜700℃で焼成して酸化第二鉄(α−Fe2O3)を生成させ
るものであるが、そのままでは酸化第二鉄中には不純物
としてカルシウム、マグネシウム、マンガン、亜鉛、銅
の硫酸塩及び酸化物及びシリカが後述の第1表の参考例
に示す如く約6.3%も混在しているため、このままの品
質では赤色顔料用のベンカラとしての商品価値はなくな
る。
In the first invention of the present invention, after deoiling petroleum sludge containing iron, 500 to 1000 ° C., preferably 600 to 1000 ° C. in an oxidizing atmosphere.
It is used to produce ferric oxide (α-Fe 2 O 3 ) by firing at ~ 700 ° C, but as it is, sulfates of calcium, magnesium, manganese, zinc, and copper as impurities in ferric oxide. Further, as shown in the reference example of Table 1 described later, about 6.3% of oxides and silica are mixed, so that the commercial value as Benkara for red pigment is lost with the quality as it is.

そこで上記カルシウム、マグネシウム、マンガン、亜
鉛、銅の硫酸塩及び酸化物の不純物を除去するため、前
記焼成物を超微粉砕して塩酸又は硫酸等の無機酸で酸洗
浄することによって第1表の実施例に示す如く高純度の
酸化第二鉄を得る第1工程を行った後、次の第2工程の
焼成と分級を行うものである。
Therefore, in order to remove impurities of the above-mentioned calcium, magnesium, manganese, zinc, copper sulfate and oxides, the calcined product is ultra-finely ground and acid-washed with an inorganic acid such as hydrochloric acid or sulfuric acid. As shown in the examples, after performing the first step of obtaining high-purity ferric oxide, firing and classification of the following second step are performed.

この酸洗浄の例として塩酸を使用する場合について述
べると、塩酸濃度は0.2〜0.5%が好ましく、洗浄時の温
度及び時間は40〜70℃及び10〜15分間程度が好ましい。
洗浄温度が低すぎても不純物中の酸化物の溶解力が弱く
洗浄に時間を要し、また洗浄落度が高すぎても塩酸が酸
化第二鉄の方に消費されて不純物の溶解力効果には殆ん
ど変化はない。
As a case of using hydrochloric acid as an example of this acid cleaning, the concentration of hydrochloric acid is preferably 0.2 to 0.5%, and the temperature and time during cleaning are preferably 40 to 70 ° C. and about 10 to 15 minutes.
If the washing temperature is too low, the dissolving power of the oxides in the impurities is weak and it takes time to wash, and if the washing rate is too high, hydrochloric acid is consumed by the ferric oxide and the effect of the dissolving power of the impurities is high. Has little change.

又、本発明の第2発明は、鉄分を含む石油スラッジを
脱油した後、酸化性雰囲気の中250〜400℃、好ましくは
300〜350℃で未燃分(炭素、イオウ)を燃焼させて炭酸
ガス、二酸化イオウにて除去する。焼成炉内の温度が25
0℃においても先ず未燃分の炭素が発火して自己発熱し
て局部的に温度が上昇するため、未燃分のイオウ(360
℃以上で発火燃焼)も発火燃焼されて除去される。この
まますぐに400〜500℃の還元性雰囲気の中で焼成して磁
性酸化鉄(Fe3O4)を生成させると不純物としてカルシ
ウム、マグネシウム、マンガン、亜鉛、銅等の硫酸塩及
び酸化物及びシリカが第2表の参考例に示す如く約6.8
%も混在しているため、磁性酸化鉄の純度が低く、この
ままの品質では磁性酸化鉄としての商品価値は殆んどな
くなってしまう。
Further, the second invention of the present invention is to remove oil-containing petroleum sludge, and then in an oxidizing atmosphere at 250 to 400 ° C., preferably
Unburned components (carbon and sulfur) are burned at 300 to 350 ° C and removed with carbon dioxide and sulfur dioxide. The temperature in the firing furnace is 25
Even at 0 ° C, the unburned carbon first ignites, self-heats, and the temperature rises locally.
(Ignition combustion above ℃) is also combusted and removed. If it is immediately baked in a reducing atmosphere at 400 to 500 ° C to produce magnetic iron oxide (Fe 3 O 4 ), sulfates and oxides of calcium, magnesium, manganese, zinc, copper, etc. and silica as impurities Is about 6.8 as shown in the reference example of Table 2.
%, The purity of magnetic iron oxide is low, and the commercial value as magnetic iron oxide is almost lost with the quality as it is.

