JP2669622B2 - Manufacturing method of conductive organic polymer - Google Patents

Manufacturing method of conductive organic polymer

Info

Publication number
JP2669622B2
JP2669622B2 JP28239587A JP28239587A JP2669622B2 JP 2669622 B2 JP2669622 B2 JP 2669622B2 JP 28239587 A JP28239587 A JP 28239587A JP 28239587 A JP28239587 A JP 28239587A JP 2669622 B2 JP2669622 B2 JP 2669622B2
Authority
JP
Japan
Prior art keywords
potential
film
polymerization
electrolytic
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28239587A
Other languages
Japanese (ja)
Other versions
JPH01123826A (en
Inventor
昇 小山
智 國村
克彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP28239587A priority Critical patent/JP2669622B2/en
Publication of JPH01123826A publication Critical patent/JPH01123826A/en
Application granted granted Critical
Publication of JP2669622B2 publication Critical patent/JP2669622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、O−アミノベンゾチオール類を電解重合し
て導電性有機重合体を得る方法に関する。 「従来技術とその問題点」 従来より、導電性有機重合体としては、例えばポリピ
ロール、ポリアニリンなどが知られている。このような
導電性有機重合体は、モノマーを電解重合して得られる
薄膜状あるいはフィルム状のもので、いずれも良好な導
電性を示すことから、有望な電子材料などとして期待さ
れている。 しかしながら、このような導電性有機重合体からなる
フィルムにあっては、ピンホールが多く発生したものと
なり易く、このピンホールにより導電性が不均一となる
など均質性に欠ける問題があった。 「問題点を解決するための手段」 そこで、本発明は、次式(I)で表わされるo−アミ
ノベンゾチオール類を電位走査法または定電位法によっ
て電界重合する際、電解浴のサイクリックボルタモグラ
ムの低電位側の酸化ピークの立上がり電位よりも高い電
位を電解設定電位として電解重合してフィルム状の重合
体を得たのち、この重合体をo−アミノベンゾチオール
類を含まない溶液中で電位掃引して活性化処理すること
により、電子材料として十分な導電性や可撓性を有し、
かつピンホールフリーで均質な薄膜状あるいはフィルム
状のポリマーが得られるようにした。 〔式中、R1およびR2はいずれもCnH2n+(但し、nは
1、2、3のいずれかである。)で表される有機基であ
る。〕 この電解重合によって得られた本発明のポリ(O−ア
ミノベンゾチオール類)はピンホールフリーで可撓性に
富むフィルム状または薄膜状として作用電極上に析出
し、適宜の剥離手段によってポリマーフィルム単体とす
ることができ、また析出状態のままで十分に使用に供す
ることができる。また、得られるポリマーは重合後の活
性化処理の度合により10-5〜10-8S/cmの電導度を有して
いる。 次に、本発明における電解重合について説明する。 電解重合は、作用電極と対極とを用いる二電極式また
は作用電極、対極および参照電極を用いる三電極式で行
われるが、後述するサイクリックボルタモグラムの最大
酸化ピークの立上り電位を基準として電解設定電位を決
定することから、参照電極を有する三電極式が好ましい
が、これに限られることはない。作用電極には、金、白
金、ステンレス鋼などの金属、グラファイト、In2O3、S
nO2などの導電性金属酸化物、Si、GaAsなどの半導体等
が用いられる。対極には不用性の白金、グラファイト等
が用いられ、参照電極には、塩化ナトリウム飽和カロメ
ル電極(SSCE)、飽和カロメル電極(SCE)等が使用さ
れる。電解浴には、O−アミノベンゾチオール類とこれ
を溶解するとともに支持電解質と反応しない水、アセト
ニトリル、プロピレンカーボネート、メタノール、エタ
ノール等の溶媒およびLiCl、NaCl等の塩化物、LiClO4
(C4H94NClO4等の過塩素酸塩、(C4H94NBF4等のテ
トラフルオロホウ酸塩、Na2SO4等の硫酸塩、CF3COONa等
のテトラフルオロ酢酸塩、H2SO4、HCl、HClO4等の酸物
質、NaOH、KOH等のアルカリ物質などの支持電解質から
なるものが使用される。また、支持電解質濃度は0.1〜
1モル/程度とされ、O−アミノベンゾチオール類単
量体の濃度は0.01〜0.5モル/程度が望ましい。 O−アミノベンゾチオール類単量体を重合させるため
の電解モードとしては、電位走査法または定電位法が好
ましい。電位走査法は、電位E1とこれよりも高電位E2
の間で交互に順方向および逆方向の三角液状の電位を加
えるものである。また、定電位法は、一定の電位E3を加
えるものである。 本発明では、これらの電解重合法においてその電解設
定電圧を適切に決定することが重要となる。 まず、電解重合を実施しようとする電解浴系について
サイクリックボルタンメトリーによってサイクリックボ
ルタモグラムを測定する。サイクリックボルタンメトリ
ーは、ファラデー電流が流れない初期電圧E0から時間に
比例した電位の掃引を行い反転電位Eλにおいて電位掃
引方向を反転し、同じ電位掃引速度(通常は10-3〜1V/
秒)で掃引して初期電位E0に戻すもので、この三角波状
の電位掃引によって得られる電流−電位曲線をサイクリ
ックボルタモグラムと言う。なお、本発明におけるサイ
クリックボルタモグラムを、1回の電位掃引を行なう単
掃引法によるものを言う。 第1図のサイクリックボルタモグラムの一例を示す。
このサイクリックボルタモグラムは、2−アミノ−6−
メチルベンゾチオールを50ミリモル/とし、Na2SO4
H2SO4でSO4 2-イオンが0.5モル/かつpH=1.0とした電
解浴について、初期電位E0−0.4V(対SCE)、反転電位
λ+1.0V(対SCE)、電位掃引速度50mV/秒で得られた
ものである。 このようなサイクリックボルタモグラムは、電解時の
作用極上での単量対(O−アミノベンゾチオール類)の
重合の状況を示すもので、第1図のグラフでは横軸より
上側において酸化反応が生じていることがわかり、モノ
マーの酸化により2つ以上の酸化ピークが表われてい
る。 そして、このサイクリックボルタモグラムにおける低
電位側の酸化ピーク(第1図中Aで示す。)の立上り電
位(第1図中Bで示す。)をグラフから求める。 本発明では、この立上り電位よりも高い電位を電解設
定電位とする。そして、電解モードが定電位法であれ
ば、上記電解設定電圧を一定に保って電解すればよい。
また、電解モードが電位走査法であれば、高電位E2をこ
の電解設定電位とし、低電位E1を例えば−0.4V以下に設
定して行なうことが望ましい。また、電位走査法と定電
位法との組合せでは、上記条件が満されていればよく、
組合せのパターンや組合せの回数は自由である。 また、サイクリックボルタモグラムにおける低電位側
の酸化ピークの立上り電位は、電解浴の単量体、溶媒、
支持電解質の種類、濃度等によって変動するので、電解
浴の組成が変れば、その都度その系でのサイクリックボ
ルタモグラムを測定し、上記立上り電位を求める必要が
ある。また、電位走査法の場合、電位掃引速度は任意で
あるが、通常10mV/秒〜1000mV/秒程度が好ましく、走査
回数も任意であるが、重合体の膜厚は走査回数に依存す
るので、通常は膜厚によって決められることが多い。 このような条件によって電解重合を行なうことによ
り、作用電極表面にO−アミノベンゾチオール類を重合
した薄膜状あるいはフィルム状の重合体が析出する。 さらに、このようにして得られた重合体に対して、電
導度を向上させるための活性化処理を施す。この活性化
処理は、モノマーを含まない溶液中に浸漬させた上記重
合体に対し、前述のサイクリックボルタモグラムの測定
と同様の条件で電位掃引を行なうもので、この処理によ
り重合体の電導度を著しく向上させることが可能とな
る。そして、このような活性化処理に用いられる溶液と
しては、例えばLiCl、NaCl等の塩化物、LiClO4、(C
4H94NClO4等の過塩素酸塩、(C4H94NBF4等のテトラ
フルオロホウ酸塩、Na2SO4等の硫酸塩、CF3COONa等のテ
トラフルオロ酢酸塩、H2SO4、HCl、HClO4等の酸物質、N
aOH、KOH等のアルカリ物質などの支持電解質を0.1〜1.0
モル/程度の濃度で含む酸性水溶液もしくは上記の支
持電解質を含むメタノール、プロピレンカーボネート、
ベンゾニトリルなどの酸性非水溶液などが好適に用いら
れる。活性化処理における掃引電位は、少なくとも高電
位側は重合時の設定電位より高くなっていればよい。ま
た、掃引回数は任意であるが、サイクリックボルタモグ
ラムのピーク電流値が安定化するまで行なうのがよく、
通常100回程度とされる。さらに、掃引速度も任意であ
るが、通常50mV/秒〜1000mV/秒の範囲で定められる。こ
のような活性化処理により、重合体の活性度を向上させ
ることができ、電導度も10-5〜10-8S/cmの範囲で自由に
調整できる。 「実施例」 以下、実施例を示して具体的に説明する。 (実施例1) 0.5MNa2SO4−H2SO4(pH=1.0)の水溶液中に50mMの2
−アミノ−6−メチルベンゾチオールを溶解し、溶液中
のO2をN2で排除した後、白金線を対極、飽和カロメル電
極(SCE)を参照電極、ITOフィルム(30Ω/□)を作用
極として走査電解した。この溶液系で、重合時のサイク
リックボルタモグラムに観察される低電位側の酸化ピー
クの立上り電位は250mV(対SCE)であった。走査速度
は、50mV/秒、電位は−400mVから+400mVまで走査し
た。重合時の通電電荷量はクーロンメータで測定し、伝
導度測定は二端子法、膜厚測定は表面粗さ計で行なっ
た。 上記重合条件で重合したところ、走査回数100回で膜
厚が0.2μmに達した。その後、モノマーを含まない0.2
M NaClO4(pH1.0)水溶液中で−400mV←→+800mVの間
を200mV/秒の掃引速度で100回走査する活性化処理を行
なった。その結果得られたフィルムの電導度は5×10-7
S/cmであり、ピンホールフリーであり、フィルムの外観
は平滑でフレキシブルであった。 (実施例2) 走査電位の範囲を−400mVから+1000mV(対SCE)でそ
の他の条件は実施例1と同一にして重合した。この場合
は走査回数100回で膜圧が0.5μmに達した。その後、実
施例1と同様の活性化処理を施したところ、得られたフ
ィルムの電導度は10-6S/cmとなり、ピンホールフリーで
あり、その外観は平滑かつフレキシブルであった。 (実施例3) 実施例1と同一の溶液系で100mV(対SCE)で定電位電
解を行なった。ITOフィルム表面にはフィルムの生成が
認められ、重合時間3時間で膜厚が0.2μmとなり、前
述の活性化処理後、その電導度は8×10-6S/cmであっ
た。 (実施例4) 重合電位を500mV(対SCE)に設定し、実施例3と同様
に重合を行なった。重合時間4時間で膜厚0.1μmとな
り、前述の活性化処理後、その電導度は9×10-6S/cmで
あった。 (実施例5) 実施例1と同じ溶液系で、電位走査を−400から+500
mV(対SCE)で50回行ない、その後+500mVに電位を保っ
て定電位電解を行なった。この条件下では、通電量0.03
C/cm2で膜厚0.1μm、前述の処理後の電導度は8.5×10
-6S/cmであった。 (実施例6) 実施例1と同じ溶液系で+500mVに300秒保った後、−
400mVから+500mV(対SCE)まで100回走査電解した。こ
のときの膜厚は0.4μmで前述の活性化処理後、その電
導度は2×10-6S/cmであった。 (実施例7) 0.5M NaClO4−HClO4(pH=3)の水溶液中に50mMの
2−アミノ−6−エチルベンゾチオールを溶解し、溶液
中のO2をN2で充分置換した後、白金線を対極、飽和カロ
メル電極(SCE)を参照電極、ITOフィルム(30Ω/□)
作用極として走査電解した。この溶液系では重合時のサ
イクリックボルタモグラムに観察される低電位側の酸化
ピークの立上がり電位は200mV(対SCE)であった。走査
速度を50mV/秒とし、電位は−400mVから+600mV(対SC
E)まで走査した。この重合条件で重合すると、走査回
数100回で膜厚が0.1μm、電導度は前述の処理後5×10
-6S/cmであった。得られたフィルムはピンホールフリー
であり、平滑でフレキシブルであった。 (実施例8) 実施例7と同一の溶液系で電位を+600mV(対SCE)に
保って定電位電解した。重合通電量0.05C/cm2で膜厚が
0.1μm、電導度は処理後9×10-6S/cmであり、ピンホ
ールフリーであり、フィルムの外観は平滑かつフレキシ
ブルであった。 (実施例9) 2−アミノ−3−メチルベンゾチオールを単量体とし
て実施例1と同様の条件の水溶液を作製した。この溶液
系で重合時のサイクリックボルタモグラムに観察される
低電位側の酸化ピークの立上り電位は250mV(対SCE)で
あった。走査速度を50mV/秒とし、電位を−600mVから+
650mVまで走査したところ走査回数100回で膜厚が0.1μ
mのフィルムが得られた。電導度は前述の処理後5×10
-7S/cmで、ピンホールフリーであり、平滑でフレキシブ
ルなフィルムであった。 (実施例10) 2−アミノ−6−メチルベンゾチオールを単量体とし
て実施例1と同様の条件の水溶液を作製した。この溶液
系でのサイクリックボルタモグラムの低電位側の酸化ピ
ークの立上り電位は300mV(対SCE)であった。走査速度
を50mV/秒とし、電位を−400mVから+600mVまで走査し
たところ走査回数100回で膜厚が0.1μmのフィルムが得
られた。電導度は処理後5×10-7S/cmであり、ピンホー
ルフリーであり、平滑でフレキシブルなフィルムであっ
た。 (比較例1) 実施例1と同一条件の溶液系で走査範囲を−400mVか
ら+200mV(対SCE)として電位走査した。その他の条件
は同じである。電位走査に伴って電流が流れるのが観察
されたが走査回数が増加してもピーク電流の増加は認め
られずフィルムの生成も認められなかった。 (比較例2) 実施例1と同一溶液系で電位を+200mV(対SCE)に6
時間保った。6時間後溶液からITOフィルムを取り出し
て調べたところ、フィルムの生成は認められなかった。 (比較例3) 実施例1と同一溶液系で、電位走査を−200mVから+2
00mV(対SCE)として10回行ない、その後、+200mVに電
位を6時間保った。6時間後ITOフィルムを取り出して
調べたところ、フィルムの生成は認められなかった。 (比較例4) 実施例7と同一溶液系で−400mVから+150mV(対SC
E)の範囲で電位走査を100回行なった。その後ITOフィ
ルムを溶液から取り出して調べたところ、フィルムの生
成は認められなかった。 「発明の効果」 以上説明したように、本発明によれば良好な導電性や
可撓性を有し、かつピンホールフリーで均質な薄膜状あ
るいはフィルム状のo−アミノベンゾチオール類の重合
体が得られ、そのままの状態でその良好な導電性を生か
した電子材料として使用可能となる。特に、本発明で
は、電解重合で得られた重合体に活性化処理を施してい
るため、重合体はその導電性がさらに向上したものとな
る。 また、重合体の電導度の値を活性化処理の度合によっ
て制御することもできるなどの効果が得られる。
TECHNICAL FIELD The present invention relates to a method for electrolytically polymerizing O-aminobenzothiols to obtain a conductive organic polymer. "Prior art and its problems" Conventionally, as a conductive organic polymer, for example, polypyrrole, polyaniline, and the like are known. Such a conductive organic polymer is in the form of a thin film or a film obtained by electrolytic polymerization of a monomer, and exhibits good conductivity, so that it is expected as a promising electronic material. However, such a film made of a conductive organic polymer tends to have many pinholes, and has a problem of lack of homogeneity such as nonuniform conductivity due to the pinholes. "Means for Solving the Problems" Accordingly, the present invention provides a cyclic voltammogram of an electrolytic bath when an o-aminobenzothiol represented by the following formula (I) is subjected to electric field polymerization by a potential scanning method or a constant potential method. A film-shaped polymer was obtained by electrolytic polymerization using a potential higher than the rising potential of the oxidation peak on the low potential side as an electrolytic set potential, and this polymer was placed in a solution containing no o-aminobenzothiols. By sweeping and activating, it has sufficient conductivity and flexibility as an electronic material,
Moreover, a pinhole-free and homogeneous thin film or film polymer was obtained. [In the formula, both R 1 and R 2 are organic groups represented by CnH 2 n + 1 (where n is 1, 2, or 3)]. The poly (O-aminobenzothiols) of the present invention obtained by this electrolytic polymerization are deposited on the working electrode as a pinhole-free and highly flexible film or thin film, and the polymer film is removed by an appropriate peeling means. It can be used as a simple substance, and can be sufficiently used in the deposited state. The obtained polymer has an electric conductivity of 10 -5 to 10 -8 S / cm depending on the degree of the activation treatment after the polymerization. Next, the electrolytic polymerization in the present invention will be described. Electropolymerization is performed in a two-electrode system using a working electrode and a counter electrode or in a three-electrode system using a working electrode, a counter electrode and a reference electrode, and an electrolysis set potential based on a rising potential of a maximum oxidation peak of a cyclic voltammogram described later. Is determined, a three-electrode type having a reference electrode is preferable, but the present invention is not limited to this. Working electrodes include metals such as gold, platinum, and stainless steel, graphite, In 2 O 3 , S
A conductive metal oxide such as nO 2 or a semiconductor such as Si or GaAs is used. Unused platinum, graphite or the like is used for the counter electrode, and a sodium chloride saturated calomel electrode (SSCE), a saturated calomel electrode (SCE) or the like is used for the reference electrode. In the electrolytic bath, O-aminobenzothiols and water that dissolves them and does not react with the supporting electrolyte, acetonitrile, propylene carbonate, methanol, ethanol, and other solvents and LiCl, chlorides such as NaCl, LiClO 4 ,
(C 4 H 9) 4 perchlorate NClO 4 such as (C 4 H 9) 4 tetrafluoroborate of NBF 4, etc., sulfates such as Na 2 SO 4, CF 3 COONa, etc. tetrafluoro acid A material composed of a supporting electrolyte such as a salt, an acid substance such as H 2 SO 4 , HCl and HClO 4 and an alkaline substance such as NaOH and KOH is used. The supporting electrolyte concentration is 0.1 to
The concentration of the O-aminobenzothiols monomer is preferably 0.01 to 0.5 mol / degree. As the electrolysis mode for polymerizing the O-aminobenzothiol monomer, a potential scanning method or a constant potential method is preferable. In the potential scanning method, a forward and backward triangular liquid potential is alternately applied between a potential E 1 and a potential E 2 higher than the potential E 1 . The constant potential method is to apply a constant potential E 3. In the present invention, in these electrolytic polymerization methods, it is important to appropriately determine the electrolytic set voltage. First, a cyclic voltammogram of an electrolytic bath system to be subjected to electrolytic polymerization is measured by cyclic voltammetry. Cyclic voltammetry sweeps the potential proportional to time from the initial voltage E 0 at which no Faraday current flows, reverses the potential sweep direction at the reversal potential E λ , and the same potential sweep speed (usually 10 −3 to 1 V /
Sweeping seconds) intended to return to the initial potential E 0, the current obtained by the triangular potential sweep - referred to as a cyclic voltammogram potential curve. In addition, the cyclic voltammogram in the present invention refers to one obtained by a single sweep method in which one potential sweep is performed. Fig. 2 shows an example of a cyclic voltammogram of Fig. 1.
This cyclic voltammogram shows 2-amino-6-
Methyl benzothiol is 50 mmol /, Na 2 SO 4 and
For an electrolytic bath in which the concentration of SO 4 2- ion was 0.5 mol / H 2 SO 4 and the pH was 1.0, initial potential E 0 −0.4 V (vs. SCE), reversal potential E λ +1.0 V (vs. SCE), potential sweep It was obtained at a speed of 50 mV / sec. Such a cyclic voltammogram shows the state of polymerization of a monomer versus (O-aminobenzothiols) on the working electrode during electrolysis. In the graph of FIG. 1, an oxidation reaction occurs above the horizontal axis. It can be seen that two or more oxidation peaks appear due to the oxidation of the monomer. Then, the rising potential (indicated by B in FIG. 1) of the oxidation peak on the low potential side (indicated by A in FIG. 1) in this cyclic voltammogram is determined from the graph. In the present invention, a potential higher than the rising potential is set as the electrolytic set potential. If the electrolysis mode is the constant potential method, the electrolysis may be performed while the above-mentioned electrolysis set voltage is kept constant.
Further, if the electrolysis mode potential scanning method, a high potential E 2 and the electrolytic set potential, it is desirable to perform to set the low potential E 1 for example, -0.4V or less. In addition, in the combination of the potential scanning method and the constant potential method, it is sufficient that the above condition is satisfied.
The combination pattern and the number of combinations are free. Further, the rising potential of the oxidation peak on the low potential side in the cyclic voltammogram is determined by the monomer of the electrolytic bath, the solvent,
Since it varies depending on the type and concentration of the supporting electrolyte, it is necessary to measure the cyclic voltammogram of the electrolytic bath every time the composition of the electrolytic bath changes, and to find the rising potential. In the case of the potential scanning method, the potential sweeping speed is arbitrary, but is preferably about 10 mV / sec to about 1000 mV / sec, and the number of scans is also arbitrary.However, since the thickness of the polymer depends on the number of scans, Usually, it is often determined by the film thickness. By carrying out electrolytic polymerization under such conditions, a thin film or film polymer obtained by polymerizing O-aminobenzothiols is deposited on the surface of the working electrode. Further, the polymer thus obtained is subjected to an activation treatment for improving electric conductivity. In this activation treatment, a potential sweep is performed on the polymer immersed in a solution containing no monomer under the same conditions as in the measurement of the cyclic voltammogram described above. It is possible to significantly improve. Examples of the solution used for such an activation treatment include chlorides such as LiCl and NaCl, LiClO 4 , (C
4 H 9) 4 perchlorate NClO 4 such, (C 4 H 9) tetrafluoroborate of 4 NBF 4, etc., sulfates such as Na 2 SO 4, tetrafluoro acid salt such as CF 3 COONa, H 2 SO 4, HCl, acid substances such as HClO 4, N
aOH, supporting electrolyte such as alkaline substances such as KOH 0.1 to 1.0
An aqueous acidic solution containing at a concentration of about mol / about or methanol or propylene carbonate containing the above supporting electrolyte;
An acidic non-aqueous solution such as benzonitrile is preferably used. The sweep potential in the activation treatment may be higher than the set potential at the time of polymerization at least on the high potential side. Although the number of sweeps is arbitrary, it is preferable to perform the cycle until the peak current value of the cyclic voltammogram is stabilized.
Usually it is about 100 times. Further, the sweep speed is also arbitrary, but is usually set in the range of 50 mV / sec to 1000 mV / sec. By such an activation treatment, the activity of the polymer can be improved, and the conductivity can be freely adjusted in the range of 10 -5 to 10 -8 S / cm. “Example” Hereinafter, an example will be described specifically. (Example 1) 50 mM 2 in an aqueous solution of 0.5 M Na 2 SO 4 —H 2 SO 4 (pH = 1.0)
- dissolving the amino-6-methylbenzoyl thiol, after the O 2 in the solution was eliminated by N 2, a counter electrode platinum wire reference electrode saturated calomel electrode (SCE), act ITO film (30Ω / □) electrode As a result of scanning electrolysis. In this solution system, the rising potential of the oxidation peak on the low potential side observed in the cyclic voltammogram during polymerization was 250 mV (vs. SCE). The scanning speed was 50 mV / sec, and the potential was scanned from -400 mV to +400 mV. The amount of electric charge during polymerization was measured with a coulomb meter, the conductivity was measured with a two-terminal method, and the film thickness was measured with a surface roughness meter. As a result of polymerization under the above polymerization conditions, the film thickness reached 0.2 μm after 100 scans. Then 0.2 without monomer
An activation treatment was performed in a M NaClO 4 (pH 1.0) aqueous solution by scanning 100 times between −400 mV ← → + 800 mV at a sweep speed of 200 mV / sec. The conductivity of the resulting film is 5 × 10 -7
S / cm, pinhole-free, and the film had a smooth and flexible appearance. (Example 2) The polymerization was conducted under the same conditions as in Example 1 except that the scanning potential range was from -400 mV to +1000 mV (vs. SCE). In this case, the film pressure reached 0.5 μm with 100 scans. Thereafter, when the same activation treatment as in Example 1 was performed, the obtained film had an electric conductivity of 10 −6 S / cm, was free from pinholes, and had a smooth and flexible appearance. (Example 3) In the same solution system as in Example 1, constant potential electrolysis was performed at 100 mV (vs. SCE). Formation of a film was observed on the surface of the ITO film, and the film thickness was 0.2 μm after a polymerization time of 3 hours, and the conductivity thereof was 8 × 10 −6 S / cm after the activation treatment. (Example 4) The polymerization potential was set to 500 mV (vs. SCE), and polymerization was carried out in the same manner as in Example 3. After a polymerization time of 4 hours, the film thickness was 0.1 μm, and after the activation treatment described above, the electric conductivity was 9 × 10 −6 S / cm. (Example 5) In the same solution system as in Example 1, the potential scanning was performed from -400 to +500.
It was performed 50 times with mV (vs. SCE), and then the potential was kept at +500 mV to carry out potentiostatic electrolysis. Under this condition, the energization amount is 0.03
0.1 μm thickness at C / cm 2 , conductivity after the above treatment is 8.5 × 10
It was -6 S / cm. (Example 6) After keeping the same solution system as in Example 1 at +500 mV for 300 seconds,-
Scanning electrolysis was performed 100 times from 400 mV to +500 mV (vs. SCE). At this time, the film thickness was 0.4 μm, and the conductivity was 2 × 10 −6 S / cm after the activation treatment described above. Example 7 50 mM 2-amino-6-ethylbenzothiol was dissolved in an aqueous solution of 0.5 M NaClO 4 —HClO 4 (pH = 3), and O 2 in the solution was sufficiently replaced with N 2 . Platinum wire as counter electrode, saturated calomel electrode (SCE) as reference electrode, ITO film (30Ω / □)
Scanning electrolysis was performed as a working electrode. In this solution system, the rising potential of the oxidation peak on the low potential side observed in the cyclic voltammogram during polymerization was 200 mV (vs. SCE). The scanning speed is 50 mV / sec, and the potential is from -400 mV to +600 mV (vs. SC
Scanned to E). When polymerized under these polymerization conditions, the film thickness is 0.1 μm after 100 scans, and the conductivity is 5 × 10 5 after the above treatment.
It was -6 S / cm. The resulting film was pinhole free, smooth and flexible. (Example 8) In the same solution system as in Example 7, constant potential electrolysis was performed while maintaining the potential at +600 mV (vs. SCE). When the polymerization current is 0.05 C / cm 2 , the film thickness is
The film had a thickness of 0.1 μm, an electric conductivity of 9 × 10 −6 S / cm after the treatment, was pinhole-free, and had a smooth and flexible appearance. (Example 9) An aqueous solution was prepared under the same conditions as in Example 1 using 2-amino-3-methylbenzothiol as a monomer. The rising potential of the oxidation peak on the low potential side observed in the cyclic voltammogram during polymerization in this solution system was 250 mV (vs. SCE). The scanning speed is 50mV / sec, and the potential is + 600mV to +
When scanning up to 650mV, the film thickness is 0.1μ with 100 scans
m was obtained. Conductivity is 5 × 10 after the above treatment
At -7 S / cm, it was a pinhole-free, smooth and flexible film. (Example 10) Using 2-amino-6-methylbenzothiol as a monomer, an aqueous solution was prepared under the same conditions as in Example 1. The rising potential of the oxidation peak on the low potential side of the cyclic voltammogram in this solution system was 300 mV (vs. SCE). When the scanning speed was 50 mV / sec and the potential was scanned from -400 mV to +600 mV, a film having a thickness of 0.1 μm was obtained after 100 scans. The conductivity was 5 × 10 -7 S / cm after the treatment, and it was a pinhole-free, smooth and flexible film. (Comparative Example 1) Potential scanning was performed using a solution system under the same conditions as in Example 1 with the scanning range being from -400 mV to +200 mV (vs SCE). Other conditions are the same. It was observed that current flowed with potential scanning, but no increase in peak current was observed and film formation was not observed even when the number of scans was increased. (Comparative Example 2) The potential was set to +200 mV (vs. SCE) in the same solution system as in Example 1.
Time kept. Six hours later, when the ITO film was taken out of the solution and examined, no film formation was observed. (Comparative Example 3) In the same solution system as in Example 1, the potential scan was performed from -200 mV to +2.
The test was performed 10 times at 00 mV (vs. SCE), and then the potential was kept at +200 mV for 6 hours. After 6 hours, when the ITO film was taken out and examined, no film formation was observed. Comparative Example 4 In the same solution system as in Example 7, −400 mV to +150 mV (vs. SC)
Potential scanning was performed 100 times in the range of E). Thereafter, when the ITO film was taken out of the solution and examined, no film formation was observed. [Effects of the Invention] As described above, according to the present invention, a polymer of o-aminobenzothiols having good conductivity and flexibility, and being pinhole-free and homogeneous in a thin film or film is provided. Is obtained, and it can be used as it is as an electronic material utilizing its good conductivity. In particular, in the present invention, the polymer obtained by electrolytic polymerization is subjected to activation treatment, so that the conductivity of the polymer is further improved. In addition, the effect that the value of the electric conductivity of the polymer can be controlled by the degree of the activation treatment can be obtained.

【図面の簡単な説明】 第1図は、本発明における電解設定電圧を設定するため
のサイクリックボルタモグラムの一例を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an example of a cyclic voltammogram for setting an electrolytic set voltage in the present invention.

Claims (1)

(57)【特許請求の範囲】 1.一般式 〔式中、R1およびR2は、いずれもCnH2+1(但し、n=
1、2、3である。)で示される有機基である。〕 で表されるo−アミノベンゾチオール類を含む電解浴に
作用電極と対極を浸し、電位走査法または定電位法によ
って作用電極上にo−アミノベンゾチオール類のフィル
ム状の重合体を析出させる際に、 上記電解浴のサイクリックボルタモグラムの低電位側の
酸化ピークの立ち上がり電位よりも高い電位を電解設定
電位として電解重合し、 次いで、得られた重合体を上記o−アミノベンゾチオー
ル類を含まない溶液中で電位掃引して活性化処理するこ
とを特徴とする導電性有機重合体の製法。
(57) [Claims] General formula [Wherein, R 1 and R 2 are both CnH 2 + 1 (where n =
1, 2, and 3. ). The working electrode and the counter electrode are immersed in an electrolytic bath containing o-aminobenzothiols represented by the formula, and a film-like polymer of o-aminobenzothiols is deposited on the working electrode by a potential scanning method or a constant potential method. In this case, electrolytic polymerization is performed using a potential higher than the rising potential of the oxidation peak on the low potential side of the cyclic voltammogram of the electrolytic bath as an electrolytic set potential, and then the obtained polymer contains the o-aminobenzothiols. A method for producing a conductive organic polymer, wherein the activation treatment is performed by sweeping the potential in a solution that does not have a potential.
JP28239587A 1987-11-09 1987-11-09 Manufacturing method of conductive organic polymer Expired - Fee Related JP2669622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28239587A JP2669622B2 (en) 1987-11-09 1987-11-09 Manufacturing method of conductive organic polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28239587A JP2669622B2 (en) 1987-11-09 1987-11-09 Manufacturing method of conductive organic polymer

Publications (2)

Publication Number Publication Date
JPH01123826A JPH01123826A (en) 1989-05-16
JP2669622B2 true JP2669622B2 (en) 1997-10-29

Family

ID=17651848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28239587A Expired - Fee Related JP2669622B2 (en) 1987-11-09 1987-11-09 Manufacturing method of conductive organic polymer

Country Status (1)

Country Link
JP (1) JP2669622B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821575B1 (en) * 2001-03-02 2003-10-24 Commissariat Energie Atomique METHOD OF LOCALIZED ORGANIC GRAFTING WITHOUT MASK ON CONDUCTIVE OR SEMICONDUCTOR PROPERTIES OF COMPOSITE SURFACES
JP2006108486A (en) * 2004-10-07 2006-04-20 National Univ Corp Shizuoka Univ Molecule wire, manufacturing method thereof, molecule film, and electronic element

Also Published As

Publication number Publication date
JPH01123826A (en) 1989-05-16

Similar Documents

Publication Publication Date Title
Shimoda et al. The effect of pH on polymerization and volume change in PPy (DBS)
Asavapiriyanont et al. The electrodeposition of polypyrrole films from aqueous solutions
Du et al. Effects of polymerization potential on the properties of electrosynthesized PEDOT films
Downard et al. The influence of water on the electrodeposition of polypyrrole in acetonitrile
Zotti et al. Cyclic potential sweep electropolymerization of aniline: The role of anions in the polymerization mechanism
Inzelt Simultaneous chronoamperometric and quartz crystal microbalance studies of redox transformations of polyaniline films
Li et al. Effect of electrolyte concentration on the properties of the electropolymerized polypyrrole films
Bejan et al. Voltammetry of aniline with different electrodes and electrolytes
Refaey et al. Electrochemical impedance studies on oxidative degradation, overoxidative degradation, deactivation and reactivation of conducting polymers
Maeda et al. Surface characterization of glassy carbon electrodes anodized in 1-alkanols by their wettability and capacitance
Salamifar et al. Ion transport and degradation studies of a polyaniline-modified electrode using SECM
JP2669622B2 (en) Manufacturing method of conductive organic polymer
JP2583917B2 (en) Manufacturing method of conductive organic polymer
Jackowska et al. Electro-oxidation of 1, 5 and 1, 8 diaminonaphthalene: an RDE study
Sandi et al. Impedance and voltammetric studies of electrogenerated polyaniline conducting films
Łapkowski Electrochemical synthesis of polyaniline/poly (2-acryl-amido-2-methyl-1-propane-sulfonic acid) composite
Zhang et al. Effects of dopant and solvent on the properties of polypyrrole: investigations with cyclic voltammetry and electrochemically in situ conductivity
Gholamian et al. In situ resistance measurement of a conducting polymer electrode
Roković et al. Electrochemical synthesis of polyaniline from aniline/cyclodextrin solutions
Kaneto et al. Contribution of conformational change of polymer structure to electrochemomechanical deformation based on polyaniline
Li et al. Studies on the electrode kinetics of polypyrrole in aqueous solution by ac impedance measurement
Rubinson et al. Characterization and investigation of the electrocatalytic properties of poly-p-phenylene modified electrodes
Bott Characterization of films immobilized on an electrode surface using the electrochemical quartz crystal microbalance
Fall et al. Electrochemical properties and electrochemical impedance spectroscopy of polypyrrole-coated platinum electrodes
Vork et al. Degradation of polypyrrole‐modified electrodes in a chloride containing medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees