JP2666065B2 - Ozone water production equipment - Google Patents
Ozone water production equipmentInfo
- Publication number
- JP2666065B2 JP2666065B2 JP63040306A JP4030688A JP2666065B2 JP 2666065 B2 JP2666065 B2 JP 2666065B2 JP 63040306 A JP63040306 A JP 63040306A JP 4030688 A JP4030688 A JP 4030688A JP 2666065 B2 JP2666065 B2 JP 2666065B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- ozone
- cooling
- gas
- cooling water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] この発明は排水・下水・食品の浄化・殺菌・脱色・脱
臭等に用いるオゾンを含む水(以下オゾン水と称する)
の製造装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to water containing ozone used for drainage, sewage, food purification, sterilization, decolorization, deodorization, etc. (hereinafter referred to as ozone water).
Related to a manufacturing apparatus.
[従来技術] オゾン水製造装置では一般にオゾナイザーで発生した
オゾンを含むガス(以下オゾン化ガスと称する)を原料
水と接触せしめてオゾンを水の中に吸収せしめると言う
方式がとられており、その際オゾンの発生効率を上げる
ためオゾナイザーは水冷され、またオゾン化ガスと原料
水との接触には別個のガス吸収装置が設けられていた。
これは従来オゾナイザーはそのオゾン発生部が、その水
冷部と一体構造で製作され、またガス吸収装置はこれと
別個の単体装置として製作されていたからに他ならな
い。そのためオゾン水製造装置が大形かつ複雑となり、
極めて高価なものとなっていた。[Prior art] In an ozone water producing apparatus, a method is generally employed in which a gas containing ozone generated by an ozonizer (hereinafter, referred to as ozonized gas) is brought into contact with raw water to absorb ozone into water. At that time, the ozonizer was water-cooled to increase ozone generation efficiency, and a separate gas absorbing device was provided for contact between the ozonized gas and the raw water.
This is because the ozonizer of the conventional ozonizer is manufactured integrally with the water cooling unit, and the gas absorbing device is manufactured as a separate unit. Therefore, the ozone water production equipment becomes large and complicated,
It was extremely expensive.
[発明が解決しようとする問題点] 本発明は従来のオゾン水製造装置においてオゾン化ガ
ス吸収装置とオゾナイザー水冷部とが別個の単体として
構成されているために生じた装置の大形化、複雑化、高
価格化という上記問題点を解決しようとするものであ
る。[Problems to be Solved by the Invention] In the present invention, the conventional apparatus for producing ozone water has a large-sized and complicated apparatus which is generated because the ozonized gas absorption apparatus and the ozonizer water cooling unit are configured as separate units. It is intended to solve the above-mentioned problems of high cost and high price.
[問題点解決するための手段] 本発明は上記の問題点をオゾナイザーの水冷部とオゾ
ン化ガス吸収装置とを一体化し、この水冷部でオゾン化
ガスの原料水への吸収を行うことによって解決する。[Means for Solving the Problems] The present invention solves the above problems by integrating the water cooling section of the ozonizer and the ozonized gas absorbing device, and absorbing the ozonized gas into the raw water in the water cooling section. I do.
すなわち本発明によるオゾン水製造装置は、酸素を含
む原料ガスの入口と該原料ガスから沿面放電によってオ
ゾン化ガスを発生する為のオゾン発生部と、該オゾン化
ガスの出口を有すると共に、該オゾン発生部を水冷する
ための冷却水の入口と冷却部と冷却水の出口を有する所
の沿面放電型オゾナイザーを具備し、該オゾン発生部に
放電を発生せしめる為の電源を具備したオゾン発生装置
において、該オゾン化ガス出口を該冷却水入口付近に連
通し、該冷却部内において該オゾン化ガスと該冷却水と
を混合接触せしめて該オゾン発生部を冷却すると同時に
オゾン水を発生のうえ該冷却水出口よりオゾン水を外部
に供給する事を特徴とする。That is, the ozone water producing apparatus according to the present invention has an inlet for a source gas containing oxygen, an ozone generator for generating an ozonized gas from the source gas by surface discharge, and an outlet for the ozonized gas. An ozone generator comprising a creeping discharge type ozonizer having a cooling water inlet for cooling the generating part with water, a cooling part and a cooling water outlet, and a power supply for generating a discharge in the ozone generating part. The ozonized gas outlet is communicated with the vicinity of the cooling water inlet, and the ozonized gas and the cooling water are mixed and contacted in the cooling section to cool the ozone generating section and simultaneously generate the ozone water and perform the cooling. It is characterized by supplying ozone water to the outside from the water outlet.
この場合オゾンの冷却水との混合接触を促進し、その
吸収を速めるため、上記冷却部の内部にラッシヒリング
やペブル等の充填材、金網、有棘金属線その他の抵抗材
等よりなる吸収促進要素を設たり、あるいは特別の気液
混合ガス吸収装置等の適当な吸収促進要素を設けること
が望ましい。In this case, in order to promote mixed contact of the ozone with the cooling water and to accelerate the absorption thereof, an absorption promoting element made of a filler such as a Raschig ring or a pebble, a wire mesh, a barbed metal wire, or another resistance material is provided inside the cooling section. It is desirable to provide a suitable absorption promoting element such as a special gas-liquid mixed gas absorbing device or the like.
またこの場合に用いる沿面放電型オゾナイザーは誘電
体基板の一方の面上に接して線状電極を配設し、該誘電
体基板の少なくとも一部を介して(該基板の他方の面上
に接して、或いは後述する様に該誘電体基板の肉厚内に
埋入して)該線状電極に対向する位置に面状電極を配設
してなる沿面放電型オゾナイザーを用い、該冷却部を該
誘電体基板の該線状電極を配設した方と反対側の表面に
接して配設する事によってオゾナイザーの冷却を促進
し、オゾン発生効率の大幅な向上とオゾナイザーの小形
化が可能となる。In addition, the surface discharge type ozonizer used in this case is provided with a linear electrode in contact with one surface of the dielectric substrate, and is provided through at least a part of the dielectric substrate (in contact with the other surface of the substrate). Or a surface discharge type ozonizer having a planar electrode arranged at a position facing the linear electrode (embedded in the thickness of the dielectric substrate as described later), and By arranging the dielectric substrate in contact with the surface on the side opposite to the side on which the linear electrodes are arranged, cooling of the ozonizer is promoted, and the ozone generation efficiency can be greatly improved and the ozonizer can be downsized. .
特に該沿面放電型オゾナイザーの該誘電体基板を円筒
状とし、その内面に該線状電極を配設、その外面に該面
状電極を配設する構造とする時は、該冷却部をウオータ
ー・ジャケットとして該円筒状誘電体基板の外側に水密
に設けたり、あるいは該冷却部を水タンクとし該円筒状
沿面放電型オゾナイザーをその水中に浸して冷却できる
ので、その構造が簡単となり、極めて好適である。In particular, when the dielectric substrate of the creeping discharge type ozonizer has a cylindrical shape, the linear electrodes are provided on the inner surface thereof, and the planar electrodes are provided on the outer surface thereof, the cooling portion is preferably provided with a water / water heater. Since the jacket can be provided watertight outside the cylindrical dielectric substrate, or the cooling unit can be cooled by immersing the cylindrical surface discharge type ozonizer in the water as a water tank, the structure becomes simple and extremely suitable. is there.
この際該誘電体基板の材料に純度92%以上の高純度ア
ルミナセラミック基板を使用し、該線状電極ならびに該
面状電極の材料としてタングステンを用いるときは、両
電極を容易に該アルミナセラミック基板と共に焼結出
来、丈夫な一体構造に出来ると共にこの高純度アルミナ
セラミックが有する高い熱伝導性のため冷却効果が向上
して特別に好都合である。At this time, when a high-purity alumina ceramic substrate having a purity of 92% or more is used as the material of the dielectric substrate, and tungsten is used as the material of the linear electrode and the planar electrode, both electrodes can be easily formed on the alumina ceramic substrate. The high-purity alumina ceramic has a high thermal conductivity, and the cooling effect is improved.
一般にオゾン化ガスと接触混合して生成せるオゾン水
は、多数の気泡状のオゾン化ガスを含んでいるのでこれ
をオゾン水から分離するため、何等かの気液分離部を設
ける必要がある。この様な気液分離部としては任意の気
液分離装置を用い得るが、該冷却部の上部にガス空間を
形成してこれを気液分離部とし、ここで浮力によって上
昇せる該オゾン化ガス気泡を破裂せしめて残留オゾン化
ガスを蓄積し、これを適宜外部に排出するようにしても
良い。In general, ozone water produced by contacting and mixing with ozonized gas contains a large number of gaseous ozonized gas. Therefore, in order to separate the ozone water from ozone water, it is necessary to provide some kind of gas-liquid separation unit. As such a gas-liquid separation unit, any gas-liquid separation device can be used, but a gas space is formed above the cooling unit and this is used as a gas-liquid separation unit. Bubbles may be ruptured to accumulate residual ozonized gas, which may be discharged to the outside as appropriate.
この場合一般に外部に排出する残留オゾン化ガスは人
体や器物に有害なオゾンを含んでいるので、これをオゾ
ン吸着用活性炭、オゾン分解触媒、あるいはオゾン熱分
解用加熱器等よりなるオゾン除去装置(以下オゾン・キ
ラーと称する)に導いてオゾンを除去した後外気に放出
するようにする必要がある。In this case, since the residual ozonized gas discharged to the outside generally contains ozone harmful to the human body and equipment, the ozonized gas is converted into an ozone removing device including an activated carbon for ozone adsorption, an ozone decomposition catalyst, or a heater for ozone pyrolysis. (Hereinafter referred to as an ozone killer) to remove the ozone and release it to the outside air.
[作 用] 本発明は上述のような特徴と構成の結果、オゾン化ガ
スの水への吸収をオゾナイザーの水冷部で行うことで冷
却とオゾン水の生成を同時に達成できる。[Operation] As a result of the features and configurations described above, the present invention can achieve both cooling and generation of ozone water at the same time by absorbing ozonized gas into water in the water cooling section of the ozonizer.
[実施例] いま本発明の特徴と構成を実施例及び図面によって説
明する。[Embodiments] The features and configurations of the present invention will now be described with reference to embodiments and drawings.
第1図は本発明の一つの実施例の断面図、第2図はそ
の横断面図である。1は円筒状の沿面放電型オゾナイザ
ーで、92%の純度のアルミナ・セラミックからなる円筒
2の肉厚内に面状の誘導電極3が埋入され、該円筒2の
内側表面4の上に多数の平行な線状電極群5が該誘導電
極3に該アルミナ・セラミックの層6を介して対向配設
されている。7、7′は該線状電極群5の両端において
これらに接続された端部環状導体で、3、5、7、7′
はいずれもタングステンよりなり、該アルミナ・セラミ
ック円筒2と共に一体として焼結形成されたものであ
る。8は高周波高圧電源で、ケーブル9、9′を介して
両電極3、5の間に高周波高電圧を印加し、該線状電極
群5のそれぞれの側縁部より該円筒内面4に沿って沿面
放電を発生せしめる。10は酸素ボンベ、空気ボンベ、除
湿機とコンプレッサーを組み合わせてなる乾燥空気源、
あるいは酸素富化装置とコンプレッサーを組み合わせて
なる酸素富化空気源等、酸素を含む原料ガスをオゾナイ
ザー1に供給するための原料ガス源である。該原料ガス
は該原料ガス源10からパイプ11、弁12、ガス入口13を介
して該円筒状沿面放電型オゾナイザー1の内部14に供給
され、上記沿面放電の作用で酸素の一部がオゾンに転化
されてオゾン化ガスが生成される。このオゾン化ガスは
ガス出口15からパイプ16、弁17を介して後にのべるベン
チュリー18のスロート部19に設けられたオゾン化ガス注
入口20から供給冷却水中に注入され、スロート部19を高
速で流れる冷却水の作用によって微細な気泡に分裂し、
冷却水中に均一に分散し、オゾン化ガスと冷却水との混
合接触が促進される。すなわち該ベンチュリー18はオゾ
ン化ガスの冷却水への吸収を促進する吸収促進要素を形
成している。FIG. 1 is a cross-sectional view of one embodiment of the present invention, and FIG. 2 is a cross-sectional view thereof. Reference numeral 1 denotes a cylindrical surface discharge type ozonizer in which a planar induction electrode 3 is embedded in the thickness of a cylinder 2 made of 92% pure alumina ceramic. Are arranged opposite to the induction electrode 3 with the alumina ceramic layer 6 interposed therebetween. Reference numerals 7, 7 'denote end annular conductors connected to both ends of the linear electrode group 5 at 3, 5, 7, 7'.
Are made of tungsten and are formed integrally with the alumina-ceramic cylinder 2 by sintering. Reference numeral 8 denotes a high-frequency high-voltage power supply, which applies a high-frequency high voltage between the electrodes 3 and 5 via cables 9 and 9 ′, and extends along the cylindrical inner surface 4 from each side edge of the linear electrode group 5. Causes creeping discharge. 10 is a dry air source that combines an oxygen cylinder, an air cylinder, a dehumidifier and a compressor,
Alternatively, a source gas source for supplying a source gas containing oxygen to the ozonizer 1, such as an oxygen-enriched air source obtained by combining an oxygen-enriching device and a compressor. The source gas is supplied from the source gas source 10 to the interior 14 of the cylindrical surface discharge type ozonizer 1 through a pipe 11, a valve 12, and a gas inlet 13, and a part of oxygen is converted to ozone by the action of the surface discharge. It is converted to ozonized gas. This ozonized gas is injected into supply cooling water from an ozonized gas injection port 20 provided in a throat section 19 of a venturi 18 to be described later through a pipe 16 and a valve 17 from a gas outlet 15 and flows through the throat section 19 at high speed Split into fine bubbles by the action of cooling water,
It is uniformly dispersed in the cooling water and promotes mixed contact between the ozonized gas and the cooling water. That is, the venturi 18 forms an absorption promoting element for promoting absorption of the ozonized gas into the cooling water.
21はステンレス・スチール円筒よりなるウオーター・
ジャッケットで、上記円筒状沿面放電型オゾナイザー1
の周囲に冷却水通路をなす間隙22を隔てて同心的に配設
され、その両端付近に冷却水の入口23と出口24を有す
る。23、24は第2図に示すように該間隙22に接線方向に
取り付けられ、冷却水がその通路22の内部で螺旋状に旋
回流動するようになっている。25、26は該円筒状沿面放
電型オゾナイザー1および該ウオーター・ジャッケット
21の両端においてこれらを気密かつ水密つに保持固定す
る円板状の絶縁物端板である。27は水道水蛇口、水タン
ク、あるいは水タンクとポンプの組み合わせ等よりなる
冷却水源で、冷却水をパイプ28、弁29、該ベンチュリー
18を介して該冷却水入口23より上記冷却水通路22の下端
に供給する。この過程で該冷却水が該ベンチュリー18の
スロート部19を高速で通過する際、その中に上記オゾン
化ガスが微細な泡と成って分散する事は上述の通りであ
る。21 is a water-made stainless steel cylinder
A cylindrical surface discharge type ozonizer 1 with a jacket
Are arranged concentrically with a gap 22 forming a cooling water passage around, and have cooling water inlets 23 and outlets 24 near both ends thereof. As shown in FIG. 2, reference numerals 23 and 24 are tangentially attached to the gap 22, so that the cooling water spirally flows inside the passage 22. 25 and 26 are the cylindrical surface discharge type ozonizer 1 and the water jacket.
21 is a disk-shaped insulator end plate for holding and fixing them at both ends in an airtight and watertight manner. Reference numeral 27 denotes a cooling water source comprising a tap water faucet, a water tank, or a combination of a water tank and a pump, which supplies cooling water to a pipe 28, a valve 29, and the venturi.
The cooling water is supplied to the lower end of the cooling water passage 22 from the cooling water inlet 23 through the cooling water passage 18. As described above, when the cooling water passes through the throat portion 19 of the venturi 18 at a high speed in this process, the ozonized gas is dispersed as fine bubbles therein.
30は第3図に示すようなステンレス・スチールの有棘
線で、ステンレス撚線31に一定の間隔でステンレス・ス
チールの棘状突起群32が固定されており、これが上記冷
却水通路22の内部を該セラミック円筒2の周囲を取り巻
いて螺旋状に配設されて吸収促進要素を形成している。
すなわち入口23より導入された上記のオゾン化ガス微細
気泡を分散せる冷却水は、上記螺旋状有棘線31に沿って
該冷却水通路22の内部を該セラミック円筒2の周囲に螺
旋状に旋回上昇する過程において、該セラミック円筒2
を強力に冷却すると共に、該棘状突起群32の作用で該オ
ゾン化ガス微細気泡と該冷却水との激しい混合撹拌・気
液接触が行われオゾンが冷却水に効果的に吸収されて短
時間内に所定の濃度のオゾン水が生成されるのである。Numeral 30 denotes a stainless steel barbed wire as shown in FIG. 3, in which a stainless steel barb 32 is fixed at regular intervals to a stainless stranded wire 31, which is formed inside the cooling water passage 22. Are spirally arranged around the ceramic cylinder 2 to form an absorption promoting element.
That is, the cooling water introduced from the inlet 23 to disperse the ozonized gas microbubbles spirals inside the cooling water passage 22 around the ceramic cylinder 2 along the spiral barbed line 31. In the process of ascending, the ceramic cylinder 2
The vigorously stirring and gas-liquid contact between the ozonized gas microbubbles and the cooling water is performed by the action of the spinous processes 32, and ozone is effectively absorbed by the cooling water to shorten the temperature. Ozone water of a predetermined concentration is generated within a period of time.
生成されたオゾン水は冷却水出口24からパイプ33、弁
34を介して外部の気液分離装置35に供給され、ここで残
留オゾン化ガスを除去されたオゾン水がパイプ36を介し
て目的とするプロセスへと供給される。The generated ozone water is supplied from the cooling water outlet 24 to the pipe 33 and the valve.
The ozone water from which the residual ozonized gas has been removed is supplied to an external gas-liquid separation device 35 via a pipe 34 and supplied to a target process via a pipe 36.
該気液分離装置35で水から分離されたた残留オゾン化
ガスはパイプ37、弁38を介して、上記のオゾン・キラー
39に導かれ、ここでオゾンを除去した上でパイプ40を介
して外気に放出される。The residual ozonized gas separated from the water in the gas-liquid separator 35 is passed through a pipe 37 and a valve 38 to the above-mentioned ozone killer.
It is led to 39, where the ozone is removed, and then released to the outside air via a pipe 40.
第4図は本発明の別の実施例を示す縦断面図である。
図に於ける1から40までの番号の要素の名称および機能
は第1図および第2図における同一番号の要素のそれと
同じである。43はオゾン水のタンクで、オゾン水となっ
た冷却水44が充満し、この中に既に記した円筒状沿面放
電型オゾナイザー1と、オゾン化ガスを冷却水に吸収す
るためのガス吸収装置45とが上部から挿入されている。
従って円筒状沿面放電型オゾナイザー1はその外側面が
このオゾン水と接触して強力に冷却される。但し、本例
の円筒状沿面放電型オゾナイザー1は、その縦断面を第
5図に示すように原料ガスの入口13が上部端板25の中心
に設けられており、ここから該セラミック円筒2の中心
軸に添って原料ガス導入パイプ41が下方に伸長配設さ
れ、その下端開口部42が下部端板26の上面の直上に位置
している。ここから導入された原料ガスは該セラミック
円筒2の内部を上昇する過程で、図には省略され描かれ
ていない誘導電極3、線状電極群5により円筒内表面4
に発生する沿面放電の作用によりオゾンを生じてオゾン
化ガスとなり、ガス出口15よりパイプ16、弁17を介して
上記ガス吸収装置45の入口46へと供給される。冷却水源
27からの冷却水はパイプ28、弁29を介して同じく該ガス
吸収装置45の入口46へと供給される。該入口46から該ガ
ス吸収装置45内に供給されたオゾン化ガスと冷却水はそ
の内部で強力な気液撹拌接触作用を受け、オゾンが冷却
水中に有効に吸収されてオゾン水を生成する。生成オゾ
ン水は残留オゾン化ガスの微細気泡を多数含んだ状態で
該ガス吸収装置45下部の出口47から該タンク43内へと放
出される。該ガス吸収装置45にはいかなる原理・構造の
ものを用いても良いが、本例では円筒状のケース48内に
捩じり翼要素49を多数充填した構造のものが用いられて
いる。該円筒状ケース48内の相隣る捩じり翼要素はそれ
ぞれ捩じり方向が逆となっており、かつ接触部に於ける
双方の翼端縁が直交するように配設されているので冷却
水は一つの捩じり翼要素から次の捩じり翼要素に移るご
とにその回転方向が激しく逆転し、有効な気液混合接触
が行われてオゾンが短時間内に冷却水に吸収され所定の
濃度のオゾン水となる。該タンク43内では残留オゾン化
ガスの微細気泡は浮力により上昇し、上部空間50の下部
のオゾン水の液面51に至ってここで破裂して気液分離さ
れ、該空間50内にガスとして蓄積する。52はオゾン水の
排出管でその下端の吸水口53は該タンク43の床面54′の
直上に位置し、上記気泡を含まないオゾン水がここから
該排出管52を通過して該タンク43から排出され、パイプ
33、弁34を介して目的とするプロセスへと供給される。
54は残留オゾン化ガスの排出口でパイプ37、調節弁55を
介して既にのべたオゾン・キラー39に連通し、該残留オ
ゾン化ガスは該オゾン・キラー39内でオゾンを除去され
た後、パイプ40を経て外気に放出される。56、57はそれ
ぞれ上部および下部の液面センサーで液面制御部58に接
続され、オゾン水の液面51がセンサー56の位置を越えて
上昇すると該調節弁55を閉じて残留オゾン化ガスの排出
を止め、オゾン水の液面51がセンサー57の位置を越えて
下降すると該調節弁55を開いて残留オゾン化ガスの排出
を許して、該オゾン水の液面51をほぼ一定の位置に保持
し、そのオゾン・キラー39への進入を防止する。FIG. 4 is a longitudinal sectional view showing another embodiment of the present invention.
The names and functions of the elements numbered 1 to 40 in the figures are the same as those of the elements of the same number in FIGS. 1 and 2. Reference numeral 43 denotes an ozone water tank, which is filled with cooling water 44 which has been turned into ozone water, and a cylindrical surface discharge type ozonizer 1 already described therein and a gas absorbing device 45 for absorbing ozonized gas into the cooling water. And are inserted from the top.
Therefore, the outer surface of the cylindrical surface discharge type ozonizer 1 is in contact with the ozone water and is cooled strongly. However, the cylindrical creepage discharge type ozonizer 1 of this example has an inlet 13 for the raw material gas provided at the center of the upper end plate 25 as shown in FIG. A source gas introduction pipe 41 extends downward along the central axis, and its lower end opening 42 is located immediately above the upper surface of the lower end plate 26. The raw material gas introduced therein rises in the inside of the ceramic cylinder 2, and is formed by an induction electrode 3 and a linear electrode group 5 which are not shown in the figure and are not shown in the drawing.
Ozone is generated by the action of the creeping discharge generated in the gas and becomes an ozonized gas, which is supplied from the gas outlet 15 to the inlet 46 of the gas absorbing device 45 via the pipe 16 and the valve 17. Cooling water source
The cooling water from 27 is also supplied to the inlet 46 of the gas absorber 45 via the pipe 28 and the valve 29. The ozonized gas and the cooling water supplied from the inlet 46 into the gas absorbing device 45 are subjected to a strong gas-liquid agitation contact action therein, and ozone is effectively absorbed into the cooling water to generate ozone water. The generated ozone water is discharged into the tank 43 from the outlet 47 at the lower part of the gas absorbing device 45 in a state containing many fine bubbles of the residual ozonized gas. The gas absorbing device 45 may be of any principle and structure, but in this example, a structure in which a cylindrical case 48 is filled with a large number of torsion wing elements 49 is used. Adjacent torsional wing elements in the cylindrical case 48 are arranged so that the torsional directions are opposite to each other, and both wing end edges at the contact portion are orthogonal to each other. As the cooling water moves from one torsion blade element to the next, the direction of rotation reverses violently, effective gas-liquid mixing contact takes place, and ozone is absorbed into the cooling water in a short time Then, it becomes ozone water of a predetermined concentration. In the tank 43, the fine bubbles of the residual ozonized gas rise by buoyancy, reach the liquid level 51 of the ozone water at the lower part of the upper space 50, rupture and separate therefrom, and accumulate as gas in the space 50. I do. Reference numeral 52 denotes an ozone water discharge pipe, and a water suction port 53 at the lower end thereof is located directly above a floor surface 54 'of the tank 43, and the ozone water containing no air bubbles passes through the discharge pipe 52 from the tank 43, and the tank 43 Discharged from the pipe
33, supplied to the target process via valve 34.
54 is an outlet of the residual ozonized gas, which communicates with the already-mentioned ozone killer 39 via the pipe 37 and the control valve 55, and after the residual ozonized gas is ozone removed in the ozone killer 39, It is released to the outside air via the pipe 40. Reference numerals 56 and 57 denote upper and lower liquid level sensors, respectively, which are connected to a liquid level controller 58. When the liquid level 51 of the ozone water rises above the position of the sensor 56, the control valve 55 is closed to remove residual ozonized gas. When the discharge is stopped and the liquid level 51 of the ozone water falls below the position of the sensor 57, the control valve 55 is opened to allow the discharge of the residual ozonized gas, and the liquid level 51 of the ozone water is kept at a substantially constant position. To prevent its entry into the ozone killer 39.
[発明の効果] 本発明は上述のような特徴と構成の結果、オゾン化ガ
スの水への吸収をオゾナイザーの水冷部で行うことで冷
却とオゾン水の生成を同時に達成でき、装置の小形化、
簡単化、および価格の大幅な低減が達成された。[Effect of the Invention] As a result of the above-described features and configurations, the present invention can simultaneously achieve cooling and generation of ozone water by absorbing ozonized gas into water in the water-cooling section of the ozonizer. ,
Simplification and a significant reduction in price have been achieved.
第1図は本発明の一実施例の縦断面図、第2図はその横
断面図、第3図はこの実施例に用いる有棘線の図、第4
図は本発明のいま一つの実施例の縦断面図、第5図はそ
の円筒状沿面放電型オゾナイザーの構造を示す縦断面図
である。図において 1……円筒状沿面放電型オゾナイザー 2……セラミック円筒 3……誘導電極 5……線状電極群 6……絶縁層 8……高周波高圧電源 10……原料ガス源 11,16,28,33,36,37,40……パイプ 12,17,29,34,38……弁 13……ガス入口 15……ガス出口 18……ベンチュリー 19……スロート部 20……オゾン化ガス注入口 21……ウオータージャッケット 22……冷却水通路 23……冷却水入口 24……冷却水出口 25……上部端板 26……下部端板 27……冷却水源 30……有棘線 31……撚線 32……棘状突起 35……気液分離装置 39……オゾン・キラー 41……原料ガス導入パイプ 43……オゾン水タンク 44……オゾン水 45……ガス吸収装置 46……ガス・水入口 47……ガス・水出口 48……円筒状ケース 49……捩じり翼要素 50……ガス空間 51……オゾン水液面 52……オゾン水排出管 53……吸水口 54……ガス排出口 55……調節弁 56……上部液面センサー 57……下部液面センサー 58……液面制御部1 is a longitudinal sectional view of one embodiment of the present invention, FIG. 2 is a transverse sectional view thereof, FIG. 3 is a view of a barbed line used in this embodiment, FIG.
FIG. 5 is a longitudinal sectional view of another embodiment of the present invention, and FIG. 5 is a longitudinal sectional view showing the structure of the cylindrical surface discharge type ozonizer. In the figure, 1 ... a cylindrical surface discharge type ozonizer 2 ... a ceramic cylinder 3 ... an induction electrode 5 ... a linear electrode group 6 ... an insulating layer 8 ... a high frequency high voltage power supply 10 ... a source gas source 11, 16, 28 , 33,36,37,40… Pipe 12,17,29,34,38… Valve 13… Gas inlet 15… Gas outlet 18… Venturi 19… Throat section 20… Ozonized gas inlet 21 Water jacket 22 Cooling water passage 23 Cooling water inlet 24 Cooling water outlet 25 Upper end plate 26 Lower end plate 27 Cooling water source 30 Barbed wire 31 Twist Line 32 Spinous process 35 Gas-liquid separator 39 Ozone killer 41 Gas supply pipe 43 Ozone water tank 44 Ozone water 45 Gas absorber 46 Gas and water Inlet 47 ... Gas / water outlet 48 ... Cylindrical case 49 ... Twisted wing element 50 ... Gas space 51 ... Ozone water level 52 ... Ozone water discharge pipe 53 ... water inlet 54 ...... gas outlet 55 ...... regulating valve 56 ...... upper liquid level sensor 57 ...... lower liquid level sensor 58 ...... liquid level controller
Claims (5)
ら沿面放電によってオゾンを含むオゾン化ガスを発生す
る為のオゾン発生部と該オゾン化ガスの出口を有すると
共に、該オゾン発生部を水冷するための冷却水の入口と
冷却部と冷却水の出口を有する所のオゾナイザーとし
て、誘電体基板の一方の面上に接して線状電極を配設し
該誘電体基板の少なくとも一部を介して該線状電極に対
向する位置に面状電極を配設し、かつ冷却部を該誘電体
基板の該線状電極を配設した方と反対側の表面に接して
設けた沿面放電型オゾナイザーを用い、該オゾン発生部
に沿面放電を発生せしめる為の電源を具備したオゾン発
生装置において、該オゾン化ガス出口を該冷却水入口付
近に連通し、該冷却部において該オゾン化ガスと該冷却
水とを混合接触せしめてオゾン発生部を冷却すると同時
に、オゾンを冷却水に吸収させオゾン水を発生のうえ該
冷却水出口よりオゾン水を外部に供給する事を特徴とす
るオゾン水製造装置。A source gas containing oxygen, an ozone generator for generating an ozonized gas containing ozone by creeping discharge from the source gas, and an outlet for the ozonized gas; As an ozonizer having a cooling water inlet, a cooling unit, and a cooling water outlet for water cooling, a linear electrode is disposed in contact with one surface of the dielectric substrate and at least a part of the dielectric substrate is disposed. Creeping discharge type in which a planar electrode is disposed at a position facing the linear electrode through a cooling unit, and a cooling unit is provided in contact with the surface of the dielectric substrate opposite to the surface on which the linear electrode is disposed. An ozonizer using an ozonizer and having a power supply for generating a creeping discharge in the ozone generating section, wherein the ozonized gas outlet communicates with the vicinity of the cooling water inlet, and the ozonized gas and the Mix and contact with cooling water Upon cooling the ozone generator Te simultaneously, ozone water production apparatus, characterized in that for supplying ozone water to the outside from the cooling water outlet upon generation of ozone water is absorbed ozone into the cooling water.
近の少なくともいずれかに該オゾン化ガスと該冷却水と
の混合接触を高め、該オゾン化ガスの該冷却水への吸収
を促進するための吸収促進要素を具備した事を特徴とす
る特許請求の範囲の第1項に記載せるオゾン水製造装
置。2. The cooling section enhances the mixed contact between the ozonized gas and the cooling water at least inside the cooling water or near the inlet of the cooling water to promote absorption of the ozonized gas into the cooling water. The ozone water producing apparatus according to claim 1, further comprising an absorption promoting element for the ozone water.
電体基板を有し、その内面に該線状電極が配設され、該
円筒状誘電体基板の少なくとも一部を介して該線状電極
に対向する位置に該面状電極を配設してなる円筒状沿面
放電型オゾナイザーである事を特徴とする特許請求範囲
の第1項に記載せるオゾン水製造装置。3. The surface discharge type ozonizer has a cylindrical dielectric substrate, and the linear electrodes are disposed on the inner surface of the dielectric substrate, and the linear electrodes are disposed through at least a part of the cylindrical dielectric substrate. 2. The ozone water producing apparatus according to claim 1, wherein the ozone water producing apparatus is a cylindrical creeping discharge type ozonizer having the planar electrode disposed at a position facing the electrode.
部が該円筒状誘電体基板の外側を囲む如くに水密に設け
られたウオーター・ジャケットと該基板の外側面との間
の間隙に冷却水を流して成る水冷ジャケット式冷却部で
ある事を特徴とする特許請求範囲の第3項に記載せるオ
ゾン水製造装置。4. The cooling unit of the cylindrical surface discharge type ozonizer cools a gap between a water jacket provided in a watertight manner so as to surround the outside of the cylindrical dielectric substrate and an outer surface of the substrate. 4. The ozone water producing apparatus according to claim 3, wherein the ozone water producing apparatus is a water-cooled jacket-type cooling section formed by flowing water.
部が水タンクよりなり該オゾン発生部の大部分が該水タ
ンクの冷却水中に浸されている事を特徴とする特許請求
範囲の第1項から第3項に記載せるオゾン水製造装置。5. The ozone generator according to claim 1, wherein said cooling section of said cylindrical surface discharge type ozonizer comprises a water tank and most of said ozone generating section is immersed in the cooling water of said water tank. Item 3. An ozone water producing apparatus according to any one of Items 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63040306A JP2666065B2 (en) | 1988-02-23 | 1988-02-23 | Ozone water production equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63040306A JP2666065B2 (en) | 1988-02-23 | 1988-02-23 | Ozone water production equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01215396A JPH01215396A (en) | 1989-08-29 |
JP2666065B2 true JP2666065B2 (en) | 1997-10-22 |
Family
ID=12576934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63040306A Expired - Lifetime JP2666065B2 (en) | 1988-02-23 | 1988-02-23 | Ozone water production equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2666065B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH079493U (en) * | 1993-07-13 | 1995-02-10 | 孝志 前 | Mashimizu Demineralizer |
JP4066468B2 (en) * | 1997-02-17 | 2008-03-26 | 株式会社Ihi | Air ozone mixer and ozone fog generator |
JP5541557B2 (en) * | 2008-03-18 | 2014-07-09 | メタウォーター株式会社 | Water-cooled ozone generator |
US9623988B2 (en) | 2010-03-26 | 2017-04-18 | Philip Morris Usa Inc. | High speed poucher |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52111898A (en) * | 1976-03-18 | 1977-09-19 | Toshiba Corp | Cooling method for ozonizer |
JPS5331591A (en) * | 1976-09-06 | 1978-03-24 | Mitsubishi Electric Corp | Cooling method for ozonizer |
JPS61186205A (en) * | 1985-02-13 | 1986-08-19 | Mitsubishi Electric Corp | Ozone generator |
JPS6274484A (en) * | 1985-09-30 | 1987-04-06 | Toshiba Corp | Apparatus for purifying liquid |
JPS62201688A (en) * | 1986-02-28 | 1987-09-05 | Iwasaki Electric Co Ltd | Water treating device |
-
1988
- 1988-02-23 JP JP63040306A patent/JP2666065B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01215396A (en) | 1989-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4877588A (en) | Method and apparatus for generating ozone by corona discharge | |
US4834948A (en) | Device for enriching a fluid with ozone | |
US6296827B1 (en) | Method and apparatus for plasma-chemical production of nitrogen monoxide | |
US5069880A (en) | Ozone sterilizer | |
GB1363608A (en) | Process and apparatus for the ozone treatment of a liquid material | |
JP2666065B2 (en) | Ozone water production equipment | |
BRPI0710779A2 (en) | apparatus for treating liquid by contact with a particulate adsorbent material, and method for treating liquid with a particulate carbon based adsorbent material | |
CN114348968A (en) | Modular ozone generator with contact cooling | |
JP2005021869A (en) | Water treatment method by underwater plasma, and its water treatment apparatus | |
WO2014136063A2 (en) | Systems and methods for generating and collecting reactive species | |
KR102495509B1 (en) | Modular type water-cooled ozone generator | |
JP6618772B2 (en) | Atmospheric pressure plasma processing equipment | |
JP2666066B2 (en) | Water purification device using ozone | |
KR102620120B1 (en) | Modular type transparent ozone generator using contact cooling using graphene | |
US2867573A (en) | Production of oxidizing liquids | |
JP2001121168A (en) | Water treating apparatus | |
RU2169122C1 (en) | Water ozonization plant and water ozonization method | |
CN110255698B (en) | Water treatment device and method for strengthening mass transfer and oxidation process of ozone | |
CA2291525C (en) | Ozone generator | |
US5318684A (en) | Systems for the decomposition of water | |
JP3864597B2 (en) | Ozone water production facility | |
KR102650411B1 (en) | Nitric oxide manufacturing device | |
JPH06327749A (en) | Ozone fogger | |
CN218521116U (en) | Activated water device and activated water preparation equipment | |
JPH06144806A (en) | Ozone water generator |