そこで上記カルシウム、マグネシウム、マンガン、亜
鉛、銅等の硫酸塩及び酸化物の不純物を除去するため塩
酸又は硫酸等の無機酸で酸洗浄することによって第2表
の実施例に示す如く高純度の酸性酸化鉄を得る第1工程
を行った後、次の第2工程の焼成と分級を行うものであ
る。
Therefore, in order to remove impurities such as sulfates and oxides of calcium, magnesium, manganese, zinc, copper and the like, acid washing with an inorganic acid such as hydrochloric acid or sulfuric acid is carried out to obtain a highly pure acid as shown in the examples of Table 2. After performing the 1st process which obtains iron oxide, the baking and classification of the following 2nd process are performed.

この酸洗浄の例として塩酸を使用する場合について述
べると、塩酸濃度は0.15〜0.3%が好ましく、また洗浄
時の温度及び時間は30〜50℃及び10〜15分間程度が好ま
しい。洗浄温度が低すぎても不純物中の酸化物の溶解力
が弱く、また温度が高すぎても酸が磁性酸化鉄に消費さ
れて好ましくない。
As a case of using hydrochloric acid as an example of this acid cleaning, the concentration of hydrochloric acid is preferably 0.15 to 0.3%, and the temperature and time during cleaning are preferably 30 to 50 ° C. and 10 to 15 minutes. If the washing temperature is too low, the dissolving power of the oxide in the impurities will be weak, and if the washing temperature is too high, the acid will be consumed by the magnetic iron oxide, which is not preferable.

〔実施例1〕 第1図は本発明の第1発明の一実施例を示すブロック
図である。
[Embodiment 1] FIG. 1 is a block diagram showing an embodiment of the first invention of the present invention.

石油タンカー船底の石油スラッジには、主成分として
鉄さび(主な組成はFe3O4,FeO・OH)が、不純物として
カルシウム、マグネシウム、マンガン、亜鉛及び銅の各
種化合物が、また石油等の有機物、石や砂等の夾雑物が
含まれている。ここでは油分:36.4%,鉄分:60.2%,そ
の他不純物3.4%の石油スラッジを用いた。
Iron rust (main composition is Fe 3 O 4 , FeO ・ OH) is the main component of petroleum sludge on the bottom of an oil tanker, and various compounds of calcium, magnesium, manganese, zinc and copper are impurities, and organic substances such as petroleum. And foreign substances such as stones and sand. Here, petroleum sludge containing 36.4% oil, 60.2% iron, and 3.4% other impurities was used.

そこでまず、石油スラッジをロータリーキルン2で焼
却して、同石油スラッジに含まれている油分を燃焼除去
する。こうして脱油されたスラッジを分級機3に通し、
混入している異物(夾雑物)を分離除去すると、上記鉄
さび(各種酸化鉄)、不純物(カルシウム、マグネシウ
ム、マンガン、亜鉛、銅の硫酸塩及び酸化物)及び未燃
分(炭素、イオウ)が残る。次にこれをクラッシャー4
で3mm以下の粒径に粉砕する。
Therefore, first, the oil sludge is incinerated in the rotary kiln 2 to burn off the oil contained in the oil sludge. The sludge thus deoiled is passed through a classifier 3,
When foreign substances (contaminants) mixed in are separated and removed, the above iron rust (various iron oxides), impurities (calcium, magnesium, manganese, zinc, copper sulfates and oxides) and unburned components (carbon, sulfur) are removed. Remains. Then crusher 4
And pulverize to a particle size of 3 mm or less.

これを焼成炉5に入れ、600〜700℃で前処理焼成する
と、ロータリキルン2による処理後も残った油分や未燃
炭素、イオウが燃焼除去される。次いでこれを超微粉砕
機6に入れ、水を加えてスラリー状態で湿式粉砕し、平
均粒径3.2μm以下の微粒子とする。
When this is put in the firing furnace 5 and pretreated and fired at 600 to 700 ° C., oil content, unburned carbon, and sulfur remaining after the treatment by the rotary kiln 2 are burned and removed. Next, this is put into an ultra-fine pulverizer 6 and wet-pulverized in a slurry state by adding water to obtain fine particles having an average particle diameter of 3.2 μm or less.

前処理焼成により処理し易くなった不純物(カルシウ
ム、マグネシウム、マンガン、亜鉛、銅の硫酸塩及び酸
化物)を溶解除去するため酸洗浄タンク7に微粒子スラ
リーを入れ、50〜70℃に昇温した0.2〜0.5wt%塩酸液を
微粒子スラリーの乾粉換算重量1トンにつき9m3添加し
て15分間撹拌機で撹拌し不純物を溶解する。次いで静置
して製品となる微粒子を沈降分離し、その上澄液を十分
に除去したのち、さらに水9m3を添加してよく撹拌洗浄
し、微粒子中の残留塩酸及び不純物の残留溶解分を水に
抽出する。
In order to dissolve and remove impurities (calcium, magnesium, manganese, zinc, copper sulfates and oxides) that were easily treated by pretreatment firing, the fine particle slurry was put in the acid cleaning tank 7 and heated to 50 to 70 ° C. 0.2 to 0.5 wt% hydrochloric acid solution is added in an amount of 9 m 3 per ton of dry powder of fine particle slurry, and the mixture is stirred for 15 minutes with a stirrer to dissolve impurities. Then, let it stand and separate the fine particles to be the product, sufficiently remove the supernatant liquid, and then add 9 m 3 of water and wash well with stirring to remove residual hydrochloric acid and residual dissolved components of impurities in the fine particles. Extract into water.

次いで静置して酸化鉄を沈降分離し、その上澄液を十
分に除去した後の微粒子を乾燥機8で乾燥し、焼成炉9
に送る。焼成炉9で酸化性雰囲気500〜1000℃、好まし
くは600〜700℃で焼成し、分級機10で1mm以上の凝集物
を除去し、赤色顔料用の高純度ベンガラを製造する。
Then, the mixture is allowed to stand to separate iron oxide by settling, and the supernatant liquid is sufficiently removed to dry the fine particles in a dryer 8 and a firing furnace 9
Send to A high-purity red iron oxide for red pigment is produced by firing in a firing furnace 9 in an oxidizing atmosphere at 500 to 1000 ° C., preferably 600 to 700 ° C. and removing agglomerates of 1 mm or more by a classifier 10.

こうして得た高純度のベンガラの性状を第1表の実施
例に、また第1図の焼成炉5で焼成直後のベンガラの性
状を第1表の参考例に示した。第1表から判るように塩
酸洗浄によってベンガラ中の不純物は効果的に除去され
て、酸化第二鉄の純度は約4.4%向上しており、また水
可溶分濃度も約97%減少するなど、ベンガラの品質は顕
著に向上している。
The properties of the high-purity red iron oxide thus obtained are shown in the examples of Table 1, and the properties of the red iron oxide immediately after firing in the firing furnace 5 of FIG. 1 are shown in the reference example of Table 1. As can be seen from Table 1, the impurities in red iron oxide are effectively removed by washing with hydrochloric acid, the purity of ferric oxide is improved by about 4.4%, and the concentration of water-soluble components is also decreased by about 97%. , Bengala's quality has been significantly improved.

第2図は、焼成温度と酸化鉄生成率及び粒径の関係を
示す図である。石油スラッジからベンガラを製造するた
めの最適な焼成温度範囲は第2図に示す焼成温度と酸化
第二鉄(α−Fe2O3)生成率及び粒径との関係から、500
〜800℃であることがわかる。
FIG. 2 is a diagram showing the relationship between the firing temperature, the iron oxide production rate, and the particle size. The optimum firing temperature range for producing red iron oxide from petroleum sludge is 500 because of the relationship between the firing temperature, ferric oxide (α-Fe 2 O 3 ) production rate and particle size shown in FIG.
It can be seen that the temperature is 800800 ° C.

〔実施例2〕 第3図は本発明の第2発明の一実施例を示すブロック
図である。
[Embodiment 2] FIG. 3 is a block diagram showing an embodiment of the second invention of the present invention.

石油タンカー船底の石油スラッジには、主成分として
鉄さび(主な組成はFe3O4,FeO・OH)が、不純物として
カルシウム、マグネシウム、マンガン、亜鉛及び銅の各
種化合物が、また石油等の有機物、石や砂等の夾雑物が
含まれている。こゝでは前記実施例1と同じ石油スラッ
ジを用いた。
Iron rust (main composition is Fe 3 O 4 , FeO ・ OH) is the main component of petroleum sludge on the bottom of an oil tanker, and various compounds of calcium, magnesium, manganese, zinc and copper are impurities, and organic substances such as petroleum. And foreign substances such as stones and sand. Here, the same petroleum sludge as in Example 1 was used.

そこでまず、石油スラッジをロータリーキルン2で焼
却して、同石油スラッジに含まれている油分を燃焼除去
する。こうして脱油されたスラッジを分級機3に通し、
混入している異物(夾雑物)を分離除去すると、上記鉄
さび(各種酸化鉄)、不純物(カルシウム、マグネシウ
ム、マンガン、亜鉛、銅の硫酸塩及び酸化物)及び未燃
分(炭素、イオウ)が残る。次にこれをクラッシャー4
で3mm以下の粒径に粉砕する。
Therefore, first, the oil sludge is incinerated in the rotary kiln 2 to burn off the oil contained in the oil sludge. The sludge thus deoiled is passed through a classifier 3,
When foreign substances (contaminants) mixed in are separated and removed, the above iron rust (various iron oxides), impurities (calcium, magnesium, manganese, zinc, copper sulfates and oxides) and unburned components (carbon, sulfur) are removed. Remains. Then crusher 4
And pulverize to a particle size of 3 mm or less.

これを焼成炉5に入れ、300の酸化性雰囲気で前処理
焼成すると、ロータリキルン2による処理後も残った油
分や未燃炭素、イオウが燃焼除去される。次いでこれを
超微粉砕機6に入れ、水を加えてスラリー状態を湿式粉
砕し、平均粒径3.2μm以下の微粒子とする。
When this is put in the firing furnace 5 and pretreated and fired in an oxidizing atmosphere of 300, oil content, unburned carbon, and sulfur remaining after the treatment by the rotary kiln 2 are burned and removed. Next, this is put into an ultrafine crusher 6, and water is added thereto to wet-pulverize the slurry state to obtain fine particles having an average particle size of 3.2 μm or less.

前処理焼成により処理し易くなった不純物(カルシウ
ム、マグネシウム、マンガン、亜鉛、銅の硫酸塩及び酸
化物)を溶解除去するため酸洗浄タンク7に微粒子スラ
リーを入れ、30〜50℃に昇温した0.15〜0.3wt%塩酸液
を微粒子スラリーの乾粉換算重量1トンにつき9m3添加
して15分間撹拌機で撹拌して不純物を溶解する。次いで
静置して製品となる微粒子を沈降分離し、その上澄液を
十分に除去したのち、さらに水9m3を添加してよく撹拌
洗浄し、微粒子中の残留塩酸及び不純物の残留溶解分を
水に抽出する。次いで静置して製品となる微粒子を沈降
分離し、その上澄液を十分に除去した後の微粒子を乾燥
機8で乾燥し、焼成炉9に送る。
In order to dissolve and remove impurities (calcium, magnesium, manganese, zinc, copper sulfates and oxides) that were easily treated by pretreatment baking, the fine particle slurry was placed in the acid cleaning tank 7 and heated to 30 to 50 ° C. 0.15 to 0.3 wt% hydrochloric acid solution is added in an amount of 9 m 3 per ton of dry powder of fine particle slurry, and the mixture is stirred for 15 minutes with a stirrer to dissolve impurities. Then, let it stand and separate the fine particles to be the product, sufficiently remove the supernatant liquid, and then add 9 m 3 of water and wash well with stirring to remove residual hydrochloric acid and residual dissolved components of impurities in the fine particles. Extract into water. Next, the product is allowed to stand, and the fine particles to be the product are separated by sedimentation, and the fine particles from which the supernatant has been sufficiently removed are dried by the dryer 8 and sent to the firing furnace 9.

焼成炉9で還元性雰囲気下で450℃で焼成し、分級機1
0で1mm以上の凝集物を除去し、高純度、高品質の磁性酸
化鉄を製造する。
Baking at 450 ° C in a reducing atmosphere in a baking furnace 9 and a classifier 1
At 0, aggregates of 1 mm or more are removed, and high purity, high quality magnetic iron oxide is produced.

こうして得た磁性酸化鉄の性状を第2表に、また第3
図の焼成炉5で焼成した直後の磁性酸化鉄の性状を第2
表の参考例に示した。第2表から判るように塩酸洗浄に
よって磁性酸化鉄中の不純物は効果的に除去されて、磁
性酸化鉄の純度は約5.2%向上しており、また水可溶分
濃度も約97%減少するなど磁性酸化鉄の品質は顕著に向
上している。
Table 2 shows the properties of the magnetic iron oxide thus obtained.
The properties of magnetic iron oxide immediately after firing in the firing furnace 5 shown in the figure are
This is shown in the reference example of the table. As can be seen from Table 2, the impurities in the magnetic iron oxide are effectively removed by washing with hydrochloric acid, the purity of the magnetic iron oxide is improved by about 5.2%, and the water-soluble content concentration is also decreased by about 97%. For example, the quality of magnetic iron oxide has been significantly improved.

第4図は、焼成温度と磁性酸化鉄生成率の関係を示す
図である。石油スラッジから磁性酸化鉄を製造するため
の最適な焼成温度範囲は第4図に示す焼成温度と磁性酸
化鉄生成率の関係から400〜500℃であることがわかる。
FIG. 4 is a diagram showing the relationship between the firing temperature and the magnetic iron oxide generation rate. It can be seen from the relationship between the firing temperature and the production rate of magnetic iron oxide shown in FIG. 4 that the optimum firing temperature range for producing magnetic iron oxide from petroleum sludge is 400 to 500 ° C.

〔発明の効果〕 本発明方法によれば、従来多大なコストを支払い廃棄
していたタンカー船底の石油スラッジから高純度、高品
質で微粒子の赤色顔料用のベンガラ(α−Fe2O3)及び
磁性酸化鉄(Fe3O4)を製造できるので、有価資源回収
上極めて有益である。
[Effect of the Invention] According to the method of the present invention, red petroleum sludge (α-Fe 2 O 3 ) for red pigment of high purity, high quality, and fine particles from petroleum sludge at the bottom of a tanker ship, which has conventionally been paid and disposed of at great cost, and Since magnetic iron oxide (Fe 3 O 4 ) can be produced, it is extremely useful for recovering valuable resources.

なお本発明方法におては、スラッジ中の油分が含まれ
ているため、脱油工程で焼却用燃料が低減できるなどの
メリットもある。
Since the method of the present invention contains the oil content in the sludge, there is an advantage that the fuel for incineration can be reduced in the deoiling step.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第3図は本発明の第1発明及び第2発明の一
実施例を示すブロック図、第2図及び第4図は本発明の
第1発明及び第2発明に関する実験データの一例を示す
図表である。
1 and 3 are block diagrams showing an embodiment of the first and second inventions of the present invention, and FIGS. 2 and 4 are examples of experimental data relating to the first and second inventions of the present invention. FIG.

フロントページの続き (72)発明者 ▲吉▼田 博久 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎研究所内 (72)発明者 林 行男 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎研究所内 (72)発明者 岩橋 弘明 長崎県西彼杵郡伊王島町大字沖ノ島8番 地2 西日本タンカーサービス株式会社 内 (56)参考文献 特開 昭57−188418(JP,A) 特開 昭57−196725(JP,A) 特開 平2−107528(JP,A) 特開 平2−204334(JP,A) 特開 平2−145437(JP,A) 特開 平3−8727(JP,A)Front page continuation (72) Inventor ▲ Yoshi ▼ Hirohisa Tada No. 1 Atsunoura-machi, Nagasaki City, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Research Laboratory (72) Inventor Yukio Hayashi No. 1 Atsunoura-cho, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Research Institute (72) Inventor Hiroaki Iwahashi 8 Okinoshima, Iojima-cho, Nishisonogi-gun, Nagasaki 2 West Japan Tanker Service Co., Ltd. (56) Reference JP-A-57-188418 (JP, A) JP-A-57-196725 (JP, A) JP-A-2-107528 (JP, A) JP-A-2-204334 (JP, A) JP-A-2-15437 (JP, A) JP-A-3-8727 ( JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄分を含む石油スラッジを脱油した後、酸
化性雰囲気中500〜1000℃で前処理焼成により不純物を
除去し、これを超微粉砕した後、更に酸洗して混在して
いる不純物を溶解除去する第1工程と、第1工程で得ら
れた鉄分を脱水・乾燥した後酸化性雰囲気中500〜1000
℃で焼成して酸化第二鉄を生成し、分級する第2工程よ
りなることを特徴とする石油スラッジから高純度の酸化
第二鉄を回収する方法。
1. After deoiling petroleum sludge containing iron, impurities are removed by pretreatment firing at 500 to 1000 ° C. in an oxidizing atmosphere, and after ultrafine pulverization, it is further pickled and mixed. A first step of dissolving and removing impurities, and a step of dehydrating and drying the iron obtained in the first step, followed by drying in an oxidizing atmosphere at 500 to 1000
A method for recovering high-purity ferric oxide from petroleum sludge, which comprises a second step of calcination at ℃ to produce ferric oxide and classification.
【請求項2】鉄分を含む石油スラッジを脱油した後、酸
化性雰囲気中250〜400℃で焼成して未燃分を燃焼除去
し、これを超微粉砕した後、更に酸洗して混在している
不純物を溶解除去する第1工程と、第1工程で得られた
鉄分を脱水・乾燥した後還元性雰囲気中400〜500℃で焼
成して磁性酸化鉄を生成し、分級する第2工程よりなる
ことを特徴とする石油スラッジから高純度の磁性酸化鉄
を回収する方法。
2. After deoiling petroleum sludge containing iron, it is fired in an oxidizing atmosphere at 250 to 400 ° C. to burn and remove unburned components, which are then finely pulverized and then pickled to mix them. The first step of dissolving and removing the impurities that have been removed and the iron content obtained in the first step are dehydrated and dried, and then calcined at 400 to 500 ° C. in a reducing atmosphere to generate and classify magnetic iron oxide. A method for recovering high-purity magnetic iron oxide from petroleum sludge, characterized by comprising steps.
JP3971390A 1990-02-22 1990-02-22 How to recover iron oxide from petroleum sludge Expired - Fee Related JP2670165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3971390A JP2670165B2 (en) 1990-02-22 1990-02-22 How to recover iron oxide from petroleum sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3971390A JP2670165B2 (en) 1990-02-22 1990-02-22 How to recover iron oxide from petroleum sludge

Publications (2)

Publication Number Publication Date
JPH03247513A JPH03247513A (en) 1991-11-05
JP2670165B2 true JP2670165B2 (en) 1997-10-29

Family

ID=12560631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3971390A Expired - Fee Related JP2670165B2 (en) 1990-02-22 1990-02-22 How to recover iron oxide from petroleum sludge

Country Status (1)

Country Link
JP (1) JP2670165B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143763A (en) * 2006-12-13 2008-06-26 Toshibumi Kageyama Manufacturing method of titanium dioxide, calcium sulfate and iron oxide from waste acid generated in manufacturing process of titanium dioxide

Also Published As

Publication number Publication date
JPH03247513A (en) 1991-11-05

Similar Documents

Publication Publication Date Title
Faizul et al. Extraction of silica from palm ashvia citric acid leaching treatment
JP5842592B2 (en) Reusing used magnesia carbon bricks
JP5374040B2 (en) Precipitation of iron oxide from acidic iron salt solutions.
EP0243725A2 (en) Method for purifying titanium oxide ores
Singh et al. Beneficiation of iron and aluminium oxides from fly ash at lab scale
CN110272772A (en) A kind of ultrapure anthracitic preparation method
US7604793B2 (en) Iron oxide precipitation from acidic iron salt solutions
JP2670165B2 (en) How to recover iron oxide from petroleum sludge
Wang et al. Enhanced green remediation and refinement disposal of electrolytic manganese residue using air-jet milling and horizontal-shaking leaching
CA1136078A (en) Process for removing sulfur from coal
CN109207720A (en) A kind of leaching method of extracting vanadium from stone coal
KR20040089324A (en) A vanadium oxide flake recovery method from diesel oil fly ash or orimulsion oil fly ash
US1873642A (en) Process of recovering alumina from coal and its ashes
CN112237987B (en) Method for improving recovery rate of magnetic metal in household garbage incinerator slag
TWI448556B (en) Pretreatment method for recycling electric arc furnace slag
JPH038727A (en) Recovering of iron oxide from petroleum sludge
RU2175991C1 (en) Manganese ore processing method
JPH02107528A (en) Treatment of petroleum sludge
CN108745332A (en) A kind of method of ardealite and high-sulfur bauxite dechlorination catalyst
JP2006169071A (en) Resources recovery method
CN108706616A (en) A kind of technique of integrated treatment ardealite, iron red mud and flyash
CN114381270B (en) Preparation method of soil remediation agent prepared based on industrial solid waste, soil remediation agent and application of soil remediation agent
CN108658109A (en) A kind of technique recycling aluminium using ardealite and coal ash for manufacturing for pulverized fuel ash cement
KR102331845B1 (en) recycling method of bottom ash
JPS60246215A (en) Recovery of graphite from desulfurization sludge in ironworks

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees