JP2665763B2 - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JP2665763B2
JP2665763B2 JP63088223A JP8822388A JP2665763B2 JP 2665763 B2 JP2665763 B2 JP 2665763B2 JP 63088223 A JP63088223 A JP 63088223A JP 8822388 A JP8822388 A JP 8822388A JP 2665763 B2 JP2665763 B2 JP 2665763B2
Authority
JP
Japan
Prior art keywords
fets
fet
fet2
circuit
fet1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63088223A
Other languages
Japanese (ja)
Other versions
JPH01260905A (en
Inventor
祐一 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP63088223A priority Critical patent/JP2665763B2/en
Publication of JPH01260905A publication Critical patent/JPH01260905A/en
Application granted granted Critical
Publication of JP2665763B2 publication Critical patent/JP2665763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はFET入力型の差動増幅回路に関する。Description: TECHNICAL FIELD The present invention relates to an FET input type differential amplifier circuit.

[従来の技術] 第3図はFET入力型の差動増幅回路の基本形を示す接
続図で、図において1,2はそれぞれFET、5,7はそれぞれn
pnトランジスタ、6,8はそれぞれ負荷抵抗、9は定電流
回路、10は電源の正の端子からの電源線、11は電源の負
の端子からの電源線、12は第1の信号の信号線、13は第
2の信号の信号線、14は出力信号線である。
[Prior Art] FIG. 3 is a connection diagram showing a basic form of an FET input type differential amplifier circuit. In the figure, reference numerals 1 and 2 denote FETs, and reference numerals 5 and 7 denote n.
pn transistor, 6 and 8 are load resistors respectively, 9 is a constant current circuit, 10 is a power supply line from a positive terminal of the power supply, 11 is a power supply line from a negative terminal of the power supply, and 12 is a signal line of the first signal. , 13 are signal lines for the second signal, and 14 is an output signal line.

FETのピンチオフ電圧、すなわちドレイン・ソース電
圧Vdsを一定にしてゲート・ソース電圧Vgsを下げていっ
てドレイン・ソース電流Idsが0になるときのVgsの値、
及びピンチオフ電流、すなわちVgsを一定に保ちVdsを段
々上げて行ったときIdsが飽和するが、その飽和Idsの値
(以下、Idssで表す)は個々のFETによって異なり、第
3図の回路でFET1とFET2のヒンチオフが互いに異なる
と、第3図の差動増幅器では直流オフセットが発生す
る。
The pinch-off voltage of the FET, that is, the value of Vgs when the drain-source current Ids becomes 0 by lowering the gate-source voltage Vgs while keeping the drain-source voltage Vds constant,
When the pinch-off current, that is, Vgs is kept constant and Vds is stepped up, Ids is saturated. The value of the saturated Ids (hereinafter, referred to as Idss) differs depending on each FET, and the FET1 in the circuit of FIG. If the hinch-off of FET2 and that of FET2 are different from each other, a DC offset occurs in the differential amplifier of FIG.

このような直流オフセットを軽減するための従来の回
路を第4図に示す。第4図において第3図と同一符号は
同一または相当部分を示し、30,40はそれぞれFET2,1に
並列に接続されるFETである。第2図はこの発明を説明
するための説明図であるが、第2図によって第4図のFE
T30,40を説明する。この場合第2図の符号3,4を30,40と
読みかえる。同一のウエハ表面に形成されるFETはピン
チオフ電圧とピンチオフ電流において、相互相関が大き
いのでこの相互相関を利用して差動増幅回路のオフセッ
トを軽減する。第2図でFETのチャネルの方向をY軸と
しこれに直角な方向をX軸とし、FET1と2及びFET3と4
ははそれぞれX軸方向に互いに隣接し形成され、FET1と
3及びFET2と4はそれぞれY軸方向に互いに隣接して形
成される。第4図の場合はFET1と4(第4図の符号では
40)とを、FET2と3(第4図の符号では30)をそれぞれ
並列に接続して使用する。
A conventional circuit for reducing such a DC offset is shown in FIG. 4, the same reference numerals as those in FIG. 3 denote the same or corresponding parts, and reference numerals 30 and 40 denote FETs connected in parallel to the FETs 2 and 1, respectively. FIG. 2 is an explanatory view for explaining the present invention, and FIG.
T30 and T30 will be described. In this case, the reference numerals 3 and 4 in FIG. An FET formed on the same wafer surface has a large cross-correlation between the pinch-off voltage and the pinch-off current, and the offset of the differential amplifier circuit is reduced by using the cross-correlation. In FIG. 2, the direction of the channel of the FET is defined as the Y axis, and the direction perpendicular to the Y axis is defined as the X axis.
Are formed adjacent to each other in the X-axis direction, and FETs 1 and 3 and FETs 2 and 4 are formed adjacent to each other in the Y-axis direction. In the case of FIG. 4, FETs 1 and 4 (in FIG.
40) are used by connecting FETs 2 and 3 (reference numeral 30 in FIG. 4) in parallel.

FET1と2の特性の差はFET30と40の特性の差によって
補正されるので、第4図の回路のオフセット電圧は第3
図の回路のオフセット電圧より軽減される。
Since the difference between the characteristics of FETs 1 and 2 is corrected by the difference between the characteristics of FETs 30 and 40, the offset voltage of the circuit shown in FIG.
It is reduced from the offset voltage of the circuit shown.

[発明が解決しようとする課題] 以上のように、従来の回路ではFET1と40、FET2と30と
の間をクロスして接続するもので、配線が困難となり、
配線のため多くの面積を必要とするという問題があっ
た。また、FETはできるだけ小さな形のものを作って
も、2個並列に接続するとゲート・サブストレート間の
静電容量が大きくなり、データ処理の高速化という近年
の傾向には対応出来なくなる。
[Problems to be Solved by the Invention] As described above, in the conventional circuit, FET1 and 40 and FET2 and 30 are cross-connected to each other, and wiring becomes difficult.
There is a problem that a large area is required for wiring. Even if the FET is made as small as possible, connecting two in parallel increases the capacitance between the gate and the substrate, making it impossible to cope with the recent trend of speeding up data processing.

この発明は従来の回路の上述の問題点を解決し、オフ
セット電圧の小さな差動増幅回路を得ることを目的とす
る。
An object of the present invention is to solve the above-mentioned problems of the conventional circuit and to obtain a differential amplifier circuit having a small offset voltage.

[課題を解決するための手段] この発明では信号入力FETと同様なピンチオフ特性のF
ETを当該信号入力FETの負荷として接続した。
[Means for Solving the Problems] In the present invention, the F having the same pinch-off characteristics as the signal input FET
ET was connected as the load of the signal input FET.

[作用] Idssの大きなFETに対してはIdssの大きな負荷が接続
されるので当該FETに大きな電流を流し、そのVgsを低下
させてオフセット電圧を補正する。
[Operation] Since a load having a large Idss is connected to an FET having a large Idss, a large current is caused to flow through the FET and the Vgs thereof is reduced to correct the offset voltage.

[実施例] 以下、この発明の実施例を図面を用いて説明する。第
1図はこの発明の一実施例を示す接続図で、第1図にお
いて第3図と同一符号は同一または相当部分を示し、3,
4はそれぞれ負荷として接続されるFETである。また91,9
2は定電流回路9を構成するFETを示し、93はカレントミ
ラー(図示せず)によって定められるバイアス電圧であ
る。
Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a connection diagram showing an embodiment of the present invention. In FIG. 1, the same reference numerals as in FIG.
Reference numeral 4 denotes FETs connected as loads. 91,9
Reference numeral 2 denotes an FET constituting the constant current circuit 9, and reference numeral 93 denotes a bias voltage determined by a current mirror (not shown).

FET1,2に対するFET3,4の構成は先に第2図について説
明した通りであるが、第1図から明らかなようにFET3,4
は印加電圧が低い(例えば0.7V程度)ため極めて小さく
作ることが可能である。
The configuration of FETs 3 and 4 with respect to FETs 1 and 2 is as described above with reference to FIG. 2, but as is clear from FIG.
Can be made very small because the applied voltage is low (for example, about 0.7 V).

例えば、FET1のピンチオフ電流Idss1がFET2のピンチ
オフ電流Idss2に比較して大きいと仮定すると、第3図
に示す従来の回路では、FET1のゲート・ソース電圧Vgs1
はFET2のゲート・ソース電圧Vgs2に比し、Vgs1>Vgs2と
なって、オフセット電圧が発生するが、第1図の回路で
はFET3のピンチオフ電流もFET4のピンチオフ電流より大
きくなっているため、npnトランジスタ5に流れる電流
が増加し、npnトランジスタ7に流れる電流を減少さ
せ、Vgs1=Vgs2となるようにFET1,2の電流を変えるよう
に動作する。FET3,4に流れる電流は定電流回路9から分
配されるので、FET1と3、FET2と4の補償効果以上にオ
フセット電圧を軽減する効果がでる。
For example, assuming that the pinch-off current Idss1 of FET1 is larger than the pinch-off current Idss2 of FET2, in the conventional circuit shown in FIG. 3, the gate-source voltage Vgs1 of FET1
Vgs1> Vgs2 compared to the gate-source voltage Vgs2 of FET2, and an offset voltage is generated. In the circuit of FIG. 1, however, the pinch-off current of FET3 is larger than the pinch-off current of FET4. 5, the current flowing through the npn transistor 7 decreases, and the current of the FETs 1 and 2 is changed so that Vgs1 = Vgs2. Since the current flowing through the FETs 3 and 4 is distributed from the constant current circuit 9, the effect of reducing the offset voltage can be obtained more than the compensation effect of the FETs 1 and 3 and the FETs 2 and 4.

第1図においてFET1,2をピンチオフ電流Idssの動作点
を使用するとすれば、定電流回路9の電流値は2Idss
で、FET91,92はそれぞれIdssを流し、FET3,4はIdssより
大きなピンチオフ電流(例えば1.05〜1.10Idss)にして
おく。npnトランジスタ5のコレクタ電圧は一般に1.4V
と固定しているのでこれを飽和させないため、FET3,4の
ピンチオフ電流を大きくするのである。
Assuming that the operating points of the pinch-off current Idss are used for the FETs 1 and 2 in FIG. 1, the current value of the constant current circuit 9 is 2Idss
The FETs 91 and 92 pass Idss, respectively, and the FETs 3 and 4 have a pinch-off current larger than Idss (for example, 1.05 to 1.10 Idss). The collector voltage of npn transistor 5 is generally 1.4V
In order not to saturate this, the pinch-off currents of the FETs 3 and 4 are increased.

[発明の効果] 以上のようにこの発明によれば、入力FET1,2の直流特
性の差を負荷FET3,4の直流特性の差によって補償して、
入力オフセット電圧を軽減出来るうえ、負荷FET3,4の耐
圧が低いのでチップ占有面積を小さくすることが出来
る。
[Effects of the Invention] As described above, according to the present invention, the difference between the DC characteristics of the input FETs 1 and 2 is compensated by the difference between the DC characteristics of the load FETs 3 and 4,
The input offset voltage can be reduced, and the chip occupied area can be reduced because the withstand voltage of the load FETs 3 and 4 is low.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例を示す接続図、第2図は第
1図のFETの構成を説明する説明図、第3図はFET入力型
の差動増幅回路の基本形を示す接続図、第4図は従来の
回路を示す接続図。 1……FET、2……FET、3……負荷FET、4……負荷FE
T、5……npnトランジスタ、7……npnトランジスタ、
9……定電流回路。 なお、図中同一符号は同一または相当部分を示す。
FIG. 1 is a connection diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram for explaining the configuration of the FET shown in FIG. 1, and FIG. 3 is a connection diagram showing a basic type of an FET input type differential amplifier circuit. FIG. 4 is a connection diagram showing a conventional circuit. 1 ... FET, 2 ... FET, 3 ... Load FET, 4 ... Load FE
T, 5 ... npn transistor, 7 ... npn transistor,
9 ... constant current circuit. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】FET(電界効果トランジスタ)のチャネル
の方向をY軸とするX−Y直交座標軸を想定し、同一ウ
エハの表面でFET1とFET2をX軸方向に互いに隣接して形
成し、FET1に対しY軸方向に隣接してFET3を形成し、FE
T2に対しY軸方向に隣接してFET3と同一側にFET4を形成
し、 定電流回路にFET1とFET2とを並列に接続し、FET1のゲー
トに第1の信号を入力し、FET2のゲートに第2の信号を
入力して差動増幅回路を構成し、 FET1の負荷としてnpnトランジスタ5とFET3との直列回
路を接続し、FET2の負荷としてnpnトランジスタ7とFET
4との直列回路を接続し、 npnトランジスタ5と7のベースは共にnpnトランジスタ
5のコレクタに接続し、FET3と4では、それぞれのゲー
トをそれぞれのドレインに接続して、 差動増幅器を構成する半導体集積回路。
Assuming an XY orthogonal coordinate axis having a channel direction of an FET (field effect transistor) as a Y axis, FET1 and FET2 are formed adjacent to each other in the X-axis direction on the surface of the same wafer. FET3 is formed adjacent to the
Form FET4 adjacent to T2 in the Y-axis direction on the same side as FET3, connect FET1 and FET2 in parallel to the constant current circuit, input the first signal to the gate of FET1, and connect it to the gate of FET2. A differential amplifier circuit is formed by inputting the second signal, a series circuit of npn transistor 5 and FET3 is connected as a load of FET1, and an npn transistor 7 and FET are connected as a load of FET2.
4 is connected to the series circuit, the bases of npn transistors 5 and 7 are both connected to the collector of npn transistor 5, and the gates of FETs 3 and 4 are connected to their respective drains to form a differential amplifier. Semiconductor integrated circuit.
JP63088223A 1988-04-12 1988-04-12 Semiconductor integrated circuit Expired - Fee Related JP2665763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63088223A JP2665763B2 (en) 1988-04-12 1988-04-12 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63088223A JP2665763B2 (en) 1988-04-12 1988-04-12 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH01260905A JPH01260905A (en) 1989-10-18
JP2665763B2 true JP2665763B2 (en) 1997-10-22

Family

ID=13936875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63088223A Expired - Fee Related JP2665763B2 (en) 1988-04-12 1988-04-12 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2665763B2 (en)

Also Published As

Publication number Publication date
JPH01260905A (en) 1989-10-18

Similar Documents

Publication Publication Date Title
JPS6395734A (en) Logic interface circuit with high stability and low rest current
JP3320445B2 (en) Current memory cell
JP2724872B2 (en) Input circuit for semiconductor integrated circuit
US5834967A (en) Semiconductor integrated circuit device
US5168175A (en) Semiconductor integrated circuit using junction field effect transistor as current control element
KR960009161A (en) Semiconductor integrated circuit
US5095230A (en) Data output circuit of semiconductor device
US5808501A (en) Voltage level shifter and method
EP0541756B1 (en) Solid state sensor circuit using cmos technology
JPS63293968A (en) Capacitor circuit structure
JP2665763B2 (en) Semiconductor integrated circuit
US7081775B2 (en) Bias technique for operating point control in multistage circuits
JP3160000B2 (en) Buffer and method for providing unity gain
US5661431A (en) Output circuit in Darlington configuration
US5091689A (en) Constant current circuit and integrated circuit having said circuit
JP3175493B2 (en) Current detection circuit
US4947056A (en) MOSFET for producing a constant voltage
JPH038357A (en) Semiconductor integrated circuit device
JPH0618305B2 (en) Operational amplifier circuit
JPH0436575B2 (en)
JPS62230207A (en) Differential amplifier employing n-type channel insulated gate field effect transistor
JPH03746Y2 (en)
JPS63303410A (en) Semiconductor ic device
JPH0327606A (en) Field effect transistor amplifying circuit
JPS63174426A (en) Inverter circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees