JP2668618B2 - Dimensional change tendency tracking type automatic measurement correction method - Google Patents

Dimensional change tendency tracking type automatic measurement correction method

Info

Publication number
JP2668618B2
JP2668618B2 JP28395992A JP28395992A JP2668618B2 JP 2668618 B2 JP2668618 B2 JP 2668618B2 JP 28395992 A JP28395992 A JP 28395992A JP 28395992 A JP28395992 A JP 28395992A JP 2668618 B2 JP2668618 B2 JP 2668618B2
Authority
JP
Japan
Prior art keywords
correction
dimensional
value
tendency
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28395992A
Other languages
Japanese (ja)
Other versions
JPH06106454A (en
Inventor
敏晴 林
和俊 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP28395992A priority Critical patent/JP2668618B2/en
Publication of JPH06106454A publication Critical patent/JPH06106454A/en
Application granted granted Critical
Publication of JP2668618B2 publication Critical patent/JP2668618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は旋盤又は研削盤等におい
て連続加工するワークの径を計って寸法誤差が常時寸法
公差内に入るように寸法補正する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the diameter of a work continuously machined in a lathe or a grinder so as to correct the size so that the size error is always within the size tolerance.

【0002】[0002]

【従来の技術】従来、例えば旋盤でワークを自動加工す
る場合の寸法管理の方法は、機上又は本機近くでワーク
Wを測定し、測定値が寸法公差の上・下限値近くになっ
た時点で寸法補正を行うようになっている。この補正方
法は図3,図4に示すように例えばφ50±0.01m
mの製品寸法の場合、寸法公差の中央値50.00mm
を挟んで補正の必要のない0.01mm幅のOK領域、
補正の対称となるそれぞれ0.005mm幅の±OK領
域、公差から外れた±NG領域の5段階の領域を設定
し、測定値が±OK領域に入ったとき図3の場合は、一
定値例えば0.005mm、図4の場合は測定値と寸法
公差の中央値との差をそれぞれ補正値としてX軸補正を
行っていた。
2. Description of the Related Art Conventionally, for example, in the dimension management method for automatically machining a work on a lathe, the work W is measured on or near the machine, and the measured value is close to the upper and lower limit values of the dimensional tolerance. At this point, dimension correction is performed. This correction method is, for example, as shown in FIGS.
In the case of product dimensions of m, the median dimensional tolerance is 50.00mm
OK area with a width of 0.01 mm that does not require correction across
A five-level region of ± OK region of 0.005 mm width and ± NG region deviating from the tolerance is set as a symmetrical region of the correction, and when the measured value enters the ± OK region, in the case of FIG. 0.005 mm, in the case of FIG. 4, the X-axis correction was performed using the difference between the measured value and the median dimensional tolerance as the correction value.

【0003】図5のブロック線図は図4の場合の制御シ
ステムを表すもので、計測センサ101により測定した
測定値aを設定データ記憶部102に記憶する公差の中
央値bと比較して寸法誤差算出部103で演算(a−
b)より誤差cを求め、この求めた誤差が±OK領域に
入ったとき補正判定部104より誤差cを補正値として
X軸サーボシステムに入力して補正を行っていた。
The block diagram of FIG. 5 shows the control system in the case of FIG. 4, in which the measurement value a measured by the measurement sensor 101 is compared with the median value b of the tolerances stored in the setting data storage section 102, and the dimensions are compared. The calculation (a−
b), an error c is obtained, and when the obtained error falls within the ± OK region, the correction determining unit 104 inputs the error c as a correction value to the X-axis servo system to perform the correction.

【0004】[0004]

