JP2668495B2 - Method for producing silicon-based powder material - Google Patents

Method for producing silicon-based powder material

Info

Publication number
JP2668495B2
JP2668495B2 JP5078863A JP7886393A JP2668495B2 JP 2668495 B2 JP2668495 B2 JP 2668495B2 JP 5078863 A JP5078863 A JP 5078863A JP 7886393 A JP7886393 A JP 7886393A JP 2668495 B2 JP2668495 B2 JP 2668495B2
Authority
JP
Japan
Prior art keywords
silicon
based powder
reaction
powder material
alkoxysilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5078863A
Other languages
Japanese (ja)
Other versions
JPH06263425A (en
Inventor
和之 松村
正明 山谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP5078863A priority Critical patent/JP2668495B2/en
Priority to US08/209,068 priority patent/US5478546A/en
Publication of JPH06263425A publication Critical patent/JPH06263425A/en
Application granted granted Critical
Publication of JP2668495B2 publication Critical patent/JP2668495B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はケイ素系粉末物質の新規
な製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing a silicon-based powder material.

【0002】[0002]

【従来の技術】金属アルコキシドは、一般に水と接触す
ると急速に加水分解−重縮合を起こして、ポリマーが生
成したり、粉末状物質になってしまうが、アルコキシシ
ランは例外的に加水分解が遅いため、いわゆる「ゾル−
ゲル法」によるセラミック・ガラスの低温合成プロセス
の材料として有用に用いられている〔作花済夫、「ゾル
−ゲル法の科学」、アクネ承風社(1988)〕。またその
アルコキシシランの加水分解性の遅さにより、得られる
縮合物にバルク、薄膜、繊維等の形態を与えて作製する
ことが可能である。
2. Description of the Prior Art Generally, metal alkoxides rapidly undergo hydrolysis-polycondensation upon contact with water to produce a polymer or a powdery substance, but alkoxysilanes are exceptionally slow in hydrolysis. Therefore, the so-called "sol-
It is usefully used as a material for the low temperature synthesis process of ceramics and glass by the "gel method" [Sakuka Sakuo, "Sol-gel method science", Acne Jofusha (1988)]. In addition, it is possible to give the condensate in the form of a bulk, a thin film, a fiber, or the like, due to the slow hydrolysis property of the alkoxysilane.

【0003】「ゾル−ゲル法」と呼ばれている方法にお
ける加水分解−重縮合方法は、アルコキシシランのアル
コール溶液に水を混合することによって行なわれ、触媒
としては酸性触媒(塩酸、硫酸等)が使用されている。
この方法はセラミック・ガラス等の作製には非常に有用
な方法であるが、超微細で多孔質なケイ素系粉末物質を
得ることができないという問題がある。即ち、アルコキ
シシランの加水分解速度が遅いため、反応生成物である
粒子が徐々に形成され、その結果、得られる粒子が大き
くなり、さらに該粒子は充填構造となるため嵩比重も大
きくなってしまうからである。
The hydrolysis-polycondensation method in the so-called "sol-gel method" is carried out by mixing water with an alcohol solution of alkoxysilane, and an acidic catalyst (hydrochloric acid, sulfuric acid, etc.) is used as a catalyst. Is used.
This method is very useful for producing ceramics, glass, etc., but has a problem that an ultrafine and porous silicon-based powder substance cannot be obtained. That is, since the hydrolysis rate of alkoxysilane is slow, particles which are reaction products are gradually formed, and as a result, the obtained particles become large, and the particles have a packed structure, so that the bulk specific gravity also becomes large. Because.

【0004】超微細で多孔質なケイ素系粉末物質を得る
ためには、アルコキシシランの加水分解速度を増大させ
ることが考えられる。即ち、短時間で加水分解−重縮合
を行わせることができれば、水やアルコールなどの溶媒
を含有したまま縮合が完結するので、超微細で多孔質な
ケイ素系粉末物質が得られることが予想される。本発明
等は、先に、フッ化水素酸を触媒として使用することに
より、非常に短時間でアルコキシシランの加水分解─重
縮合反応が起こり、好適なケイ素系粉末物質が得られる
ことを見出した(特開昭62−166887号公報)。
In order to obtain an ultrafine and porous silicon-based powder substance, it is considered to increase the hydrolysis rate of alkoxysilane. That is, if the hydrolysis-polycondensation can be performed in a short time, the condensation is completed while containing a solvent such as water or alcohol, so that it is expected that an ultrafine and porous silicon-based powder material can be obtained. It The present invention and the like have previously found that by using hydrofluoric acid as a catalyst, a hydrolysis-polycondensation reaction of an alkoxysilane occurs in a very short time, and a suitable silicon-based powder material can be obtained. (JP-A-62-166887).

【0005】[0005]

【発明が解決しようとする課題】然しながら、フッ化水
素酸は非常に有効な酸触媒ではあるが、工業化等により
量産することを考えた場合、その毒性、危険性のため、
操作性、安全性が大きな問題になるという欠点がある。
However, hydrofluoric acid is a very effective acid catalyst, but when considering mass production due to industrialization, etc., its toxicity and danger make it
There is a drawback that operability and safety are serious problems.

【0006】また他の酸触媒、例えば塩酸、硫酸及びト
リフルオロメタンスルホン酸等では、触媒量を増加させ
ることにより、ある程度加水分解−重縮合時間は短くは
なるが、その短縮は未だ不十分であり、超微細で多孔質
なケイ素系粉末物質を得ることはできない。しかも、反
応後に大量のこれら酸触媒を除去するのが非常に困難で
あるし、これらの触媒も操作性、安全性がそれほど優れ
ているとはいえない。
With other acid catalysts such as hydrochloric acid, sulfuric acid and trifluoromethanesulfonic acid, the hydrolysis-polycondensation time can be shortened to some extent by increasing the amount of the catalyst, but the reduction is still insufficient. However, an ultrafine and porous silicon-based powder material cannot be obtained. Moreover, it is very difficult to remove a large amount of these acid catalysts after the reaction, and these catalysts are not so excellent in operability and safety.

【0007】従って本発明の目的は、操作性、安全性に
優れ、かつ短時間で超微細で多孔質なケイ素系粉末物質
を製造する方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for producing an ultrafine and porous silicon-based powder substance which is excellent in operability and safety and can be produced in a short time.

【0008】[0008]

【課題を解決するための手段】本発明によれば、フッ化
塩化合物の存在下でアルコキシシランの加水分解−重縮
合を行うことにより、ケイ素系粉末物質を製造する方法
が提供される。
According to the present invention, there is provided a method for producing a silicon-based powder substance by carrying out hydrolysis-polycondensation of an alkoxysilane in the presence of a fluoride salt compound.

【0009】[0009]

【作用】即ち、本発明は、アルコキシシランの加水分解
−重縮合反応の触媒として、フッ化塩化合物を用いたこ
とが顕著な特徴である。このフッ化塩化合物は、前述し
たフッ化水素酸と同等の触媒作用を示し、アルコキシシ
ランの加水分解−重縮合反応を極めて迅速に完結せしめ
る。従って、超微細で多孔質なケイ素系粉末物質を得る
ことが可能となる。しかも、このフッ化塩化合物は、従
来のフッ化水素酸あるいは塩酸、硫酸等に比べて危険性
が少ないので、格段に操作性、安全性に優れている。
In other words, the present invention is distinguished by the use of a fluoride compound as a catalyst for the hydrolysis-polycondensation reaction of alkoxysilane. This fluorinated salt compound exhibits a catalytic action equivalent to that of the hydrofluoric acid described above, and completes the hydrolysis-polycondensation reaction of the alkoxysilane extremely quickly. Therefore, it becomes possible to obtain an ultrafine and porous silicon-based powder material. Moreover, since this fluoride salt compound is less dangerous than conventional hydrofluoric acid, hydrochloric acid, sulfuric acid, etc., it is remarkably excellent in operability and safety.

【0010】[0010]

【発明の好適態様】アルコキシシラン 本発明において、反応原料であるアルコキシシランは、
加水分解性基であるアルコキシ基を分子中に少なくとも
1個有するシラン化合物であり、例えば下記一般式
(1): (OR1 X Si(R2 4-X (1) 式中、Xは、1〜4の整数であり、R1 及びR2 は、一
価の炭化水素基である、で表される。該式中、一価の炭
化水素基R1 及びR2 としては、例えばメチル基、エチ
ル基、プロピル基、ブチル基、ペンチル基、ヘキシル
基、ヘプチル基、オクチル基等のアルキル基、シクロヘ
キシル基等のシクロアルキル基、フェニル基等のアリー
ル基、ベンジル基、フェニルエチル基等のアラルキル基
を例示することができ、これらの基は、その水素原子の
一部もしくは全部が、ハロゲン原子で置換されていても
よい。本発明において、これらの基R1 及びR2 として
一般的に好適なものは、炭素原子数が4以下のアルキル
基、及びフェニル基である。
BEST MODE FOR CARRYING OUT THE INVENTION Alkoxysilane In the present invention, alkoxysilane as a reaction raw material is
A silane compound having at least one hydrolyzable alkoxy group in the molecule, for example, the following general formula (1): (OR 1 ) X Si (R 2 ) 4-X (1) In the formula, X is , R is an integer of 1 to 4, and R 1 and R 2 are monovalent hydrocarbon groups. In the formula, examples of the monovalent hydrocarbon groups R 1 and R 2 include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group and an octyl group, a cyclohexyl group and the like. The cycloalkyl group, aryl group such as phenyl group, aralkyl group such as benzyl group, phenylethyl group and the like can be exemplified, and in these groups, some or all of the hydrogen atoms thereof are substituted with a halogen atom. May be. In the present invention, those generally preferred as these groups R 1 and R 2 are alkyl groups having 4 or less carbon atoms, and phenyl groups.

【0011】本発明において使用されるアルコキシシラ
ンの内、代表的なものは、以下の通りである。尚、以下
の式中、Phはフェニル基を示す。
Typical alkoxysilanes used in the present invention are as follows. In the formula below, Ph represents a phenyl group.

【0012】アルコキシ基数(X)が3あるいは4であ
るもの;Si(OCH3 4 ,Si(OC2 5 4
Si(OC3 7 4 ,Si(OC4 9 4 ,CH3
Si(OCH3 3 ,CH3 Si(OC2 5 3 ,C
3 Si(OC3 7 3 ,CH3 Si(OC4 9
3 ,C2 5 Si(OCH3 3 ,C2 5 Si(OC
2 5 3 ,C2 5 Si(OC3 7 3 ,C2 5
Si(OC4 9 3 ,C3 7 Si(OCH3 3
3 7 Si(OC2 5 3 ,C3 7 Si(OC3
7 3 ,C3 7 Si(OC4 9 3 ,C4 9
i(OCH3 3 ,C4 9 Si(OC2 5 3 ,C
4 9 Si(OC3 7 3 ,C4 9 Si(OC4
9 3 ,PhSi(OCH3 3 ,PhSi(OC2
5 3 ,PhSi(OC3 7 3 ,PhSi(OC4
9 3
Those having 3 or 4 alkoxy groups (X); Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 ,
Si (OC 3 H 7 ) 4 , Si (OC 4 H 9 ) 4 , CH 3
Si (OCH 3 ) 3 , CH 3 Si (OC 2 H 5 ) 3 , C
H 3 Si (OC 3 H 7 ) 3 , CH 3 Si (OC 4 H 9 )
3 , C 2 H 5 Si (OCH 3 ) 3 , C 2 H 5 Si (OC
2 H 5) 3, C 2 H 5 Si (OC 3 H 7) 3, C 2 H 5
Si (OC 4 H 9 ) 3 , C 3 H 7 Si (OCH 3 ) 3 ,
C 3 H 7 Si (OC 2 H 5 ) 3 , C 3 H 7 Si (OC 3
H 7) 3, C 3 H 7 Si (OC 4 H 9) 3, C 4 H 9 S
i (OCH 3 ) 3 , C 4 H 9 Si (OC 2 H 5 ) 3 , C
4 H 9 Si (OC 3 H 7 ) 3 , C 4 H 9 Si (OC 4 H
9 ) 3 , PhSi (OCH 3 ) 3 , PhSi (OC 2 H
5 ) 3 , PhSi (OC 3 H 7 ) 3 , PhSi (OC 4
H 9 ) 3

【0013】アルコキシ基数(X)が2であるもの;
(CH3 2 Si(OCH3 2 ,(CH3 2 Si
(OC2 5 2 ,(CH3 2 Si(OC
3 7 2 ,(CH3 2 Si(OC4 9 2 ,(C
2 5 2 Si(OCH3 2 ,(C2 5 2 Si
(OC2 5 2 ,(C2 5 2 Si(OC3 7
2 ,(C2 5 2 Si(OC4 9 2 ,(C
3 7 2 Si(OCH3 2 ,(C3 7 2 Si
(OC2 5 2 ,(C3 7 2 Si(OC3 7
2 ,(C3 7 2 Si(OC4 9 2 ,(C
4 9 2 Si(OCH3 2 ,(C4 9 2 Si
(OC2 5 2 ,(C4 9 2 Si(OC3 7
2 ,(C4 9 2 Si(OC4 9 2 ,(Ph)2
Si(OCH3 2 ,(Ph)2 Si(OC
2 5 2 ,(Ph)2 Si(OC3 7 2 ,(P
h)2 Si(OC4 9 2
The number of alkoxy groups (X) is 2;
(CH 3 ) 2 Si (OCH 3 ) 2 , (CH 3 ) 2 Si
(OC 2 H 5 ) 2 , (CH 3 ) 2 Si (OC
3 H 7) 2, (CH 3) 2 Si (OC 4 H 9) 2, (C
2 H 5) 2 Si (OCH 3) 2, (C 2 H 5) 2 Si
(OC 2 H 5 ) 2 , (C 2 H 5 ) 2 Si (OC 3 H 7 )
2 , (C 2 H 5 ) 2 Si (OC 4 H 9 ) 2 , (C
3 H 7) 2 Si (OCH 3) 2, (C 3 H 7) 2 Si
(OC 2 H 5 ) 2 , (C 3 H 7 ) 2 Si (OC 3 H 7 )
2 , (C 3 H 7 ) 2 Si (OC 4 H 9 ) 2 , (C
4 H 9) 2 Si (OCH 3) 2, (C 4 H 9) 2 Si
(OC 2 H 5 ) 2 , (C 4 H 9 ) 2 Si (OC 3 H 7 )
2 , (C 4 H 9 ) 2 Si (OC 4 H 9 ) 2 , (Ph) 2
Si (OCH 3 ) 2 , (Ph) 2 Si (OC
2 H 5) 2, (Ph ) 2 Si (OC 3 H 7) 2, (P
h) 2 Si (OC 4 H 9 ) 2

【0014】アルコキシ基数(X)が1であるもの;
(CH3 3 SiOCH3 ,(CH3 3 SiOC2
5 ,(CH3 3 SiOC3 7 ,(CH3 3 SiO
4 9 ,(C2 5 3 SiOCH3 ,(C2 5
3 SiOC2 5 ,(C2 5 3 SiOC3 7
(C2 5 3 SiOC4 9 ,(C3 7 3 SiO
CH3 ,(C3 7 3 SiOC2 5 ,(C3 7
3 SiOC3 7 ,(C3 7 3 SiOC4 9
(C4 9 3 SiOCH3 ,(C4 9 3 SiOC
2 5 ,(C4 9 3 SiOC3 7 ,(C4 9
3 SiOC4 9 ,(Ph)3 SiOCH3 ,(Ph)
3 SiOC2 5 ,(Ph)3 SiOC3 7 ,(P
h)3 SiOC4 9
The number of alkoxy groups (X) is 1;
(CH 3 ) 3 SiOCH 3 , (CH 3 ) 3 SiOC 2 H
5 , (CH 3 ) 3 SiOC 3 H 7 , (CH 3 ) 3 SiO
C 4 H 9 , (C 2 H 5 ) 3 SiOCH 3 , (C 2 H 5 )
3 SiOC 2 H 5 , (C 2 H 5 ) 3 SiOC 3 H 7 ,
(C 2 H 5 ) 3 SiOC 4 H 9 , (C 3 H 7 ) 3 SiO
CH 3 , (C 3 H 7 ) 3 SiOC 2 H 5 , (C 3 H 7 )
3 SiOC 3 H 7 , (C 3 H 7 ) 3 SiOC 4 H 9 ,
(C 4 H 9 ) 3 SiOCH 3 , (C 4 H 9 ) 3 SiOC
2 H 5, (C 4 H 9) 3 SiOC 3 H 7, (C 4 H 9)
3 SiOC 4 H 9 , (Ph) 3 SiOCH 3 , (Ph)
3 SiOC 2 H 5 , (Ph) 3 SiOC 3 H 7 , (P
h) 3 SiOC 4 H 9

【0015】上述したアルコキシシランは、加水分解−
重縮合反応物が固体である限り、1種単独でも2種以上
の組合せでも使用することができる。例えば、アルコキ
シ基が3または4個有するアルコキシシランを使用する
場合には、30重量%以下の量で、アルコキシ基を1〜
2個有するアルコキシシランを併用することができる。
この併用されるアルコキシシランの量が30重量%を超
えると、得られる加水分解−重縮合反応物が液状ないし
オイル状物となり、目的とする固体粉末状物質を得るこ
とが困難となる。
The above alkoxysilane is hydrolyzed
As long as the polycondensation reaction product is a solid, it can be used alone or in combination of two or more. For example, when an alkoxysilane having three or four alkoxy groups is used, the alkoxy group may be added in an amount of 30% by weight or less to 1 to 30% by weight.
Two alkoxysilanes can be used together.
If the amount of the alkoxysilane used in combination is more than 30% by weight, the resulting hydrolysis-polycondensation reaction product becomes a liquid or oily substance, and it becomes difficult to obtain the intended solid powdery substance.

【0016】触媒 上記アルコキシシランの加水分解−重縮合反応を促進さ
せるために使用される触媒は、フッ化塩化合物であり、
例えばLiF,NaF,KF,RbF,CsF等のI族
元素のフッ素含有塩化合物、BeF2 ,MgF2 ,Ca
2 ,SrF2,BaF2 等のII族元素のフッ素含有塩
化合物、BF3 ,AlF3 ,GaF3 ,InF3 ,Tl
3 等のIII 族元素のフッ素含有塩化合物、CuF2
ZnF2,SnF2 ,PdF2 ,SbF3 ,CrF3
YF3 等のフッ素含有塩化合物、LaF3 ,CeF3
PrF3 ,NdF3 ,SmF3 ,EuF3 ,GdF3
TbF3 ,DyF3 ,HoF3 ,ErF3 等のランタノ
イド系のフッ素含有塩化合物、(CH3 4 N・F,
(CH3 CH2 4 N・F,(CH3 CH2 CH2 4
N・F,(CH3 CH2 CH2 CH2 4 N・Fなどの
第4級アンモニウム塩、及びこれらの水和物等を単独ま
たは2種以上の組合せで使用することができる。これら
の中でも、コスト、水溶解性、操作性、安全性を考慮す
ると、NaF,KF,(CH3 CH2 CH2 CH2 4
N・F等が特に好適である。
Catalyst The catalyst used to promote the hydrolysis-polycondensation reaction of the alkoxysilane is a fluoride salt compound.
For example, fluorine-containing salt compounds of Group I elements such as LiF, NaF, KF, RbF, and CsF, BeF 2 , MgF 2 , Ca
Group II element fluorine-containing salt compounds such as F 2 , SrF 2 and BaF 2 , BF 3 , AlF 3 , GaF 3 , InF 3 , Tl
A fluorine-containing salt compound of a Group III element such as F 3 , CuF 2 ,
ZnF 2 , SnF 2 , PdF 2 , SbF 3 , CrF 3 ,
Fluorine-containing salt compound such as YF 3, LaF 3, CeF 3 ,
PrF 3 , NdF 3 , SmF 3 , EuF 3 , GdF 3 ,
Lanthanoid fluorine-containing salt compounds such as TbF 3 , DyF 3 , HoF 3 and ErF 3 , (CH 3 ) 4 N · F,
(CH 3 CH 2 ) 4 NF, (CH 3 CH 2 CH 2 ) 4
N · F, can be used in (CH 3 CH 2 CH 2 CH 2) 4 quaternary ammonium salts such as N · F, and alone or in combination of these hydrates. Among these, NaF, KF, (CH 3 CH 2 CH 2 CH 2 ) 4 in consideration of cost, water solubility, operability and safety.
N · F and the like are particularly suitable.

【0017】かかる触媒は、Si:Fのモル比が 1.0:
0.001 〜 1.0:2.0 、特に、 1.0:0.01〜 1.0:0.1 の
範囲となるような量で使用される。触媒量が、かかる範
囲よりも少ないと、触媒として有効に作用せず、アルコ
キシシランの加水分解−重縮合反応に長時間を要し、生
成する粉末状物質は、超微細性、多孔質性等において不
満足なものとなる傾向がある。また触媒が、上記範囲よ
りも多量に使用されると、ポットイールドの低下をまね
き高コストになってしまう。
Such a catalyst has a molar ratio of Si: F of 1.0:
It is used in an amount such that it ranges from 0.001 to 1.0: 2.0, especially from 1.0: 0.01 to 1.0: 0.1. When the amount of the catalyst is less than the above range, it does not act effectively as a catalyst, the hydrolysis-polycondensation reaction of the alkoxysilane requires a long time, and the resulting powdery substance has ultrafineness, porosity, etc. Tend to be unsatisfactory in. Further, if the catalyst is used in a larger amount than the above range, the pot yield will be reduced and the cost will be increased.

【0018】加水分解−重縮合反応 アルコキシシランの加水分解−重縮合反応は、前述した
触媒の存在下において、アルコキシシランと水を混合す
ることにより行われ、反応は、室温で有効に進行する
が、場合によっては適宜加熱してもよい。
Hydrolysis-Polycondensation Reaction The hydrolysis- polycondensation reaction of alkoxysilane is carried out by mixing the alkoxysilane and water in the presence of the above-mentioned catalyst, and the reaction effectively proceeds at room temperature. In some cases, heating may be performed appropriately.

【0019】反応に際しては、適宜アルコール、エーテ
ル、エステル、ケトン等の有機溶媒を用いてもよい。ア
ルコール系の有機溶媒としてはメチルアルコール、エチ
ルアルコール、1−プロピルアルコール、2−プロピル
アルコール等が好適であり、エーテル系有機溶媒として
はジメチルエーテル、ジエチルエーテル、ジプロピルエ
ーテル等が好適であり、エステル系有機溶媒としては酢
酸メチル、酢酸エチル等が好ましく、またケトン系有機
溶媒としてはアセトン、メチルエチルケトン等が好適に
使用される。これら有機溶媒の使用量は、一般に、アル
コキシシランに対して500重量%以下、特に150重
量%以下の範囲とすることが好適である。
In the reaction, an organic solvent such as alcohol, ether, ester or ketone may be appropriately used. The alcohol-based organic solvent is preferably methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol or the like, and the ether-based organic solvent is preferably dimethyl ether, diethyl ether, dipropyl ether or the like, and ester-based. As the organic solvent, methyl acetate, ethyl acetate and the like are preferable, and as the ketone-based organic solvent, acetone, methyl ethyl ketone and the like are suitably used. In general, the amount of the organic solvent to be used is preferably not more than 500% by weight, particularly preferably not more than 150% by weight based on the alkoxysilane.

【0020】また加水分解−重縮合反応のためにアルコ
キシシランと混合される水の量は、アルコキシシランの
アルコキシ基:水のモル比が、1:0.5 〜1:50の範囲
となるような量とすることが好ましい。上記範囲よりも
水の使用量が少ないと、加水分解せずに残る有機残基の
量が増加するため多孔質の粉末状物質を得ることが困難
となる。また上記範囲よりも水の使用量が多いと、ポッ
トイールド低下を招き、経済的に不利である。
The amount of water mixed with the alkoxysilane for the hydrolysis-polycondensation reaction is such that the molar ratio of the alkoxy groups of the alkoxysilane to the water is in the range of 1: 0.5 to 1:50. It is preferable that If the amount of water used is less than the above range, the amount of organic residues remaining without hydrolysis increases, and it becomes difficult to obtain a porous powdery substance. On the other hand, if the amount of water used is larger than the above range, the pot yield is reduced, which is economically disadvantageous.

【0021】一般的にアルコキシシランと水の混合は、
(a) 攪拌下のアルコキシシラン溶液に水を投入する、
(b) 攪拌下の水にアルコキシシラン溶液を投入する、等
によって行われる。
Generally, mixing alkoxysilane and water
(a) adding water to the stirred alkoxysilane solution,
(b) An alkoxysilane solution is added to water under stirring, and the like.

【0022】触媒(フッ化塩化合物)は、これを、水あ
るいは適当な有機溶媒に溶解させた状態で、反応系に添
加することが好ましい。またこの触媒は、予めアルコキ
シシラン或いは加水分解のために使用される水に添加し
ておいてもよいし、水とアルコキシシラン溶液とを混合
した後に添加することもできる。
The catalyst (fluoride compound) is preferably added to the reaction system in a state where it is dissolved in water or a suitable organic solvent. Further, this catalyst may be added in advance to the alkoxysilane or water used for hydrolysis, or may be added after mixing water and the alkoxysilane solution.

【0023】また上記の加水分解−重縮合反応を行う前
に、適当な酸触媒あるいは塩基触媒を含有する水溶液を
用いて、アルコキシシランを事前に部分加水分解してお
くことも可能である。
It is also possible to partially hydrolyze the alkoxysilane in advance using an aqueous solution containing a suitable acid catalyst or base catalyst before carrying out the above-mentioned hydrolysis-polycondensation reaction.

【0024】粉末物質の形成 上記の加水分解−重縮合反応によって、Si−O−Si
結合を有するケイ素化合物が生成するが、この縮合反応
生成物を、ろ過等の方法によって溶液中から分離し、揮
発乾燥により水、有機溶媒等を除去することによって、
目的とする粉末状物質を得ることができる。またスプレ
ードライヤーや真空乾燥機などの機器を利用して反応系
内から直接反応生成物を粉末状で取り出してもよい。
Formation of Powder Material By the hydrolysis-polycondensation reaction described above, Si--O--Si
Although a silicon compound having a bond is produced, this condensation reaction product is separated from the solution by a method such as filtration, and water and an organic solvent are removed by volatile drying,
The target powdery substance can be obtained. Alternatively, the reaction product may be directly taken out of the reaction system in the form of a powder using a device such as a spray dryer or a vacuum dryer.

【0025】粉末物質 この様にして得られたケイ素系粉末物質は嵩比重が小さ
く多孔質で超微細な固体であるので、カラムなどの充填
剤や各種の酵素、金属化合物などの担持用固体として有
用で、バイオリアクター、固定化酵素、固定化触媒、金
属回収用担体などの用途が考えられる。又ニューセラミ
ックスの材料としても有用である。
Powder substance Since the silicon-based powder substance thus obtained has a small bulk specific gravity and is a porous and ultrafine solid, it is used as a packing material for columns or a solid for supporting various enzymes, metal compounds and the like. It is useful and can be used as a bioreactor, an immobilized enzyme, an immobilized catalyst, a carrier for recovering metals, and the like. It is also useful as a material for new ceramics.

【0026】実施例1 テトラメトキシシラン 61g(400mmol)、 エタノール 68g(1,500mmol)、 を撹拌器、温度計及び冷却器を備えた500ml 反応器に入
れ撹拌混合した。これに、 KF 0.23g(4mmol) を溶解させた水 30g(1,680m
mol)、 を滴下し、滴下終了後、室温で3分間撹拌したところ、
無色透明であった反応液が白色ゲル状に変化した。これ
をブフナーロートで濾別し、蒸留水及び引き続いてアセ
トンで洗浄した後真空乾燥機を用いて 120℃、15mmHg×
2時間処理して溶媒を除去したところ、24.0gのケイ素
系粉末物質が得られた。得られたケイ素系粉末物質の嵩
比重は0.30g/cm3 、比表面積は790 m2 /gであっ
た。
Example 1 61 g (400 mmol) of tetramethoxysilane and 68 g (1,500 mmol) of ethanol were placed in a 500 ml reactor equipped with a stirrer, a thermometer and a condenser, and mixed by stirring. 30 g of water in which 0.23 g (4 mmol) of KF was dissolved (1,680 m
mol) and was added dropwise. After completion of the addition, the mixture was stirred at room temperature for 3 minutes.
The reaction solution that was colorless and transparent changed to a white gel. This was filtered off with a Buchner funnel, washed with distilled water and subsequently with acetone, and then dried at 120 ° C. and 15 mmHg × using a vacuum dryer.
After treatment for 2 hours and removal of the solvent, 24.0 g of a silicon-based powder substance was obtained. The bulk specific gravity of the obtained silicon-based powder material was 0.30 g / cm 3 , and the specific surface area was 790 m 2 / g.

【0027】実施例2 KFの代わりに、NaF 0.17g(4mmol)を使用した以
外は実施例1と同様に反応を行ったところ、NaF水溶
液滴下終了後5分間で反応液が白色ゲル状に変化したの
で、以下実施例1と同様に処理した。その結果、23.1
gのケイ素系粉末物質を得た。このケイ素系粉末物質は
嵩比重が0.40g/cm3 、比表面積が702 m2 /gであっ
た。
Example 2 A reaction was performed in the same manner as in Example 1 except that 0.17 g (4 mmol) of NaF was used instead of KF. The reaction solution changed into a white gel in 5 minutes after the dropwise addition of the NaF aqueous solution was completed. Therefore, the same process as in Example 1 was performed. As a result, 23.1
g of silicon-based powder substance was obtained. This silicon powder material had a bulk specific gravity of 0.40 g / cm 3 and a specific surface area of 702 m 2 / g.

【0028】実施例3 KFの代わりに、NH4 F 0.15 g(4mmol) とした以外
は実施例1と同様に反応させたところ、NH4 F水溶液
滴下終了後8分間で反応液が白色ゲル状に変化したので
以下実施例1と同様に処理した。その結果、23.0gの
ケイ素系粉末物質を得た。このケイ素系粉末物質は嵩比
重0.41g/cm3 、比表面積が 690m2 /gであった。
Example 3 A reaction was conducted in the same manner as in Example 1 except that NH 4 F 0.15 g (4 mmol) was used instead of KF. The reaction solution became a white gel after 8 minutes from the dropwise addition of the NH 4 F aqueous solution. However, the same process as in Example 1 was performed. As a result, 23.0 g of a silicon-based powder material was obtained. This silicon-based powder had a bulk specific gravity of 0.41 g / cm 3 and a specific surface area of 690 m 2 / g.

【0029】実施例4 KFの代わりに、CuF2 0.20g(2mmol) とした以外は
実施例1と同様に反応させたところ、CuF2 水溶液滴
下終了後10分間で反応液が白色ゲル状に変化したので以
下実施例1と同様に処理した。その結果、23.0gのケ
イ素系粉末物質を得た。このケイ素系粉末物質は嵩比重
が0.39g/cm3 、比表面積が 715m2 /gであった。
Example 4 A reaction was performed in the same manner as in Example 1 except that 0.20 g (2 mmol) of CuF 2 was used instead of KF. The reaction solution changed to a white gel in 10 minutes after the dropping of the CuF 2 aqueous solution was completed. Therefore, the same process as in Example 1 was performed. As a result, 23.0 g of a silicon-based powder material was obtained. This silicon powder material had a bulk specific gravity of 0.39 g / cm 3 and a specific surface area of 715 m 2 / g.

【0030】実施例5 KFの代わりに、(CH3 CH2 CH2 CH2 4 NF
1.05g(4mmol)とした以外は実施例1と同様に反応させた
ところ、(CH3 CH2 CH2 CH2 4 NF水溶液滴
下終了後3分間で反応液が白色ゲル状に変化したので以
下実施例1と同様に処理した。その結果、23.0gのケ
イ素系粉末物質を得た。このケイ素系粉末物質は嵩比重
が0.32g/cm3 、比表面積が 778m2 /gであった。
Example 5 (CH 3 CH 2 CH 2 CH 2 ) 4 NF instead of KF
When the reaction was performed in the same manner as in Example 1 except that the amount was 1.05 g (4 mmol), the reaction liquid changed to a white gel 3 minutes after the completion of the dropwise addition of the (CH 3 CH 2 CH 2 CH 2 ) 4 NF aqueous solution. Processed as in Example 1. As a result, 23.0 g of a silicon-based powder material was obtained. This silicon powder material had a bulk specific gravity of 0.32 g / cm 3 and a specific surface area of 778 m 2 / g.

【0031】実施例6 KFを0.46g(40mmol) とした以外は実施例1と同様に反
応させたところ、KF水溶液滴下終了後3分間で反応液
が白色ゲル状に変化したので、以下実施例1と同様に処
理した。その結果、24.0gのケイ素系粉末物質を得
た。このケイ素系粉末物質は嵩比重0.28g/cm3 、比表
面積 802m2 /gであった。
Example 6 A reaction was performed in the same manner as in Example 1 except that KF was changed to 0.46 g (40 mmol). The reaction solution changed into a white gel 3 minutes after the dropping of the KF aqueous solution was completed. Processed as in 1. As a result, 24.0 g of a silicon-based powder material was obtained. This silicon-based powder material had a bulk specific gravity of 0.28 g / cm 3 and a specific surface area of 802 m 2 / g.

【0032】実施例7 エタノールを入れず無溶媒とした以外は実施例1と同様
に反応させたところ、1分間で反応液で白色ゲル状に変
化したので、以下実施例1と同様に処理した。その結
果、24.0gのケイ素系粉末物質を得た。このケイ素系
粉末物質は嵩比重0.27g/cm3 、比表面積 837m2 /g
であった。
Example 7 When a reaction was performed in the same manner as in Example 1 except that ethanol was not added and a solvent was not used, a white gel was formed in the reaction solution in 1 minute. Therefore, the same treatment as in Example 1 was performed. . As a result, 24.0 g of a silicon-based powder material was obtained. This silicon-based powder substance has a bulk specific gravity of 0.27 g / cm 3 and a specific surface area of 837 m 2 / g.
Met.

【0033】実施例8 KF 0.2g(4mmol)、 水 30 g(1,680mmol) 、 エタノール 68g(1,500mmol)、 を撹拌器、温度計及び冷却器を備えた500ml 反応器に入
れ、これに、 テトラメトキシシラン 61g(400mmol)、 を滴下し、滴下終了後室温で4分間撹拌したところ、無
色透明であった反応液が白色ゲル状に変化した。以下実
施例1と同様に処理し、23.6gのケイ素系粉末物質を
得た。このケイ素系粉末物質は嵩比重0.36g/cm3 、比
表面積 727m2 /gであった。
Example 8 0.2 g (4 mmol) of KF, 30 g (1,680 mmol) of water, and 68 g (1,500 mmol) of ethanol were placed in a 500 ml reactor equipped with a stirrer, a thermometer and a condenser, and tetra- When 61 g (400 mmol) of methoxysilane was added dropwise and the mixture was stirred at room temperature for 4 minutes after the completion of the addition, the colorless and transparent reaction liquid changed to a white gel. Thereafter, the same treatment as in Example 1 was performed to obtain 23.6 g of a silicon-based powder material. This silicon-based powder material had a bulk specific gravity of 0.36 g / cm 3 and a specific surface area of 727 m 2 / g.

【0034】実施例9 水を 120g(6,670mmol)とした以外は実施例1と同様に
反応させたところ、KF水溶液滴下終了後15分間で反応液
が白色ゲル状に変化したので、以下実施例1と同様に処
理した。その結果、23.0gのケイ素系粉末物質を得た。
このケイ素系粉末物質は嵩比重0.38g/cm3 、比表面積
711m2 /gであった。
Example 9 The reaction was carried out in the same manner as in Example 1 except that water was changed to 120 g (6,670 mmol). The reaction liquid changed to a white gel 15 minutes after the completion of dropping the KF aqueous solution. Processed as in 1. As a result, 23.0 g of a silicon-based powder material was obtained.
This silicon powder material has a bulk specific gravity of 0.38 g / cm 3 and a specific surface area of
It was 711 m 2 / g.

【0035】実施例10 テトラメトキシシランの代わりにテトラエトキシシラン
84 g(400mmol)を使用した以外は実施例1と同様に反
応させたところ9分間で反応液が白色ゲル状に変化した
ので、以下実施例1と同様に処理した。その結果、23.
1gのケイ素系粉末物質を得た。このケイ素系粉末物質
は嵩比重0.31g/cm3 、比表面積 785m2 /gであっ
た。
Example 10 Instead of tetramethoxysilane, tetraethoxysilane
When the reaction was carried out in the same manner as in Example 1 except that 84 g (400 mmol) was used, the reaction solution changed to a white gel in 9 minutes, so the same treatment as in Example 1 was carried out. As a result, 23.
1 g of silicon-based powder substance was obtained. This silicon-based powder material had a bulk specific gravity of 0.31 g / cm 3 and a specific surface area of 785 m 2 / g.

【0036】実施例11 テトラメトキシシランの代わりにメチルトリメトキシシ
ラン55g(400mmol)を使用し、且つ、加える水の量を23
g(1,280mmol)とした以外は実施例1と同様に反応させ
たところ、7分間で反応液が白色ゲル状に変化した。以
下実施例1と同様に処理した。その結果、26.2gのケイ
素系粉末物質を得た。このケイ素系粉末物質は嵩比重0.
38g/cm3 、比表面積 707m2 /gであった。
Example 11 In place of tetramethoxysilane, 55 g (400 mmol) of methyltrimethoxysilane was used, and the amount of water added was 23
When the reaction was carried out in the same manner as in Example 1 except that the amount was changed to g (1,280 mmol), the reaction solution turned into a white gel in 7 minutes. Thereafter, the same processing as in Example 1 was performed. As a result, 26.2 g of a silicon-based powder material was obtained. This silicon-based powder substance has a bulk specific gravity of 0.
It was 38 g / cm 3 and the specific surface area was 707 m 2 / g.

【0037】実施例12 テトラメトキシシランに代えてフェニルトリメトキシシ
ラン79.2g(400mmol)を使用し、且つ加える水の量を23
g(1,280mmol)とした以外は実施例1と同様に反応させ
たところ、20分間で反応液が白色ゲル状に変化した。以
下実施例1と同様に処理した。その結果、51.8gのケ
イ素系粉末物質を得た。このケイ素系粉末物質は嵩比重
0.40g/cm3 、比表面積 699m2 /gであった。
Example 12 Instead of tetramethoxysilane, 79.2 g (400 mmol) of phenyltrimethoxysilane were used, and the amount of water added was 23
When the reaction was carried out in the same manner as in Example 1 except that the amount was changed to g (1,280 mmol), the reaction solution turned into a white gel in 20 minutes. Thereafter, the same processing as in Example 1 was performed. As a result, 51.8 g of a silicon-based powder material was obtained. This silicon-based powder substance has a bulk specific gravity
It was 0.40 g / cm 3 and the specific surface area was 699 m 2 / g.

【0038】比較例1 テトラメトキシシラン61g(400mmol)、 エタノール68g(1,680mmol)、 を撹拌器、温度計及び冷却器を備えた500ml 反応器に入
れ撹拌混合した。これに、 5%塩酸水溶液30g、 を滴下し、滴下終了後室温で40日間後に無色透明であっ
た反応液が白色ゲル状に変化したので、以下実施例1と
同様に処理した。その結果、22.1gのケイ素系粉末物
質を得た。このケイ素系粉末物質は嵩比重1.10g/c
m3 、比表面積 157m2 /gであった。
Comparative Example 1 61 g (400 mmol) of tetramethoxysilane and 68 g (1,680 mmol) of ethanol were placed in a 500 ml reactor equipped with a stirrer, a thermometer and a condenser and mixed with stirring. To this, 30 g of a 5% hydrochloric acid aqueous solution was added dropwise, and after 40 days at room temperature after the completion of the addition, the reaction liquid, which was colorless and transparent, changed into a white gel. Therefore, the same treatment as in Example 1 was performed. As a result, 22.1 g of a silicon-based powder material was obtained. This silicon powder material has a bulk specific gravity of 1.10 g / c.
m 3 and the specific surface area were 157 m 2 / g.

【0039】比較例2 5%塩酸水溶液の代わりに33%塩酸水溶液45gを使用し
た以外は比較例1と同様に反応させたところ10時間後に
白色ゲル状に変化した。以下実施例1と同様に処理した
ところ、23.0gのケイ素系粉末物質を得た。このケイ
素系粉末物質は嵩比重0.96g/cm3 、比表面積 180m2
/gであった。
Comparative Example 2 When a reaction was carried out in the same manner as in Comparative Example 1 except that 45 g of 33% hydrochloric acid aqueous solution was used instead of 5% hydrochloric acid aqueous solution, it changed into a white gel after 10 hours. Then, the same treatment as in Example 1 was carried out to obtain 23.0 g of a silicon-based powder substance. This silicon-based powder substance has a bulk specific gravity of 0.96 g / cm 3 and a specific surface area of 180 m 2.
/ G.

【0040】[0040]

【発明の効果】本発明によれば、触媒としてフッ化塩化
合物を用いてアルコキシシラン化合物の加水分解−重縮
合反応を行うことにより、加水分解−重縮合時間が大幅
に短縮され、その結果嵩比重が小さく且つ多孔質のケイ
素系粉末物質の合成が可能となる。また他の酸性触媒
(塩酸、硫酸、フッ酸など)に比べ操作性、安全性が格
段に改善される。
EFFECTS OF THE INVENTION According to the present invention, the hydrolysis-polycondensation time of the alkoxysilane compound is significantly reduced by using a fluoride salt compound as a catalyst. It is possible to synthesize a porous silicon-based powder material having a small specific gravity. Also, operability and safety are remarkably improved as compared with other acidic catalysts (hydrochloric acid, sulfuric acid, hydrofluoric acid, etc.).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フッ化塩化合物の存在下でアルコキシシ
ランの加水分解−重縮合を行うことにより、ケイ素系粉
末物質を製造する方法。
1. A method for producing a silicon-based powder material by carrying out hydrolysis-polycondensation of an alkoxysilane in the presence of a fluoride salt compound.
JP5078863A 1993-03-12 1993-03-12 Method for producing silicon-based powder material Expired - Fee Related JP2668495B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5078863A JP2668495B2 (en) 1993-03-12 1993-03-12 Method for producing silicon-based powder material
US08/209,068 US5478546A (en) 1993-03-12 1994-03-11 Process for preparing powder of silicon compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5078863A JP2668495B2 (en) 1993-03-12 1993-03-12 Method for producing silicon-based powder material

Publications (2)

Publication Number Publication Date
JPH06263425A JPH06263425A (en) 1994-09-20
JP2668495B2 true JP2668495B2 (en) 1997-10-27

Family

ID=13673672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5078863A Expired - Fee Related JP2668495B2 (en) 1993-03-12 1993-03-12 Method for producing silicon-based powder material

Country Status (1)

Country Link
JP (1) JP2668495B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032591B2 (en) * 2012-05-16 2016-11-30 国立大学法人 名古屋工業大学 Method for producing silica nano hollow particles

Also Published As

Publication number Publication date
JPH06263425A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
CA2091514C (en) Process for forming siloxane bonds
US4455415A (en) Polymeric tertiary and secondary amines with a silica-type backbone, processes for their preparation, and use
US5371262A (en) Hydroxymethyltrialkoxysilanes and methods of making and using the same
JPH0718077A (en) Production of carbinol-functional siloxane
JPH07292108A (en) Method for producing organic functional group-containing organopolysiloxane and organopolysiloxane obtained from the production method
JPS63190648A (en) Preparation of hydrosilylation catalyst
US5576408A (en) Process for preparing low molecular weight organosiloxane terminated with silanol group
JP2652307B2 (en) Method for producing linear organopolysiloxane having hydroxyl group at terminal of molecular chain
JP2830731B2 (en) Method for producing organosilane having silanol group
JP2668495B2 (en) Method for producing silicon-based powder material
US6998437B2 (en) Preparation of polydiorganosiloxanes
US5478546A (en) Process for preparing powder of silicon compound
US4645848A (en) Phenylene group-containing organopolysiloxanes and method for their preparation
JP2668496B2 (en) Novel method for producing silicon-based powder material
JP2820873B2 (en) Method for producing surface-treated silica
JP3206384B2 (en) Method for producing alkoxysiloxane
JPH05255348A (en) Production of reactive organosilicon compound
JP4178369B2 (en) Method for producing silyl (meth) acrylate compound
JPH09100352A (en) Polysiloxane and its production
RU2088603C1 (en) Method of organosilicon resin producing
JP7517244B2 (en) Method for producing hydroxyalkylsilane compound
JP3252642B2 (en) Method for producing low molecular weight organosilane or siloxane having silanol group
JP3901255B2 (en) Process for preparing a mixture of alkoxyacyloxysilane and alkyltriacyloxysilane
JPH0873474A (en) Production of organopolysiloxane of low polymerization degree
JP7324170B2 (en) Method for producing silicone compound

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees