JP2667716B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP2667716B2
JP2667716B2 JP1262624A JP26262489A JP2667716B2 JP 2667716 B2 JP2667716 B2 JP 2667716B2 JP 1262624 A JP1262624 A JP 1262624A JP 26262489 A JP26262489 A JP 26262489A JP 2667716 B2 JP2667716 B2 JP 2667716B2
Authority
JP
Japan
Prior art keywords
retardation
liquid crystal
plate
retardation plate
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1262624A
Other languages
Japanese (ja)
Other versions
JPH0373921A (en
Inventor
浩 大西
敏幸 吉水
正一 和田
博 桑垣
俊道 勝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to CA002009319A priority Critical patent/CA2009319C/en
Priority to EP90301203A priority patent/EP0382460B1/en
Priority to US07/475,901 priority patent/US5089906A/en
Priority to KR1019900001429A priority patent/KR940006984B1/en
Priority to DE69014334T priority patent/DE69014334T2/en
Publication of JPH0373921A publication Critical patent/JPH0373921A/en
Application granted granted Critical
Publication of JP2667716B2 publication Critical patent/JP2667716B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • G02F1/1397Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell the twist being substantially higher than 90°, e.g. STN-, SBE-, OMI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はスーパーツイスト型液晶において色補償を施
した液晶表示装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial application field> The present invention relates to a liquid crystal display device in which color compensation is performed in a super twist type liquid crystal.

<従来の技術> 一般にSTN−LCD(スーパーツイスト型液晶表示装置)
はイエローグリーンあるいはブルーに着色するが色補正
板を用いることにより、明るく鮮明な白/黒表示が得ら
れる。そのため表示品が向上してワープロ,コンピュー
タなどのOA機器に利用することができる。
<Conventional technology> Generally, STN-LCD (super twist type liquid crystal display device)
Is colored yellow-green or blue, but by using a color correction plate, a bright and clear white / black display can be obtained. As a result, display products are improved and can be used for OA equipment such as word processors and computers.

このような色補償を施した2層型STN−LCDでは、1層
目(駆動用セル)で生じた着色を2層目(光学的補償用
セル)で色補正をし無彩色化している。この構造は、単
層STN−LCDと比較して液晶セルが2枚必要であるがた
め、表示装置の厚みが厚くなり重量が増加するという問
題点を持っている。
In the two-layer type STN-LCD to which such color compensation has been applied, coloring generated in the first layer (driving cell) is color-corrected in the second layer (optical compensation cell) to be achromatic. This structure requires two liquid crystal cells as compared with the single-layer STN-LCD, and thus has a problem that the thickness of the display device is increased and the weight is increased.

一方、位相差板型STN−LCDでは、液晶セルの前面に位
相差板を配設すること、又、液晶セルの前面及び背面に
各1枚を配設することが知られているが、2層型STN−L
CDに比較してコントラストが劣るなど十分な表示品位が
得られないという問題点を持っている(特開昭64−519
号公報)。
On the other hand, in the retardation plate type STN-LCD, it is known that a retardation plate is provided on the front surface of the liquid crystal cell, and one is provided on each of the front surface and the back surface of the liquid crystal cell. Layer type STN-L
There is a problem that a sufficient display quality cannot be obtained, for example, the contrast is inferior to that of a CD (JP-A-64-519).
No.).

<発明が解決しようとする課題> 特開昭64−519号公報では、STN液晶パネルの前面及び
背面に位相差板を配設する事が述べられているが、実施
例21では、その両者のレターデーション値の和が約0.6
μm(600nm)となっており、両者それぞれの値につい
ては何等触れられていない。又、300nmの位相差板を実
施例21に記載されているシステムで配設しても良好な白
/黒表示は得られなかった。
<Problems to be Solved by the Invention> Japanese Patent Application Laid-Open No. 64-519 discloses that a retardation plate is provided on the front and back surfaces of an STN liquid crystal panel. The sum of the retardation values is about 0.6
μm (600 nm), and there is no mention of the respective values. Further, even when a 300 nm retardation plate was provided in the system described in Example 21, good white / black display was not obtained.

本発明は、前記方式のもつ問題点を解決したものであ
り、2層型STN−LCDと比較して薄型・軽量化が可能であ
り、又、従来の位相差板型STN−LCDと比較して鮮明な白
/黒表示が得られる液晶表示装置を提供することを目的
とする。
The present invention solves the problems of the above-mentioned method, can be made thinner and lighter than the two-layer STN-LCD, and can be compared with the conventional retardation plate STN-LCD. It is intended to provide a liquid crystal display device capable of obtaining clear white / black display.

<課題を解決するための手段> 上側基板と下側基板の間に液晶を介在させたスーパー
ツイスト型液晶表示セルを備えた液晶表示装置におい
て、上側偏光板−第1の位相差板−スーパーツイスト型
液晶表示セル−第2の位相差板−下側偏光板の順に積層
配置し、前記第1の位相差板と第2の位相差板のレター
デーション値を等しく、前記上基板の液晶分子配向軸と
前記第1の位相差板のなす角度θと前記下基板の液晶
分子配向軸と前記第2の位相差板のなす角度θをθ
+θ=180゜と配設し、第1の位相差板と第2の位相
差板の和によって得られる実効のレターデーションRe
2、第1の位相差板と第2の位相差板のレターデーショ
ンRe1、と第1の位相差板と第2の位相差板の光軸のな
す角度θは、Re2=2Re1cosθを満たすことを特徴とす
る。
<Means for Solving the Problems> In a liquid crystal display device including a super twist type liquid crystal display cell in which a liquid crystal is interposed between an upper substrate and a lower substrate, an upper polarizing plate, a first retardation plate, and a super twist Type liquid crystal display cell-second retardation plate-lower polarizing plate are laminated in this order, the retardation values of the first retardation plate and the second retardation plate are equal, and liquid crystal molecule alignment of the upper substrate is performed. axis and the first angle theta 2 of the the angle theta 1 of the phase difference plate and the liquid crystal molecular orientation axis of the lower substrate second retardation plate theta 1
+ Θ 2 = 180 °, and the effective retardation Re obtained by the sum of the first retardation plate and the second retardation plate
2. The retardation Re1 of the first and second retardation plates and the angle θ between the optical axes of the first and second retardation plates satisfy Re2 = 2Re1cos θ. Features.

<作 用> 上記のように、STN液晶パネルの前面及び背面に一軸
性高分子フィルム等から成るレターデーション値の等し
い位相差板を対称に配設したので、片側に配設したとき
よりも波長分散をより理想的なものに近似でき、この結
果、全波長域で位相差板を補償し、出射楕円偏光の方位
角が揃うので、検光子の最適設定による無彩色化と高コ
ントラスト化が同時に達成できる。
<Operation> As described above, since the retardation plates having the same retardation value made of a uniaxial polymer film and the like are disposed symmetrically on the front and back surfaces of the STN liquid crystal panel, the wavelength is longer than when disposed on one side. Dispersion can be approximated to an ideal one.As a result, the retardation plate is compensated over the entire wavelength range, and the azimuthal angle of the output elliptically polarized light is uniform, so that achromatic and high contrast can be achieved simultaneously by optimal setting of the analyzer. Can be achieved.

<実施例> 我々は、数々検討した結果、ONの状態の透過率を高く
とり、OFF状態の透過率を低くおさえるためには、位相
差板のレターデーション値として330nm〜420nmの範囲で
かつ同一の値のものを前面及び背面に対称に配設する事
が最適であるという条件を見い出した。さらにこの設定
条件を、STN液晶パネルのレターデーション値より概算
出来る法則性を見いだした。
<Examples> As a result of various studies, in order to increase the transmittance in the ON state and suppress the transmittance in the OFF state, the retardation value of the retardation plate should be within the range of 330 nm to 420 nm and the same. It has been found that it is optimal to symmetrically dispose the one having the value of 前面 on the front and the back. Furthermore, we have found a rule that approximates these setting conditions from the retardation value of the STN liquid crystal panel.

液晶表示装置としての表示の明るさを保つためには、
配設する位相差板のレターデーション値を考慮しなけれ
ばならない。第10図(L値=100が白色であり、L値=
0が黒色であるとして表示される)において、明るさを
表示する単位L値が30以上という実用上の制限の下で
は、2枚の位相差板のレターデーション値の和2Re(n
m)の大きさは660nm〜1000nm(第10図の点線で示されて
いる値)、即ち1枚の位相差板のレターデーション値が
330nm〜500nmの範囲にあれば充分な明るさを有すること
を我々は見い出した。従って、上記の位相差板のレター
デーション値が330nm〜420nmの範囲はこの条件に包含さ
れた中での最適条件である。
To maintain the brightness of the display as a liquid crystal display device,
It is necessary to consider the retardation value of the retarder to be provided. Fig. 10 (L value = 100 is white, L value =
0 is displayed as black), the sum of the retardation values of the two retardation plates is 2Re (n
m) is 660 nm to 1000 nm (the value indicated by the dotted line in FIG. 10), that is, the retardation value of one retardation plate is
We have found that a range of 330 nm to 500 nm has sufficient brightness. Therefore, the range where the retardation value of the retardation plate is in the range of 330 nm to 420 nm is the optimum condition included in the above conditions.

又、この時の1枚の位相差板のレターデーション値Re
1と、第1,第2の位相差板の光学軸のなす角度θは、以
下に述べる方法により、STN液晶パネルのレターデーシ
ョン値d・Δn=Re(panel)を基に概算することが出
来る。
At this time, the retardation value Re of one retardation plate
1 and the angle θ between the optical axes of the first and second retardation plates can be roughly estimated based on the retardation value d · Δn = Re (panel) of the STN liquid crystal panel by the method described below. .

第11図は、液晶パネルのレターデーション値d・Δn
と、使用する位相差板のレターデーション値Re1との関
係を示した前記であり、○印はツイスト角度240度の場
合の実験値、△印はツイスト角度210度の場合の実験
値、□印はツイスト角度180度の場合の実験値であり、
斜線の傾斜において相関が示されている。第11図に示さ
れる関係(斜線の領域)より使用すべき位相差板のレタ
ーデーションの概略値Re1が選択できる。
FIG. 11 shows the retardation value d · Δn of the liquid crystal panel.
And the relationship between the retardation value Re1 of the retardation plate to be used and the above-mentioned are indicated by ○, an experimental value when the twist angle is 240 degrees, Δ is an experimental value when the twist angle is 210 degrees, □ Is the experimental value when the twist angle is 180 degrees,
The correlation is shown at the slope of the oblique line. The approximate value Re1 of the retardation of the retardation plate to be used can be selected from the relationship (shaded area) shown in FIG.

第12図はある一実施例におけるSTN液晶パネルと位相
差板の分光透過率の関係を示した実測図で、平行ニコル
状態での測定値である。
FIG. 12 is an actual measurement diagram showing the relationship between the spectral transmittance of the STN liquid crystal panel and the phase difference plate in one embodiment, and is a measured value in a parallel Nicol state.

一般に平行ニコルの間に複屈折体が置かれた場合の透
過光強度を表す式は、T=sin2γ×cos2(πR/λ)であ
る。ここで、角度γは光軸と偏光軸との成す角度、Rは
レターデーション値である。sin2γ≠0,即ち2γ≠0,π
の時、透過光の最大値は、cos2(πR/λ)=1、即ち、
(πR/λ)=nπ、即ちn=1ではR=λの時に得られ
る。これは複屈折体のレターデーション値が透過光最大
値を与える時の波長λとして表されることを示す。一
方、透過光の最小値は、cos2(πR/λ)=0、即ち、
(πR/λ)=π/2+nπ、即ち、R=3λ/2の時に得ら
れる(n=1)。従って、3R/2のレターデーション値の
複屈折体は、透過光の最大値,最小値を示す波長がRの
レターデーション値の複屈折体とは逆転した関係に鳴っ
ている。
In general, an equation representing transmitted light intensity when a birefringent body is placed between parallel Nicols is T = sin2γ × cos 2 (πR / λ). Here, the angle γ is the angle between the optical axis and the polarization axis, and R is the retardation value. sin2γ ≠ 0, that is, 2γ ≠ 0, π
In the case of, the maximum value of the transmitted light is cos 2 (πR / λ) = 1, that is,
(ΠR / λ) = nπ, that is, when n = 1, it is obtained when R = λ. This indicates that the retardation value of the birefringent body is expressed as the wavelength λ at which the maximum value of transmitted light is given. On the other hand, the minimum value of transmitted light is cos 2 (πR / λ) = 0, that is,
(ΠR / λ) = π / 2 + nπ, that is, obtained when R = 3λ / 2 (n = 1). Therefore, the birefringent body having a retardation value of 3R / 2 sounds in an inverted relationship with the birefringent body having a retardation value of R, which shows the maximum and minimum values of transmitted light.

第12図において、131はSTN液晶パネルの分光透過率曲
線、132は第1,第2の位相差板を光学軸がなす角度θで
重ねた時の分光透過率曲線、133はSTN液晶パネルと位相
差板とをほぼ最適配置した時の分光透過率曲線を示して
いる。曲線131はほぼ480nmで第一の最小値となり、ほぼ
595nmで最大値を示している。一方、曲線132はほぼ590n
mで最小値となり、ほぼ885nm(図では示されていない
が)で最大値を示している。これらの最大値が位相差板
の実効のレターデーション値Re2とSTN液晶パネルのレタ
ーデーション値Re(panel)に相当するものであり、133
の分光透過率曲線に示すようなフラットで透過率の低い
状態が得られる場合、Re2とRe(panel)との間には、透
過率の最大値と最小値の波長が逆転する関係が存在する
から、上述したようにRe(panel)×3/2=nRe2(n=1
又は2)の関係式が得られる。
12, reference numeral 131 denotes a spectral transmittance curve of the STN liquid crystal panel, 132 denotes a spectral transmittance curve when the first and second retardation plates are overlapped at an angle θ formed by the optical axis, and 133 denotes an STN liquid crystal panel. 4 shows a spectral transmittance curve when a retardation plate and a retardation plate are almost optimally arranged. Curve 131 has a first minimum at approximately 480 nm and is approximately
The maximum value is shown at 595 nm. On the other hand, curve 132 is almost 590n
The minimum value is at m and the maximum value is at approximately 885 nm (not shown). These maximum values correspond to the effective retardation value Re2 of the retardation plate and the retardation value Re (panel) of the STN liquid crystal panel.
When a flat and low transmittance is obtained as shown in the spectral transmittance curve of, there is a relationship between Re2 and Re (panel) in which the maximum and minimum transmittance wavelengths are reversed. Therefore, as described above, Re (panel) × 3/2 = nRe2 (n = 1
Or 2) is obtained.

従って、STN液晶パネルのレターデーション値Re2(pa
nel)から第1,第2の位相差板の和によって得られる実
効のレターデーション値Re2が決定出来る。
Therefore, the retardation value of the STN liquid crystal panel Re2 (pa
nel), an effective retardation value Re2 obtained by the sum of the first and second retardation plates can be determined.

第12図に例では、分光透過率曲線の最大値より、液晶
パネルのレターデーション値Re(panel)=595nm,位相
差板を2枚重ねた時の実効のレターデーション値Re2=8
85nmとなっている。一方、上述した関係式Re(panel)
×3/2=n・Re2(n=1又は2)より求めた場合、595n
m×3/2=892.5nmで、n=1の時の値と実効値の885nmは
近似した値に成っている。
In the example shown in FIG. 12, the retardation value Re (panel) of the liquid crystal panel is 595 nm from the maximum value of the spectral transmittance curve, and the effective retardation value Re2 = 8 when two retardation plates are stacked.
It is 85 nm. On the other hand, the above-mentioned relational expression Re (panel)
× 3/2 = 595n when calculated from n · Re2 (n = 1 or 2)
m × 3/2 = 892.5 nm, and the value when n = 1 and the effective value of 885 nm are approximate values.

一方、第13図は、第1,第2の位相差板の光学軸のなす
角度θと第1,第2の位相差板で出来る実効のレターデー
ション値との関係を示した図である。第13図において、
○印で示される実線は実測値であり、×印で示される点
線は、Re1cosθ+Re1cosθ=2Re1cosθとした時の理論
値である。実測値とこの理論値とが良く一致しているこ
とが解る。従って、第1,第2の位相差板の和によって得
られる実効のレターデーション値Re2と、各位相差板の
レターデーション値Re1が上述したように求められてい
るので、第1,第2の位相差板の光学軸のなす角度θはRe
2=2Re1cosθよりθを概算することが出来る。結局、ST
N液晶パネルのツイスト角度,レターデーション値d・
Δn=Re(panel)が決まれば、使用する位相差板のレ
ターデーション値Re1と第1,第2の位相差板の光学軸の
なす角度θはその概略値を求めることが出来る。
On the other hand, FIG. 13 is a view showing the relationship between the angle θ formed by the optical axes of the first and second retardation plates and the effective retardation value formed by the first and second retardation plates. In FIG.
The solid line indicated by a circle is an actual measurement value, and the dotted line indicated by a cross is a theoretical value when Re1cosθ + Re1cosθ = 2Re1cosθ. It turns out that the measured value and this theoretical value are in good agreement. Accordingly, since the effective retardation value Re2 obtained by the sum of the first and second retardation plates and the retardation value Re1 of each retardation plate are obtained as described above, the first and second retardation values are obtained. The angle θ between the optical axes of the retarder is Re
Θ can be roughly calculated from 2 = 2Re1cos θ. After all, ST
N LCD panel twist angle, retardation value d
Once Δn = Re (panel) is determined, the approximate value of the retardation value Re1 of the retardation plate used and the angle θ formed by the optical axes of the first and second retardation plates can be obtained.

このようにして設定された条件において、OFF状態で
は、RGBの3波長の光が方位角のそろった細長い楕円偏
光(擬似直線偏光)として前面の位相差板を出射し、ON
状態ではRGBの3波長の光が比較的方位角のそろった楕
円率の大きい楕円偏光(擬似円偏光)として前面の位相
差板を出射しているので、検光子の配置を最適化する事
で色補償ができると共に高コントラストが得られる。
Under the conditions set in this manner, in the OFF state, light of three wavelengths of RGB is emitted from the front retardation plate as elongated elliptically polarized light (pseudo linearly polarized light) having a uniform azimuth, and is turned on.
In this state, light of three wavelengths of RGB is emitted from the front retardation plate as elliptically polarized light (quasi-circularly polarized light) having a relatively large azimuth angle and a relatively large elliptical ratio, so that the analyzer arrangement can be optimized. High contrast can be obtained while color compensation can be performed.

但し、詳細にはスーパーツイストされた液晶層による
旋光分散が加味されるので、位相差板のレターデーショ
ン値および第1、第2の位相差板の光学軸が成す角度θ
は上記の概算値から若干の調整が必要であるが、最適化
の手法としては一般的に有効である。
However, in detail, since the optical rotation dispersion due to the super-twisted liquid crystal layer is added, the retardation value of the retardation plate and the angle θ formed by the optical axes of the first and second retardation plates are
Requires some adjustment from the above estimates, but is generally effective as an optimization technique.

以下、本構造の作用を光学原理に基づき、位相差板及
びSTN液晶パネルのレターデーション値の波長分散(以
下単に波長分散という)並びに位相差の相減作用から説
明する。
Hereinafter, the operation of the present structure will be described based on the optical principle based on the wavelength dispersion (hereinafter simply referred to as wavelength dispersion) of the retardation value of the phase difference plate and the STN liquid crystal panel and the phase reduction effect of the phase difference.

まず、位相差板に関して、光学軸の関係と波長分散を
説明する。STN液晶パネルの位相差を補償する位相差板
は材質的には、ポリカーボネート、ポリビニルアルコー
ル等から成り、製造時の延伸により、特定の位相差(レ
ターデーション)をもたせたものである。結晶光学的に
は、一軸性結晶に似た性質を持つものである。この位相
差板の光学軸の関係は、入射した光の最大速度の光波が
振動する方向を進相軸(F軸又は、X′軸)、最小速度
の光波が振動する方向を遅相軸(S軸又は、Z′軸)と
すると、各々の光学軸の関係は第15図(a)、(b)に
示すように2通りの場合がある。例えば、ポリカーボネ
ートは(a)で正号、ポリメタクリル酸メチルは(b)
で負号である。いずれの場合においても、進相軸と遅相
軸が判れば同様に扱うことが出来る。
First, regarding the retardation plate, the relationship between the optical axes and the wavelength dispersion will be described. The retardation plate for compensating for the retardation of the STN liquid crystal panel is made of polycarbonate, polyvinyl alcohol, or the like, and has a specific retardation (retardation) due to stretching during manufacturing. In terms of crystal optics, it has properties similar to a uniaxial crystal. The optical axes of the phase difference plate are fast axis (F axis or X'axis) in the direction in which the light wave having the maximum velocity of the incident light vibrates, and slow axis in the direction in which the light wave having the minimum velocity vibrates ( (S-axis or Z'-axis), there are two cases of the relationship between the respective optical axes as shown in FIGS. 15 (a) and 15 (b). For example, polycarbonate is the same as (a), and polymethyl methacrylate is (b)
Is a negative sign. In any case, if the fast axis and the slow axis are known, they can be handled in the same manner.

一方、波長分散に関しては、我々は実際に単色光の直
接偏光を位相差板に入射させて得られる楕円偏光の分析
より、角波長に対する位相差として求めた。このように
して求めた波長分散の一例を第16図に示す。
On the other hand, regarding the chromatic dispersion, we obtained the phase difference with respect to the angular wavelength from the analysis of the elliptically polarized light obtained by causing the direct polarization of the monochromatic light to actually enter the retardation plate. FIG. 16 shows an example of the chromatic dispersion thus obtained.

次に、STN液晶パネルの光学軸の関係は、液晶分子の
光学的性質より、液晶分子の短軸方向をF軸に、長軸方
向をS軸にとることができ、上下基板共、ラビング法に
より、液晶分子の配向規制が行われているので、第17図
に示すように考えられる。第17図において、P1は上基板
の液晶分子配向軸、P2は下基板の液晶分子配向軸、P7は
上基板のF軸、P8は上基板のS軸、P10は下基板のS軸
である。
Next, regarding the optical axis relationship of the STN liquid crystal panel, the minor axis direction of the liquid crystal molecule can be taken as the F axis and the major axis direction can be taken as the S axis due to the optical properties of the liquid crystal molecules. As a result, the alignment of liquid crystal molecules is regulated, which is considered as shown in FIG. In FIG. 17, P1 is the liquid crystal molecule alignment axis of the upper substrate, P2 is the liquid crystal molecule alignment axis of the lower substrate, P7 is the F axis of the upper substrate, P8 is the S axis of the upper substrate, and P10 is the S axis of the lower substrate. .

一方、波長分散に関しては、液晶材料自体のΔnの波
長分散とスーパーツイストされた液晶層による旋光分散
とが加算されており、出射楕円偏光の解析から単純に波
長分散を求めることができない。そこで我々はホモジ
ニアス配向した液晶パネルを用いレターデーション値の
波長分散を求め(この時ツイスト配向していないため、
旋光分散がなく位相差板と同様に測定できる)、STN
液晶パネルにおける旋光分散を求め、このととの合
成として近似的にSTN液晶パネルの波長分散を求めた。
但し、の測定は、単色光の直線偏光をSTN液晶パネル
の入射側基板の液晶分子配向方向(つまりS軸)に平行
に入射させたときの出射楕円偏光の方位角を旋光角とし
て求めた。
On the other hand, as for the chromatic dispersion, the chromatic dispersion of Δn of the liquid crystal material itself and the optical rotation dispersion by the supertwisted liquid crystal layer are added, and it is not possible to simply obtain the chromatic dispersion from the analysis of the outgoing elliptically polarized light. Therefore, we calculated the wavelength dispersion of the retardation value using a homogeneously aligned liquid crystal panel.
It can be measured in the same way as a retardation plate without optical rotation dispersion), STN
The optical dispersion in the liquid crystal panel was obtained, and the wavelength dispersion of the STN liquid crystal panel was approximately obtained as a synthesis with this.
However, in this measurement, the azimuthal angle of the outgoing elliptically polarized light when linearly polarized monochromatic light was incident parallel to the liquid crystal molecule orientation direction (that is, the S axis) of the incident side substrate of the STN liquid crystal panel was determined as the optical rotation angle.

実際にSTN液晶パネルにOFF電圧とON電圧を印加させ
て、その時の波長分散を求めた結果を第18図に示す。ST
N液晶パネルが着色して見えるのは、第18図に示した特
性によって検光子に入る手前の出射光が各波長で方位角
の異なる楕円偏光になっているためである。従って、こ
の着色を解消するには位相差を相減して直線偏光に戻す
か、方位角の揃った楕円偏光にすれば良い。
FIG. 18 shows the result of actually applying the OFF voltage and the ON voltage to the STN liquid crystal panel and calculating the wavelength dispersion at that time. ST
The N liquid crystal panel appears colored because the emitted light before entering the analyzer is elliptically polarized light having different azimuth angles at each wavelength due to the characteristics shown in FIG. Therefore, in order to eliminate this coloring, the phase difference may be reduced to return to linearly polarized light, or to elliptically polarized light having a uniform azimuth angle.

第17図に示すように、STN液晶パネルのF軸及びS軸
は、上下基板それぞれに在るから、位相差が相減される
ように位相差板を配設するということは、STN液晶パネ
ルを挟んで前面と背面にF軸またはS軸が直交するに位
相差板を配設することである。即ち、後述する本発明の
一実施例を示す平面図、第2図において定義したθ
θを90度にする言うことであり、この時、第1の位相
差板と第2の位相差板のレターデーションを等しくして
おけば、第13図から導出される関係式Re2=2Re1cosθが
使えて光学的設計が容易にできるほか、生産の効率化を
図ることもできる。
As shown in FIG. 17, the F-axis and the S-axis of the STN liquid crystal panel are on the upper and lower substrates, respectively. Therefore, disposing the retardation plate so that the phase difference is reduced means that the STN liquid crystal panel is Is to dispose a retardation plate so that the F axis or the S axis is orthogonal to the front surface and the rear surface with respect to. That is, a plan view showing an embodiment of the present invention to be described later was defined theta 2 and in FIG. 2 theta 2 to is to say to 90 °, this time, the first phase difference plate and the second position If the retardations of the retardation plates are made equal, the relational expression Re2 = 2Re1cosθ derived from FIG. 13 can be used, the optical design can be facilitated, and the production efficiency can be improved.

尚、相減作用に関しては、必ずしも直交に配設するこ
とは必要ではなく、交差角が45度超であれば相減効果が
得られる。但し、本発明では第1,第2の位相差板をSTN
液晶パネルに対して対称な関係に配設することから、θ
+θ=180度の関係がある。
Note that the phase reduction effect is not necessarily required to be arranged orthogonally, and the phase reduction effect can be obtained if the crossing angle exceeds 45 degrees. However, in the present invention, the first and second retardation plates are
Since it is placed symmetrically with respect to the liquid crystal panel, θ
There is a relationship of 1 + θ 3 = 180 degrees.

ところで、白黒表示を得る為の出射光の状態は理想的
には、OFF状態(非選択波形印加時)のとき位相差が0
又はmπ(mは整数)、ON状態(選択波形印加時)の
時、位相差が(2m−1)×π/2(mは整数)であれば良
い。出射光は位相差が0またはmπのとき直線偏光とな
り、一方、位相差板は位相差が(2m−1)×π/2のと
き、楕円率最大の楕円偏光となる。このような理想的な
状態における波長分散は第13図に示すようになる。
By the way, the state of the emitted light for obtaining a monochrome display is ideally such that the phase difference is 0 when in the OFF state (when a non-selected waveform is applied).
Alternatively, when the phase difference is mπ (m is an integer) and the ON state (when the selected waveform is applied), the phase difference may be (2m−1) × π / 2 (m is an integer). The outgoing light becomes linearly polarized light when the phase difference is 0 or mπ, while the phase difference plate becomes elliptically polarized light with the maximum ellipticity when the phase difference is (2m−1) × π / 2. The chromatic dispersion in such an ideal state is as shown in FIG.

従ってSTN液晶パネルの波長分散(第18図)と位相差
板の波長分散(第16図)とを組合わせることにより、第
19図に示す理想的な波長分散に一致させれば、完全な白
黒表示が得られることになる。
Therefore, by combining the chromatic dispersion of the STN liquid crystal panel (FIG. 18) and the chromatic dispersion of the retardation plate (FIG. 16),
A perfect black and white display can be obtained by matching the ideal chromatic dispersion shown in FIG.

本発明を実施した場合の出射光の波長分散を第20図に
示すが、位相差板とSTN液晶パネルの間の相減作用が1
回のとき(図中,の曲線)と2回のとき(図,
の曲線)では、2回相減作用が行われたときの方が、第
19図の波長分散に近付くことが解る。これは本発明の特
徴であるSTN液晶パネルの前後に位相差板を配設するこ
とで、片側に配設したときよりも、波長分散をより理想
的なものに近似できることを示している。この結果、全
波長域で位相差を補償し、出射楕円偏光の方位角が揃う
ので、検光子の設定を最適化すれば無彩色化と高コント
ラスト化が同時に達成できる。(後述の実施例1の出射
楕円偏光状態を示す第3図と第4図が具体的な例であ
る。) さらにこのことから、STN液晶パネルの前面および背
面に配設する位相差板を複数枚積層することによって
も、波長分散をさらに理想的な波長分散に近似できるこ
とが可能である。この複数枚積層の場合も、先に述べた
最適化の手法が有効であることは言うまでもない。
FIG. 20 shows the wavelength dispersion of the emitted light when the present invention is implemented, and the phase reduction between the retardation plate and the STN liquid crystal panel is one.
Times (the curve in the figure) and two times (the figure,
Curve), when the phase reduction effect is performed twice,
It can be seen that the wavelength dispersion shown in Fig. 19 approaches. This shows that arranging the retardation plates before and after the STN liquid crystal panel, which is a feature of the present invention, makes it possible to approximate the chromatic dispersion more ideally than when the retardation plates are arranged on one side. As a result, the phase difference is compensated over the entire wavelength range, and the azimuths of the outgoing elliptically polarized light are uniform, so that achromatic and high contrast can be achieved simultaneously by optimizing the analyzer settings. (Specific examples in FIGS. 3 and 4 showing the outgoing elliptically polarized light state in Example 1 described later.) Further, from this, a plurality of retardation plates provided on the front and back surfaces of the STN liquid crystal panel are provided. It is possible to approximate the chromatic dispersion to more ideal chromatic dispersion also by stacking the sheets. It is needless to say that the above-described optimization method is effective also in the case of this multi-layered structure.

本発明の実施例を第1図及び第2図に基づき説明す
る。
An embodiment of the present invention will be described with reference to FIG. 1 and FIG.

第1図は以下に述べる本発明の実施例の構造を示す説
明図であり、1は上側偏光板、2は第1の位相差板、3
はSTN液晶パネル、4は第2の位相差板、5は下側偏光
板である。上側偏光板1は、単体透過率42%偏光度99.9
9%のニュートラルグレータイプの偏光板を用い、第1
の位相差板2は一軸性高分子フィルム(ポリカーボネー
ト)から成る厚み50μmでレターデーション値が330nm
〜420nmのもの、STN液晶パネル3には左旋性カイラルド
ーパントを添加したLC材を封入し、ツイスト角度210度
及び240度、d・Δn(dは液晶層厚、Δnは屈折率異
方性の値)=0.82μm〜0.92μmに設定されたパネルを
用いた。又第2の位相差板4は前面側に配設した第1の
位相差板2と同一レターデーション値のものを、下側偏
光板5についても上側偏光板1と同一のものを用い、各
々積層配設し透過型の液晶表示装置を作成した。
FIG. 1 is an explanatory view showing the structure of an embodiment of the present invention described below, wherein 1 is an upper polarizing plate, 2 is a first retardation plate,
Denotes an STN liquid crystal panel, 4 denotes a second retardation plate, and 5 denotes a lower polarizing plate. Upper polarizer 1 has a single transmittance of 42% and a degree of polarization of 99.9.
Using a 9% neutral gray type polarizing plate,
The retardation plate 2 is made of a uniaxial polymer film (polycarbonate) and has a thickness of 50 μm and a retardation value of 330 nm.
The STN liquid crystal panel 3 is filled with an LC material to which a levorotatory chiral dopant is added, and has a twist angle of 210 ° and 240 °, d · Δn (d is the liquid crystal layer thickness, Δn is the refractive index anisotropy). Value) = 0.82 μm to 0.92 μm. The second retardation plate 4 has the same retardation value as the first retardation plate 2 disposed on the front side, and the lower polarizing plate 5 has the same retardation value as the upper polarizing plate 1. A transmission type liquid crystal display device was prepared by stacking layers.

この場合の各々の構成部材の積層にあたっての配設の
位置関係について第2図を用いて説明する。第2図に示
す各矢印のうち、P1はSTN液晶パネル3を構成する上基
板の液晶分子配向軸、P2は同下基板の液晶分子配向軸、
P3は上側偏光板1の吸収軸、P4は下側偏光板5の吸収
軸、P5は第1の位相差板2の光学軸(S軸)、P6は第2
の位相差板4の光学軸(S軸)、θは上基板の液晶分
子配向軸P1(S軸)と第1の位相差板光学軸P5のなす角
度、θは下基板の液晶分子配向軸P2(S軸)と第2の
位相差板光学軸P6のなす角度、αは下基板の液晶分子配
向軸P2と下側偏光板の吸収軸P4とのなす角度、βは上側
基板液晶分子配向軸P1と上側偏光板の吸収軸P3とのなす
角度、そしてφは液晶ツイスト角を表している。本発明
は第1の位相差板2と第2の位相差板4を対称に配設す
るという事から、θ+θ=180゜(一定)という条
件になっている。
The positional relationship of the arrangement in stacking the respective constituent members in this case will be described with reference to FIG. Among the arrows shown in FIG. 2, P1 is the liquid crystal molecule orientation axis of the upper substrate constituting the STN liquid crystal panel 3, P2 is the liquid crystal molecule orientation axis of the lower substrate,
P3 is the absorption axis of the upper polarizing plate 1, P4 is the absorption axis of the lower polarizing plate 5, P5 is the optical axis (S axis) of the first retardation plate 2, and P6 is the second axis.
The optical axis of the retardation plate 4 (S axis), theta 1 is an angle of the liquid crystal molecular orientation axis P1 (S-axis) and the first retardation plate optical axis P5 of the upper substrate, theta 2 is the liquid crystal molecules of the lower substrate The angle between the alignment axis P2 (S axis) and the optical axis P6 of the second retardation plate, α is the angle between the liquid crystal molecule alignment axis P2 of the lower substrate and the absorption axis P4 of the lower polarizer, and β is the liquid crystal of the upper substrate. The angle between the molecular orientation axis P1 and the absorption axis P3 of the upper polarizer, and φ represents the liquid crystal twist angle. In the present invention, since the first retardation plate 2 and the second retardation plate 4 are arranged symmetrically, the condition is θ 1 + θ 2 = 180 ° (constant).

実施例1 第1、第2の位相差板2,4としてレターデーション値4
00nmのものを使用し、STN液晶パネル3のd・Δnは0.9
2μm、ツイスト角度240度のものを使用する。θ=80
゜、θ=100゜、α=40゜、β=50゜にそれぞれの構
成部材を設定配設した。
Example 1 A retardation value of 4 was used for the first and second retardation plates 2 and 4.
The d · Δn of the STN liquid crystal panel 3 is 0.9 nm.
Use a 2μm, twist angle of 240 degrees. θ 1 = 80
構成, θ 2 = 100 °, α = 40 °, β = 50 °.

第3図にOFF状態の第1の位相差板2を通過した出射
偏光状態、第4図にON状態の第1の位相差板2を通過し
た出射偏光状態を示す。
FIG. 3 shows an outgoing polarized light state passing through the first retardation plate 2 in the OFF state, and FIG. 4 shows an outgoing polarized light state passing through the first retardation plate 2 in the ON state.

第3図において、31はλ=450nmの波長の光、32はλ
=550nmの波長の光、33はλ650nmの波長の光で、楕円偏
光の主軸方向が上側偏光板1の吸収軸P3にほぼ一致して
いる(黒状態)。第4図において、41、42、43は第3図
と同様、各々λ=450nm、550nm、650nmの波長の光の楕
円偏光状態で吸収軸P3に直交する方向に主軸がきてお
り、高い透過率が得られる(白状態)。
In FIG. 3, 31 is light having a wavelength of λ = 450 nm, and 32 is λ
The light having a wavelength of 550 nm and the light having a wavelength of 650 nm are 33, and the principal axis direction of the elliptically polarized light substantially coincides with the absorption axis P3 of the upper polarizing plate 1 (black state). In FIG. 4, the principal axes 41, 42, and 43 are elliptically polarized light of wavelengths λ = 450 nm, 550 nm, and 650 nm, respectively, in the direction orthogonal to the absorption axis P3, as in FIG. Is obtained (white state).

1/200D.1/13Bの駆動条件下で評価した結果では、OFF
透過率0.2%、ON透過率24.1%でコントラスト比120:1が
得られている。
In the result evaluated under the driving condition of 1 / 200D.1 / 13B, it is OFF.
A contrast ratio of 120: 1 is obtained with a transmittance of 0.2% and an ON transmittance of 24.1%.

実施例2 第1、第2の位相差板2,4としてレターデーション値3
85nmのものを使用しSTN液晶パネル3のd・Δnは0.86
μm、ツイスト角度240度のものを使用する。θ=75
゜、θ=105゜、α=45゜、β45゜にそれぞれの構成
部材を設定配設した。
Example 2 A retardation value of 3 was used as the first and second retardation plates 2 and 4.
D · Δn of STN liquid crystal panel 3 is 0.86
Use the one with μm and twist angle of 240 degrees. θ 1 = 75
構成, θ 2 = 105 °, α = 45 °, and β45 ° were set and disposed.

第5図にOFF状態の第1の位相差板2を通過した出射
偏光状態、第6図にON状態の第1の位相差板2を通過し
た出射偏光状態を示す。
FIG. 5 shows an outgoing polarization state passing through the first retardation plate 2 in the OFF state, and FIG. 6 shows an outgoing polarization state passing through the first retardation plate 2 in the ON state.

第5図において51はλ=450nmの波長の光、52はλ=5
50nmの波長の光、53はλ=650nmの波長の光で、楕円偏
光の主軸方向が上側偏光板1の吸収軸P3にほぼ一致して
いる(黒状態)。第6図において、61、62、63は第5図
と同様、各々λ=450nm、550nm、650nmの波長の光の楕
円偏光状態で吸収軸P3に直交する方向にほぼ主軸がきて
おり、かつ楕円率が大きいので無彩色で高い透過率が得
られる(白状態)。この出射光の分光特性図を第7図に
示す。図において71はON状態、72は無印加時、73はOFF
状態を示す。第7図は高いON状態の透過率、低いOFF状
態の透過率及びフラットな分光特性であることを示して
いる。
In FIG. 5, 51 is light having a wavelength of λ = 450 nm, and 52 is λ = 5.
Light having a wavelength of 50 nm, 53 is light having a wavelength of λ = 650 nm, and the principal axis direction of elliptically polarized light is substantially coincident with the absorption axis P3 of the upper polarizing plate 1 (black state). 6, reference numerals 61, 62, and 63 denote elliptical polarization states of light having wavelengths of λ = 450 nm, 550 nm, and 650 nm, respectively, substantially in the direction orthogonal to the absorption axis P3, as in FIG. Since the ratio is high, achromatic and high transmittance can be obtained (white state). A spectral characteristic diagram of this emitted light is shown in FIG. In the figure, 71 is ON, 72 is no voltage applied, and 73 is OFF
Indicates the status. FIG. 7 shows a high ON-state transmittance, a low OFF-state transmittance, and flat spectral characteristics.

1/200D.1/13Bの駆動条件下で評価した結果では、OFF
透過率0.5%、ON透過率18.6%でコントラスト比37:1が
得られている。
In the result evaluated under the driving condition of 1 / 200D.1 / 13B, it is OFF.
A contrast ratio of 37: 1 is obtained with a transmittance of 0.5% and an ON transmittance of 18.6%.

実施例3 第1、第2の位相差板2,4としてレターデーション値3
50nmのものを使用し、STN液晶パネル3dのd・Δnは0.8
2μm、ツイスト角度240度のものを使用する。θ=75
゜、θ=105゜、α=45゜、β=45゜にそれぞれの構
成部材を設定配設した。
Example 3 A retardation value of 3 was used for the first and second retardation plates 2 and 4.
Using a 50 nm one, the d · Δn of the STN liquid crystal panel 3d is 0.8
Use a 2μm, twist angle of 240 degrees. θ 1 = 75
構成, θ 2 = 105 °, α = 45 °, β = 45 °.

第8図にOFF状態の第1の位相差板2を通過した出射
偏光状態、第9図にON状態の第1の位相差板2を通過し
た出射偏光状態を示す。第8図において、81はλ=450n
mの波長の光、82はλ=550nmの波長の光、83はλ=650n
mの波長の光で楕円偏光の主軸方向が上側偏光板1の吸
収軸P3にほぼ一致している(黒状態)。第9図におい
て、91、92、93は第8図の81、82、83と同様で、各々λ
=450nm、550nm、650nmの波長の光が楕円偏光状態で吸
収軸P3に直交する方向にほぼ主軸が近づいており、無彩
色で高い透過率が得られる。(白状態)。
FIG. 8 shows an outgoing polarization state passing through the first retardation plate 2 in the OFF state, and FIG. 9 shows an outgoing polarization state passing through the first retardation plate 2 in the ON state. 8, 81 is λ = 450n
light of wavelength m, 82 is light of wavelength λ = 550 nm, 83 is λ = 650 n
The main axis direction of the elliptically polarized light substantially coincides with the absorption axis P3 of the upper polarizing plate 1 at a wavelength of m (black state). 9, 91, 92 and 93 are the same as 81, 82 and 83 in FIG.
= 450 nm, 550 nm, and 650 nm wavelengths of light are in an elliptically polarized state, with their main axes approaching in a direction orthogonal to the absorption axis P3, and achromatic and high transmittance can be obtained. (White state).

1/200D.1/13Bの駆動条件下で評価した結果では、OFF
透過率0.6%、ON透過率14.4%でコントラスト比24:1が
得られている。
In the result evaluated under the driving condition of 1 / 200D.1 / 13B, it is OFF.
A contrast ratio of 24: 1 is obtained with a transmittance of 0.6% and an ON transmittance of 14.4%.

実施例4 第1、第2の位相差板2,4としてレターデーション値3
85nmのものを使用し、STN液晶パネル3のd・Δnは0.9
1μm、ツイスト角度210度のものを使用する。θ=90
゜、θ=90゜、α=30゜、β=60゜にそれぞれの構成
部材を設定配設した。
Example 4 A retardation value of 3 was used as the first and second retardation plates 2 and 4.
D · Δn of STN liquid crystal panel 3 is 0.9 nm.
Use 1μm, twist angle 210 degrees. θ 1 = 90
構成, θ 2 = 90 °, α = 30 °, β = 60 °.

1/200D.1/13Bの駆動条件下で評価した結果では、OFF
透過率0.5%、ON透過率12.1%でコントラスト比24:1が
得られている。
In the result evaluated under the driving condition of 1 / 200D.1 / 13B, it is OFF.
A contrast ratio of 24: 1 is obtained with a transmittance of 0.5% and an ON transmittance of 12.1%.

実施例5 第1、第2の位相差板2,4としてレターデーション値3
50nmのものを使用し、STN液晶パネル3のd・Δnは0.8
3μm、ツイスト角度210度のものを使用する。θ=90
゜、θ=90゜、α=30゜、β=60゜にそれぞれの構成
部材を設定配設した。1/200D.1/13Bの駆動条件下で評価
した結果では、OFF透過率0.6%、ON透過率11.0%でコン
トラスト比18:1が得られている。
Example 5 A retardation value of 3 was used as the first and second retardation plates 2 and 4.
D · Δn of STN liquid crystal panel 3 is 0.8 nm
Use the one with 3μm and twist angle of 210 degrees. θ 1 = 90
構成, θ 2 = 90 °, α = 30 °, β = 60 °. As a result of evaluation under the driving conditions of 1 / 200D.1 / 13B, a contrast ratio of 18: 1 was obtained at an OFF transmittance of 0.6% and an ON transmittance of 11.0%.

比較として従来例の特開昭64−519号公報、実施例21
の分光特性図を第14図に示す。図において101はON状
態、102は無印加時、103はOFF状態を示す。OFF状態の透
過率が高く、ON状態の透過率が低くかつフラットな分光
特性になっていないので、良好な白/黒状態は得られな
い。またコントラスト比も評価した結果、4:1程度しか
得られない。
For comparison, a conventional example of JP-A-64-519, Example 21
FIG. 14 shows a spectral characteristic diagram of. In the figure, 101 indicates an ON state, 102 indicates no voltage, and 103 indicates an OFF state. Since the transmittance in the OFF state is high, the transmittance in the ON state is low, and the spectral characteristics are not flat, a good white / black state cannot be obtained. Also, as a result of evaluating the contrast ratio, only about 4: 1 can be obtained.

次に次表の比較例(1)、(2)に示した液晶パネル
と前記各実施例とのコントラスト比の比較を示す。
Next, a comparison of the contrast ratio between the liquid crystal panels shown in Comparative Examples (1) and (2) in the following table and each of the above Examples is shown.

<発明の効果> 以上のように本発明によれば、2層型STN−LCDよりも
薄型・軽量化が可能であり、コントラスト比も高いもの
が得られる。又従来の位相差板方式STN(特開昭64−519
実施例21)と比較しても、本発明の同一レターデーショ
ン値の位相差板を前面及び背面に対称に配設する(θ
+θ=180゜)条件で作成すればより高いコントラス
トで鮮明な白/黒表示が得られる。また、2層型STN−L
CD以上の高コントラストを得て、かつONの時の透過率が
高い鮮明な白/黒表示を得るには、特に実施例1〜実施
例5で示した様に、位相差板のレターデーション値とし
て330nm〜500nmのもの、さらに望ましくは330nm〜420nm
のものを使用することが好ましい。
<Effects of the Invention> As described above, according to the present invention, a thinner and lighter weight than the two-layer STN-LCD can be obtained, and a high contrast ratio can be obtained. In addition, the conventional retardation plate system STN (Japanese Patent Laid-Open No. 64-519
Compared with Example 21), the retardation plates of the present invention having the same retardation value are disposed symmetrically on the front surface and the rear surface (θ 1).
+ Θ 2 = 180 °), a clear white / black display with higher contrast can be obtained. In addition, two-layer type STN-L
In order to obtain a high contrast of CD or more and a clear white / black display having a high transmittance when ON, the retardation value of the retardation plate is particularly as shown in Examples 1 to 5. Of 330 nm to 500 nm, more preferably 330 nm to 420 nm
It is preferable to use

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例の説明に供する液晶表示装置の
構造説明図面、第2図は同実施例の位置関係を示す平面
図、第3図は実施例1のOFF状態の第1の位相差板を通
過した出射偏光状態を示す図、第4図は実施例1のON状
態の第1の位相差板を通過した出射偏光状態を示す図、
第5図は実施例2のOFF状態の第1の位相差板を通過し
た出射偏光状態を示す図、第6図は実施例2のON状態の
第1の位相差板を通過した出射偏光状態を示す図、第7
図は実施例2のON−OFFの分光特性を示す図、第8図は
実施例3のOFF状態の第1の位相差板を通過した出射偏
光状態を示す図、第9図は実施例3のON状態の第1の位
相差板を通過した出射偏光状態を示す図、第10図は同じ
レターデーション値をもつ位相差板を2枚重ねた時のレ
ターデーション値と明るさ(L値)との関係を示した
図、第11図はSTN液晶パネルのレターデーション値d・
Δnと使用する位相差板のレターデーション値Re2との
関係を示した図、第12図はSTN液晶パネルと位相差板の
分光透過率の関係を示した図、第13図は第1,第2の位相
差板の光学軸がなす角度θと第1,第2の位相差板で出来
る実効のレターデーション値との関係を示した図、第14
図は従来装置の分光性を示す図、第15図は位相差板の光
学軸の関係を示す図、第16図は位相差板の波長分散を示
す図、第17図はSTN液晶パネルの光学軸の関係を示す
図、第18図はSTN液晶パネルの波長分散を示す図、第19
図は理想的な波長分散を示す図、第20図は位相差板とST
N液晶パネルを組合せたときの相減作用を示す図であ
る。 1:上側偏向板、2:第1の位相差板、 3:STN液晶セル、4:第2の位相差板、 5:下側偏向板。
FIG. 1 is a structural explanatory drawing of a liquid crystal display device for explaining an embodiment of the present invention, FIG. 2 is a plan view showing a positional relationship of the embodiment, and FIG. FIG. 4 is a diagram illustrating an output polarization state after passing through the phase difference plate, FIG. 4 is a diagram illustrating an output polarization state after passing through the first phase difference plate in the ON state of the first embodiment,
FIG. 5 is a diagram showing an output polarization state after passing through the first phase difference plate in the OFF state according to the second embodiment. FIG. 6 is a view showing an output polarization state after passing through the first phase difference plate in the ON state according to the second embodiment. Showing the seventh
FIG. 8 is a diagram showing ON-OFF spectral characteristics of the second embodiment, FIG. 8 is a diagram showing an outgoing polarization state passing through the first retardation plate in the OFF state of the third embodiment, and FIG. 9 is a third embodiment. FIG. 10 is a diagram showing the state of polarized light emitted through the first retardation plate in the ON state of FIG. 10. FIG. 10 shows the retardation value and the brightness (L value) when two retardation plates having the same retardation value are stacked. Fig. 11 shows the relationship between the retardation value d ·
FIG. 12 is a diagram showing the relationship between Δn and the retardation value Re2 of the retardation plate used, FIG. 12 is a diagram showing the relationship between the STN liquid crystal panel and the spectral transmittance of the retardation plate, and FIG. FIG. 14 is a diagram showing the relationship between the angle θ formed by the optical axes of the two phase difference plates and the effective retardation value formed by the first and second phase difference plates.
FIG. 15 shows the spectral characteristics of the conventional device, FIG. 15 shows the relationship between the optical axes of the phase difference plate, FIG. 16 shows the wavelength dispersion of the phase difference plate, and FIG. 17 shows the optical characteristics of the STN liquid crystal panel. FIG. 18 is a diagram showing the relationship between the axes, FIG. 18 is a diagram showing the wavelength dispersion of the STN liquid crystal panel, and FIG.
The figure shows the ideal chromatic dispersion, and FIG. 20 shows the retardation plate and ST
FIG. 9 is a view showing a phase reduction effect when N liquid crystal panels are combined. 1: Upper deflector, 2: First retarder, 3: STN liquid crystal cell, 4: Second retarder, 5: Lower deflector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桑垣 博 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 勝部 俊道 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 昭64−519(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Hiroshi Kuwagaki, Inventor 22-22, Nagaikecho, Abeno-ku, Osaka, Osaka Inside Sharp Corporation (72) Inventor Toshimichi Katsube 22-22, Nagaikecho, Abeno-ku, Osaka, Osaka Sharp shares In-company (56) References JP-A-64-519 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】上側基板と下側基板の間に液晶を介在させ
たスーパーツイスト型液晶表示セルを備えた液晶表示装
置において、 上側偏光板−第1の位相差板−スーパーツイスト型液晶
表示セル−第2の位相差板−下側偏光板の順に積層配置
し、 前記第1の位相差板と第2の位相差板のレターデーショ
ン値を等しく、 前記上基板の液晶分子配向軸と前記第1の位相差板のな
す角度θと前記下基板の液晶分子配向軸と前記第2の
位相差板のなす角度θをθ+θ=180゜と配設
し、 第1の位相差板と第2の位相差板の和によって得られる
実効のレターデーションRe2、第1の位相差板と第2の
位相差板のレターデーションRe1、と第1の位相差板と
第2の位相差板の光軸のなす角度θは、 Re2=2Re1cosθ を満たすことを特徴とする液晶表示装置。
1. A liquid crystal display device comprising a super twist type liquid crystal display cell having a liquid crystal interposed between an upper substrate and a lower substrate, comprising: an upper polarizing plate, a first retardation plate, and a super twist type liquid crystal display cell. -Second retardation plate-Layered in the order of the lower polarizing plate, the retardation values of the first retardation plate and the second retardation plate are equal, and the liquid crystal molecule alignment axis of the upper substrate and the first retardation plate are the same. The angle θ 1 formed by the first phase difference plate and the angle θ 2 formed by the liquid crystal molecule alignment axis of the lower substrate and the second phase difference plate are set as θ 1 + θ 2 = 180 °, and the first phase difference is Retardation Re2, the retardation Re1 of the first retardation plate and the second retardation plate obtained by the sum of the first retardation plate and the second retardation plate, and the second retardation difference between the first retardation plate and the second retardation plate A liquid crystal display device characterized in that the angle θ formed by the optical axis of the plate satisfies Re2 = 2Re1cosθ.
JP1262624A 1989-02-06 1989-10-06 Liquid crystal display Expired - Lifetime JP2667716B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002009319A CA2009319C (en) 1989-02-06 1990-02-05 Liquid crystal display device
EP90301203A EP0382460B1 (en) 1989-02-06 1990-02-06 Liquid crystal display device
US07/475,901 US5089906A (en) 1989-02-06 1990-02-06 Supertwisted nematic liquid crystal device having two phase difference plates for providing black/white display
KR1019900001429A KR940006984B1 (en) 1989-02-06 1990-02-06 Liquid crystal display device
DE69014334T DE69014334T2 (en) 1989-02-06 1990-02-06 Liquid crystal display device.

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2838789 1989-02-06
JP7215089 1989-03-24
JP1-110090 1989-04-29
JP1-72150 1989-04-29
JP11009089 1989-04-29
JP1-28387 1989-04-29

Publications (2)

Publication Number Publication Date
JPH0373921A JPH0373921A (en) 1991-03-28
JP2667716B2 true JP2667716B2 (en) 1997-10-27

Family

ID=27286179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1262624A Expired - Lifetime JP2667716B2 (en) 1989-02-06 1989-10-06 Liquid crystal display

Country Status (2)

Country Link
JP (1) JP2667716B2 (en)
KR (1) KR940006984B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138424A (en) * 1990-09-28 1992-05-12 Sharp Corp Liquid crystal display device
JPH04194820A (en) * 1990-11-22 1992-07-14 Sharp Corp Liquid crystal display device
JPH0566384A (en) * 1991-09-10 1993-03-19 Sharp Corp Liquid crystal display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64519A (en) * 1986-05-19 1989-01-05 Seiko Epson Corp Liquid crystal display device

Also Published As

Publication number Publication date
KR900013335A (en) 1990-09-05
JPH0373921A (en) 1991-03-28
KR940006984B1 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
JP5131510B2 (en) Liquid crystal display device and terminal device
US7999893B2 (en) Complex birefringent medium, polarizing plate, and liquid crystal device
KR920009824B1 (en) Liquid crystal display device
JP4419959B2 (en) Liquid crystal display
WO2005078516A1 (en) Liquid crystal display element
CA2009319C (en) Liquid crystal display device
KR20040104662A (en) Liquid crystal display device
EP1724632A1 (en) A single-polarizer reflective bistable twisted nematic (BTN) liquid crystal display device
US10108047B2 (en) Liquid crystal display device
JP2667716B2 (en) Liquid crystal display
JP2573383B2 (en) Liquid crystal display
EP1130452A1 (en) Liquid crystal shutter
JP2780188B2 (en) Phase difference plate and liquid crystal electro-optical element using the same
EP1715375A1 (en) Bistable twisted nematic (BTN) liquid crystal display device
JPH08101381A (en) Liquid crystal display element
JP3022477B2 (en) Reflective liquid crystal display
JP2004029413A (en) Liquid crystal display element
JP3235912B2 (en) Liquid crystal display
JP3001767B2 (en) Liquid crystal display
JPH11326896A (en) Liquid crystal display
JPH0233130A (en) Liquid crystal panel
JPH02197816A (en) Liquid crystal display device
JPH02154226A (en) Liquid crystal display device
JP2849025B2 (en) Liquid crystal display
JP2515626B2 (en) Liquid crystal display device and retardation plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 13