【発明が解決しようとする課題】従来の技術で述べた寸
法管理方法は、工具摩耗,熱変化等による経時変化が原
因で、例えば寸法が次第に大きくなる傾向の寸法変化が
続いている場合にも常に公差の1/2の幅内で管理を行
うことになり、寸法公差の小さいワークの場合の寸法管
理が困難であるという問題点を有していた。本発明は従
来の技術の有するこのような問題点に鑑みなされたもの
であり、その目的とするところは、寸法変化の傾向が同
一方向の場合、従来の補正量に傾向補正量を加算して寸
法公差の幅を有効に利用し、精度の厳しいワークの製品
精度の安定値を実現することのできる自動計測補正方法
を提供しようとするものである。
The dimensional control method described in the prior art can be applied to a case where a dimensional change that tends to increase gradually, for example, due to a change over time due to tool wear, heat change, or the like. Since the control is always performed within the width of 1/2 of the tolerance, there is a problem that it is difficult to control the dimensions of a work having a small dimensional tolerance. The present invention has been made in view of such problems of the conventional technique, and an object of the present invention is to add a tendency correction amount to a conventional correction amount when the tendency of dimensional change is in the same direction. It is an object of the present invention to provide an automatic measurement correction method capable of effectively utilizing a width of a dimensional tolerance and realizing a stable value of product accuracy of a workpiece with strict accuracy.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、連続加工するワークの径を順次計測した測定値が予
め記憶する寸法公差の上・下限近くの補正対称領域内に
入ったとき補正値を出力してほぼ前記寸法公差の中央値
になるよう寸法補正を行う自動計測補正方法において、
前記測定値の新しい所定個数の測定データを記憶し、前
記測定値が前記補正対称領域内に入った時点において、
前記測定データの寸法変化の傾向が同一方向のときのみ
前記補正対称領域に入らない範囲で予め記憶する傾向補
正値を前記補正値に加算して寸法補正を行うものであ
る。
In order to achieve the above-mentioned object, the present invention corrects when a measured value of the diameter of a workpiece to be continuously machined enters a correction symmetric region near upper and lower limits of a dimensional tolerance stored in advance. In an automatic measurement correction method for outputting a value and performing a dimensional correction so as to be substantially the median of the dimensional tolerance,
Storing a new predetermined number of measurement data of the measurement value, at the time when the measurement value enters the correction symmetric region,
Only when the tendency of the dimensional change of the measurement data is in the same direction, a dimensional correction is performed by adding a previously stored tendency correction value to the correction value within a range that does not fall within the correction symmetric region.

【0006】[0006]

【作用】連続加工したワークの径を順次計測して、測定
値が補正対称領域に入ったとき、直前の所定個数の寸法
誤差が同一傾向であるかを確認し、同一傾向のときのみ
予め記憶する傾向補正値を、寸法誤差と公差の中央値と
の差の補正値に加算して寸法補正を行う。
Function: The diameters of continuously processed workpieces are sequentially measured, and when the measured values enter the correction symmetric region, it is checked whether a predetermined number of dimensional errors immediately before have the same tendency, and stored only when the same tendency is observed. The dimensional correction is performed by adding the tendency correction value to the correction value of the difference between the dimensional error and the median of the tolerances.

【0007】[0007]

【実施例】以下本実施例について図面を参照して説明す
る。図1のNC旋盤の構成図において、主軸台1に主軸
2が回転可能に軸承されており、主軸2の先端にチャッ
ク3が同心に嵌着されている。図示しないベッド上に設
けられた一方のZ軸案内上に心押台4が位置移動可能に
固着されており、心押台4の心押軸5の先端に回転セン
タ6が着脱可能に装着されている。更に図示しないベッ
ド1上の他方のZ軸案内上にサドル7が移動可能に載置
されており、サドル7はZ軸サーボモータ8によりボー
ルねじ9を介して移動位置決めされ、Z軸サーボモータ
8に位置検出器11が同心に取付けられている。サドル
7上にはX軸方向の案内が設けられており、このX軸案
内上に刃物台12が移動可能に載置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS This embodiment will be described below with reference to the drawings. In the configuration diagram of the NC lathe in FIG. 1, a spindle 2 is rotatably supported by a spindle headstock 1, and a chuck 3 is concentrically fitted to the tip of the spindle 2. A tailstock 4 is movably fixed on one Z-axis guide provided on a bed (not shown), and a rotation center 6 is detachably mounted on a tip of a tailstock shaft 5 of the tailstock 4. ing. Further, a saddle 7 is movably mounted on the other Z-axis guide on the bed 1 (not shown), and the saddle 7 is moved and positioned by a Z-axis servo motor 8 via a ball screw 9. , A position detector 11 is mounted concentrically. A guide in the X-axis direction is provided on the saddle 7, and a tool post 12 is movably mounted on the X-axis guide.

【0008】刃物台12はX軸サーボモータ13により
ボールねじ14を介して移動位置決めされ、X軸サーボ
モータ13に位置検出器16が同心に固着されている。
刃物台12にタレット15がZ軸方向の旋回中心軸のま
わりで旋回割出可能に設けられており、タレット15は
外周に複数の工具取付ステーションを有し、この工具取
付ステーションの一つに計測センサ17が着脱可能に取
付けられている。そして計測センサ17がワークWの外
周に当接したときの信号で、位置検出器16のX軸位置
信号を読み取って計測部18より測定値aを出力するよ
うになっている。
The tool rest 12 is moved and positioned by an X-axis servomotor 13 via a ball screw 14, and a position detector 16 is concentrically fixed to the X-axis servomotor 13.
A turret 15 is provided on the tool rest 12 so as to be able to rotate and index around a rotation center axis in the Z-axis direction. The turret 15 has a plurality of tool mounting stations on the outer periphery, and measurement is performed on one of the tool mounting stations. The sensor 17 is detachably mounted. The X-axis position signal of the position detector 16 is read by the signal when the measurement sensor 17 contacts the outer periphery of the work W, and the measurement unit 18 outputs the measurement value a.

【0009】図1のブロック線図部分は本実施例の制御
システムである。プログラム保存部21は、加工プログ
ラムを保存しておく部分。プログラム解釈部22は、読
み取ったプログラムを解釈して必要個所に仕分けする部
分である。制御位置算出部23は、プログラム座標値に
従って制御位置を算出する部分。制御軸演算部24は、
各制御軸に対する制御位置を求める部分である。Z軸サ
ーボ制御部25は、Z軸サーボモータ11の回転を制御
する部分。X軸サーボ制御部26は、X軸サーボモータ
13の回転を制御する部分である。そして以上21〜2
6は通常のNCサーボシステムと異なるところはない。
FIG. 1 is a block diagram showing the control system of this embodiment. The program storage unit 21 is a part for storing a machining program. The program interpreting unit 22 is a unit that interprets the read program and sorts the read programs into necessary places. The control position calculator 23 calculates the control position according to the program coordinate values. The control axis calculation unit 24
This is a part for obtaining a control position for each control axis. The Z-axis servo control unit 25 controls the rotation of the Z-axis servo motor 11. The X-axis servo controller 26 controls the rotation of the X-axis servo motor 13. And more than 21-2
6 is not different from a normal NC servo system.

【0010】設定データ記憶部27は、寸法公差を中央
値b,上・下限値,及び補正の対称とする上・下限値寄
りの±OK領域を記憶しておく部分。寸法誤差算出部2
8は、測定値aと公差の中央値bから寸法誤差cを求め
る部分。合格・不合格判定部29は、寸法誤差が公差の
上・下限値内のとき合格、また上・下限値を越えたとき
不合格と判定をする部分。CRT30は合格・不合格を
表示する部分である。補正判定部31は、寸法誤差が±
OK領域内にあるときこの寸法誤差の値を補正量Cとす
る補正指令を出力する部分。誤差データ記憶部32は、
新しい所定個数の寸法誤差のデータを記憶する部分で、
新しい寸法誤差が入力されて所定個数をオーバすると最
も古い寸法誤差を放出し、常時新しい所定個数の誤差デ
ータを記憶する。
The setting data storage unit 27 is a portion for storing a median value b, upper and lower limit values, and ± OK regions near the upper and lower limit values which are symmetrical to each other for correction. Dimension error calculator 2
Reference numeral 8 denotes a part for obtaining a dimensional error c from the measured value a and the median value b of the tolerance. The pass / fail determination unit 29 is a unit that determines pass when the dimensional error is within the upper and lower limit values of the tolerance and fails when the dimensional error exceeds the upper and lower limit values. The CRT 30 is a part for displaying the pass / fail. The correction judging unit 31 has a dimensional error of ±
A portion that outputs a correction command for setting the value of the dimensional error to the correction amount C when the correction value is within the OK area. The error data storage unit 32
The part that stores the data of the new predetermined number of dimensional errors,
When a new dimensional error is input and exceeds a predetermined number, the oldest dimensional error is released, and a new predetermined number of error data is always stored.

【0011】傾向解析・加算判定部33は、誤差データ
の変化の傾向を確認して加算するかどうかを判定する部
分で、所定個数の誤差の変化がすべて+又は−傾向のと
きのみ加算信号を出力する部分。傾向補正値記憶部35
は、予め入力された傾向補正値αを記憶する部分。総合
補正値算出部は、補正判定部31から補正値Cが出力さ
れると、傾向解析・加算判定部33から加算信号が出力
されているかを確認し、加算信号が出ているとき傾向補
正値記憶部35より傾向補正値αを呼び出し、補正値C
にこれを加算して総合補正値を求め、加算指令が出ない
ときは補正値Cをそのまま総合補正値として補正信号を
出力する部分である。
The tendency analysis / addition determination section 33 is a section for confirming the tendency of the change in the error data and determining whether or not to add the data. The part to output. Trend correction value storage unit 35
Is a part for storing the tendency correction value α input in advance. When the correction value C is output from the correction determination unit 31, the total correction value calculation unit confirms whether the addition signal is output from the tendency analysis / addition determination unit 33, and when the addition signal is output, the trend correction value is calculated. The tendency correction value α is called from the storage unit 35, and the correction value C
This is a part that outputs a correction signal as a total correction value without using the correction value C when an addition command is not issued.

【0012】続いて本実施例の作用について、例えば製
品寸法がφ50±0.01mmで、OK領域の幅を0.
01mm、±OK領域の幅をそれぞれ0.005mmと
し、傾向補正値αを0.003mmとし、所定個数を4
個とした場合の図2に示す寸法管理データのグラフを例
として説明する。連続加工が行われて4個目のワークの
寸法測定値aが50.007mmとなって、+OK領域
に入ると、補正判定部31から−0.007の補正値C
が総合補正値算出部36に出力される。そして総合補正
値算出部36では傾向解析・加算判定部33から加算指
令が出ているかを確認する。この場合すべて+側に寸法
変化しているため加算信号が出力されており、傾向補正
値記憶部より補正値αが読み込まれ、演算C+αにより
求めた−0.01mmの総合補正値によりX軸補正が行
われる。
Next, regarding the operation of this embodiment, for example, the product size is φ50 ± 0.01 mm, and the width of the OK region is 0.
The width of the 01 mm and ± OK areas is 0.005 mm, the tendency correction value α is 0.003 mm, and the predetermined number is 4
The graph of the dimension management data shown in FIG. When continuous processing is performed and the dimension measurement value a of the fourth work becomes 50.007 mm and enters the + OK region, the correction value C of −0.007 is obtained from the correction determination unit 31.
Is output to the total correction value calculation unit 36. Then, the total correction value calculation unit 36 confirms whether the trend analysis / addition determination unit 33 has issued an addition command. In this case, since the dimensions are all changed to the + side, an addition signal is output, the correction value α is read from the tendency correction value storage unit, and the X-axis correction is performed using the total correction value of −0.01 mm obtained by calculation C + α. Is performed.

【0013】次いで補正後6個目の測定値が50.00
7mmとなって+OK領域に入ると、この場合も誤差デ
ータは4個ともすべて+側に寸法変化しているため補正
値Cと傾向補正値αの和の−0.01mmX軸補正が行
われる。尚、図2には表れていないが、記憶する4個の
誤差データが1個でも−側(反対側)に寸法変化してい
る場合、又は補正後の所定個数4個に満たない場合には
傾向補正値αの加算は行われない。
Next, the sixth measured value after correction is 50.00.
In the + OK region at 7 mm, the X-axis correction of -0.01 mm of the sum of the correction value C and the tendency correction value α is performed in this case also because all four error data are dimensionally changed to the + side. Although not shown in FIG. 2, if even one of the four stored error data is dimensionally changed to the negative side (opposite side), or if it is less than the corrected predetermined number of four, No addition of the tendency correction value α is performed.

【0014】[0014]

【発明の効果】本発明は上述のとおり構成されているの
で次に記載する効果を奏する。連続加工の終わったワー
クを順次計測して、測定値が予め記憶する補正対称領域
に入ったとき、所定個数の測定データの寸法変化の傾向
が同一方向の場合のみ補正値に予め記憶する傾向補正値
を加算して寸法補正を行うようにし、従来寸法公差の1
/2の幅内で行っていた寸法管理の幅を広くしたので、
寸法公差の厳しいワークの製品寸法の安定化が可能とな
り寸法管理が容易となる。
Since the present invention is configured as described above, the following effects can be obtained. When the workpieces that have undergone continuous processing are sequentially measured and the measured values enter the correction symmetry area that is stored in advance, the tendency correction that is stored in the correction values only when the tendency of the dimensional change of a predetermined number of measurement data is in the same direction Dimension correction is performed by adding the
Since the width of dimensional control performed within the width of / 2 has been widened,
It is possible to stabilize the product dimensions of a workpiece having strict dimensional tolerances, thereby facilitating dimension management.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例のNC旋盤の構成図と制御システムの
ブロック線図である。
FIG. 1 is a configuration diagram of an NC lathe according to an embodiment and a block diagram of a control system.

【図2】傾向補正値を加算した寸法管理データのグラフ
図である。
FIG. 2 is a graph of dimension management data to which a trend correction value is added.

【図3】従来の技術の補正量を一定とした寸法管理デー
タのグラフ図である。
FIG. 3 is a graph of dimension management data with a constant correction amount according to a conventional technique.

【図4】従来の技術の補正量を測定値−寸法公差の中央
値とした寸法管理データのグラフ図である。
FIG. 4 is a graph diagram of dimension management data in which a correction amount according to a conventional technique is a measured value-a median of dimension tolerances.

【図5】従来の技術のNC旋盤の構成図と制御システム
のブロック線図である。
FIG. 5 is a configuration diagram of a conventional NC lathe and a block diagram of a control system.

【符号の説明】[Explanation of symbols]

1 主軸台 2 主軸 3 チャック 4 心押台 8 Z軸サーボモータ 11,16 位置
検出器 13 X軸サーボモータ 15 タレット 17 計測センサ 32 誤差データ
記憶部 33 傾向解析・加算判定部 35 傾向補正値
記憶部 36 総合補正値算出部 W ワーク
Reference Signs List 1 headstock 2 spindle 3 chuck 4 tailstock 8 Z-axis servomotor 11, 16 position detector 13 X-axis servomotor 15 turret 17 measurement sensor 32 error data storage unit 33 trend analysis / addition determination unit 35 trend correction value storage unit 36 Total correction value calculation unit W Work

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 連続加工するワークの径を順次計測した
測定値が予め記憶する寸法公差の上・下限近くの補正対
称領域内に入ったとき補正値を出力してほぼ前記寸法公
差の中央値になるよう寸法補正を行う自動計測補正方法
において、前記測定値の新しい所定個数の測定データを
記憶し、前記測定値が前記補正対称領域内に入った時点
において、前記測定データの寸法変化の傾向が同一方向
のときのみ前記補正対称領域に入らない範囲で予め記憶
する傾向補正値を前記補正値に加算して寸法補正を行う
ことを特徴とする寸法変化傾向追従式自動計測補正方
法。
1. When a measured value of the diameter of a workpiece to be continuously machined sequentially enters a correction symmetric region near upper and lower limits of a dimensional tolerance stored in advance, a correction value is output and a median value of the dimensional tolerance is substantially obtained. In the automatic measurement correction method for performing dimensional correction so that the measured data of a new predetermined number of the measured values is stored, and when the measured values fall within the correction symmetry region, the tendency of dimensional change of the measured data A dimensional change tendency tracking type automatic measurement and correction method characterized in that a dimensional correction is performed by adding a tendency correction value stored in advance to the correction value in a range that does not fall within the correction symmetry area only when the directions are the same.
JP28395992A 1992-09-28 1992-09-28 Dimensional change tendency tracking type automatic measurement correction method Expired - Fee Related JP2668618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28395992A JP2668618B2 (en) 1992-09-28 1992-09-28 Dimensional change tendency tracking type automatic measurement correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28395992A JP2668618B2 (en) 1992-09-28 1992-09-28 Dimensional change tendency tracking type automatic measurement correction method

Publications (2)

Publication Number Publication Date
JPH06106454A JPH06106454A (en) 1994-04-19
JP2668618B2 true JP2668618B2 (en) 1997-10-27

Family

ID=17672446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28395992A Expired - Fee Related JP2668618B2 (en) 1992-09-28 1992-09-28 Dimensional change tendency tracking type automatic measurement correction method

Country Status (1)

Country Link
JP (1) JP2668618B2 (en)

Also Published As

Publication number Publication date
JPH06106454A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
US4131837A (en) Machine tool monitoring system
EP1243992B1 (en) Tool presetter and tool offset amount calculation method
EP0524943A1 (en) Multi-functional measurement system.
US4584795A (en) Numerical control grinding machine for grinding a taper portion of a workpiece
JPS62228359A (en) Angular grinder
CN112828682B (en) Error measurement method for machine tool and machine tool
EP0453571A1 (en) Method of correcting positional fluctuations of machine
US6163735A (en) Numerically controlled machine tool
JP2919754B2 (en) Backlash measurement and correction device for spherical or circular surface machining
JP2668618B2 (en) Dimensional change tendency tracking type automatic measurement correction method
JP3162936B2 (en) Edge position correction device for rotary tools
JPH0464405B2 (en)
JPH0526628B2 (en)
JP2001269843A (en) Measuring method for center position of rotating tool
JP2980933B2 (en) Impact test piece automatic processing system and impact test piece automatic processing method
JP2574228Y2 (en) Lathe in-machine measuring device
JPH06246589A (en) Noncircular workpiece error correcting method by in-machine measurement
JPH0445292B2 (en)
JPH0569280A (en) Machining center measuring device and work accuracy measuring method of workpiece
JPS59142045A (en) Numerically controlled machine tool
JPH0569276A (en) Thermal displacement correcting method for lathe
JPH11123637A (en) Measuring method for tool size of nc system
JPH0691489A (en) Measuring method of noncircular work
JPS61230841A (en) Tool locus adjustment in numerically controlled machine tool
JP2926524B2 (en) Numerical controller with trial cutting function

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees