JP2664319B2 - Air-fuel ratio sensor - Google Patents

Air-fuel ratio sensor

Info

Publication number
JP2664319B2
JP2664319B2 JP4325179A JP32517992A JP2664319B2 JP 2664319 B2 JP2664319 B2 JP 2664319B2 JP 4325179 A JP4325179 A JP 4325179A JP 32517992 A JP32517992 A JP 32517992A JP 2664319 B2 JP2664319 B2 JP 2664319B2
Authority
JP
Japan
Prior art keywords
electrode
air
fuel ratio
solid electrolyte
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4325179A
Other languages
Japanese (ja)
Other versions
JPH05240829A (en
Inventor
清光 鈴木
隆生 笹山
政之 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18173894&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2664319(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4325179A priority Critical patent/JP2664319B2/en
Publication of JPH05240829A publication Critical patent/JPH05240829A/en
Application granted granted Critical
Publication of JP2664319B2 publication Critical patent/JP2664319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は内燃機関の空燃比制御装
置用センサに係り、特にリッチ領域,理論空燃比及びリ
ーン領域の3状態の空燃比を広範囲に検出可能な自動車
用空燃比センサに関する。 【0002】 【従来の技術】内燃機関はその機関状態に応じて、空気
過剰率λがλ<1の領域(リッチ領域)、λ=1(理論空
燃比)、λ>1の領域(リーン領域)で運転することが
望ましく、単一の空燃比センサでリッチ領域からリーン
領域までの空燃比を幅広く検出することが要求されてい
る。 【0003】一方、空燃比あるいは空気過剰率λに対す
る排ガス中の残存酸素濃度と一酸化炭素濃度の関係は図
11に示されるように、リーン領域においては酸素
(O2)濃度、リッチ領域においては未燃ガスである一酸
化炭素(CO)濃度が空燃比に対応してほぼリニアに変
化する。 【0004】これらの残存酸素濃度や一酸化炭素の濃度
を利用して、各領域の空燃比を個別に検出する従来の空
燃比センサの基本原理を図12(A)〜(C)に示す。空
燃比センサは電極1,ジルコニア固体電解質2,電極
3,保護膜4及び電流計5よりなる。 【0005】図12(A)は例えば特開昭53−66292 号
で知られているように、電極1を陰極,電極3を陽極と
して両電極間に約0.5 ボルトの励起電圧Eを印加し
て、λ<1のリッチ領域を検出するものである。即ち、
保護膜4はガス拡散抵抗体として機能し、保護膜4中を
電極3部へ拡散する一酸化炭素などの未燃ガスと燃焼反
応する酸素ガスは大気雰囲気と接する電極1部から電極
3部へ、ジルコニア固体電解質2中を酸素イオンの形で
移送される。従って、電流計5で計測されるポンプ電流
P は電極1から電極3へ移送される酸素イオンの量で
あり、保護膜4中を電極3部へ拡散する未燃ガスの量に
対応する故、このIP 値からリッチ領域の空燃比をアナ
ログ的に検出するものである。 【0006】また、図12(B)に示すように、保護膜
4を介して排気雰囲気と接する電極3を基準として、両
電極間の起電力eλ を検出すると、このeλ 値は理論
空燃比で約1ボルト,ステップ状に変化する故、eλ
からλ=1をほぼディジタル的に検出できることが例え
ば特開昭47−37599 号などで知られている。 【0007】なお、図12(C)に示すように、電極3
を陰極として両電極間に約0.5 ボルトの励起電圧Eを
印加すると、電極3部から電極1部へ酸素イオンがポン
ピングされ、電流計5でポンプ電流IP が計測される。
このポンプ電流値IP は保護膜を介して、電極3部へ拡
散する酸素の量に対応する故、このIP 値からλ>1の
リーン領域を検出できることが例えば特開昭52−69690
号で知られている。 【0008】図12(A)〜(C)に示した従来の空燃比
センサの特性の一例を図13に示す。リーン領域の特性
は一点鎖線,リッチ領域の特性は点線,理論空燃比点の
検出特性は実線で示される。このように、各領域を個別
に検出することは知られているが、幅広い空燃比を一貫
した手法で円滑に検出する構成は未だ提案されていな
い。 【0009】なお、図12(B)は拡散律速に基づいた
原理でない故、同図の保護膜4のガス拡散抵抗度合は図
12(A),(C)の場合より小さく形成されている。一
般的には図12(B)の保護膜4の厚さは他に比べて、
薄く形成されている。 【0010】また、電極間に一定の電流を励起して、両
電極間に発生する端子電圧から空燃比をアナログ的に検
出できることが例えば特開昭55−62349 号や同55−1544
50号などで知られている。そして、両電極の極性を切換
えることによって、リッチ及びリーン領域の空燃比を検
出できることが示されている。しかし、どのような方法
で、どの時点で極性を切換えるかは示されていない。 【0011】また、両電極と電子回路間の結線を切換
え、センサの測定モードを変更することにより、理論空
燃比とリーン領域の空燃比を検出する方法が特開昭58−
48749号で知られている。 【0012】 【発明が解決しようとする課題】しかし、上記従来技術
ではリッチ領域またはリーン領域の各領域を個別に検出
することは行なっているが、幅広い空燃比を円滑に検出
する点については配慮されていなかった。 【0013】本発明の目的はリッチ領域,理論空燃比及
びリーン領域の3状態の空燃比を簡単な構成で高精度に
検出できる空燃比センサを提供するにある。 【0014】 【課題を解決するための手段】上記目的は、袋管状のジ
ルコニア固体電解質と、前記固体電解質の大気雰囲気側
に形成した第一の電極と、前記固体電解質の排気雰囲気
側に形成した第二の電極と、前記第二の電極上に形成し
た拡散抵抗体とを備えた検出部と、前記固体電解質の内
部に設けられ、前記固体電解質を600℃以上に加熱す
るためのヒータと、前記検出部を駆動するための駆動回
路部とから構成された空燃比センサにおいて、前記駆動
回路部は前記第一の電極と前記第二の電極との間に双方
向に電流を流す手段を有し、前記第二の電極のポテンシ
ャル電位を前記駆動回路のグランドレベルより高い値に
設定することにより達成される。 【0015】 【作用】排気雰囲気側電極のポテンシャル電位が、検出
部を駆動するための駆動回路部のグランドレベルより高
い値に設定されているため、ジルコニア固体電解質中を
流れる酸素イオンの量からリッチ領域,理論空燃比及び
リーン領域の3状態の空燃比が連続的に検出される。 【0016】 【実施例】本発明による空燃比センサの実装状態を図1
4に示す。袋管状の検出部10は孔11を有する保護管
12内に配置され、ネジ13を有する栓体14内に固着
されて、排ガスの流動する排気管15に装着される。1
6は電極端子、17はヒータ端子であり、これらの端子
を介して検出部10は電子回路(図示せず)と接続され
る。なお、袋管状の検出部であるジルコニア固体電解質
10の内部には、これを加熱するために棒状のヒータ
(アルミナ棒に形成したWヒータなど)が装着される。 【0017】本発明の一実施例の説明に先行して、本発
明の基礎となる原理につき図1および図2に従い説明す
る。 【0018】今、大気雰囲気側電極と排気雰囲気側電極
間の図2において、理論空燃比(λ=1)でステップ状
の変化を示す曲線aの特性に対し、図中に例えば励起電
圧特性bで示すように、空気過剰率λによらず、所定の
大きさの電圧VE (例えば、0.45 ボルト)を励起
し、この励起電圧によりλ<1のリッチ領域では曲線の
起電力を低下させるように、λ>1のリーン領域では逆
に増加させるように構成する。なお、電圧VE は後述す
るように特性c,dのごとく所定の傾き又はステップ状
に変化させるよう印加してもよい。 【0019】図1は本発明に基づく原理構成図を示した
ものである。図1において酸素濃度の検出部と、この検
出部を駆動する駆動回路から構成される。20は袋管状
のジルコニア固体電解質であり、その内部に大気が導入
されている。21は棒状のヒータであり、ジルコニア固
体電解質20を少なくとも600℃以上の高温に加熱
し、酸素イオンの導電性を向上させる。ジルコニア固体
電解質20の大気雰囲気側には第1の電極22,排ガス
雰囲気側には第2の電極23が形成されている。これら
の電極は厚さが数〜数十μmの白金材料からなり、多孔
質に形成される。第2の電極23の表面上には拡散抵抗
体24が形成され、排気ガス雰囲気中から第2の電極2
3部へ拡散で流入する酸素や未燃ガスである一酸化炭素
などの流入を抑制する。拡散抵抗体24はスピネルなど
をプラズマ溶射したものであり、多孔質に製作される。
拡散の抵抗率を大きくするため、その厚さは数百μmで
あり、理論空燃比センサの数倍の厚さである。以上によ
り空燃比センサの検出部が構成される。 【0020】25は差動増幅器であり、VB はその電源
電圧である。第2の電極23はリアルグランド26より
一定電位だけハイレベルのポテンシャルグランド27に
接続される。第1の電極22は増幅器25の(−)側入
力端子に接続される。増幅器25の(+)側入力端子と
ポテンシャルグランド間には、励起電圧VR 設定用の電
圧源28を接続する。抵抗値Rの固定抵抗29はジルコ
ニア固体電解質20中を流れる酸素イオンの量、即ち酸
素ポンプ電流IP を出力電圧E0 に変換するためのもの
である。以上の構成により駆動回路が構成される。 【0021】以下、作用を説明する。 【0022】リーン領域においては、第2の電極23の
電位が第1の電極22の電位よりVR だけ低いため、こ
の励起電圧VR によって第2の電極23部の酸素はこの
電極部で酸素イオン(O--)に変換され、ジルコニア固
体電解質20中を酸素ポンプ作用によって、第1の電極
22部へ移送される。そして、この電極部で再び酸化さ
れ、大気雰囲気中に放出される。このとき、正のポンプ
電流IP (O--とは逆向き)が回路中に流れ、出力電圧
0 を変化させる。 【0023】IP >0なるポンプ電流値IP は排気ガス
雰囲気中より拡散抵抗24を介して、第2の電極23部
へ拡散によって流入する酸素量に対応する故、次式が成
立する。即ち、λを空気過剰率,Kを比例定数とすると IP =K(λ−1) …(1) 従って、空燃比センサの出力電圧E0 はポテンシャルグ
ランドの電位をV0 とすると E0 =VR+V0+IPR …(2) である故、(1),(2)式より、 E0 =VR+V0+K(λ−1)R …(3) となる。 【0024】理論空燃比(λ=1)においては、拡散抵
抗体24を介して第2の電極23部へ拡散で流入する排
気ガス中の残存酸素と一酸化炭素などの残存未燃ガスの
量は化学当量化であり、第2の電極の触媒作用により両
者は完全に燃焼する。そして、第2の電極23部では酸
素がなくなる故、第1の電極22と第2の電極23間に
電圧が励起されても、ジルコニア固体電解質20中を移
送される酸素イオンはなくなる。従って、電子回路中に
流れるポンプ電流はIP =0になる。 【0025】このときの出力電圧E0 は(3)式より E0 =VR+V0 …(4) となり、回路定数で決まる一定値になる。(4)式はIP
値に不変なる故、λ=1における出力電圧E0 は極めて
信頼性の高い特徴を有する。 【0026】リッチ領域においては、図2にて説明した
如く両電極間の起電力を励起電圧レベルまで低下させて
いるため、酸素イオンは第1の電極22部より第2の電
極23部へ、ジルコニア固体電解質20中をリーン領域
の場合の逆向きに流れる。この酸素イオン流は第2の電
極23部の酸素濃度を高めるように作用する。この酸素
イオンは第2の電極23部で酸化されて再び酸素ガスに
なり、拡散抵抗体24を介して排気ガス雰囲気中より第
2の電極23部へ拡散で流入する一酸化炭素などの未燃
ガスと燃焼する。 【0027】それ故、ジルコニア固体電解質20中を第
1の電極22部より第2の電極23部へ移送される酸素
イオンの量は、第2の電極23部へ拡散で流入する未燃
ガスの量に対応した値になる。この場合、電子回路中を
流れるポンプ電流値はIP <0となる。 【0028】なお、一酸化炭素などの未燃ガスの濃度と
空気過剰率λの間には図11に示した関係があるため、
リッチ領域においても(1)式〜(3)式が成立する。ただ
し、リーン領域ではλ>1なるためIP >0、リッチ領
域ではλ<1なるためIP <0になる。 【0029】次に本発明による空燃比センサの駆動回路
の一実施例を図3に従い説明する。なお、図中図1と同
一部分は図1のものと同じ番号で示している。 【0030】第2の電極23はポテンシャルグランド2
7(図中Y点)と接続され、増幅器30によって定電位
0 に制御されている。第1の電極22の電位は増幅器
25によって、(V0+VR)に制御されている。従っ
て、第1の電極22と第2の電極23間の差電圧、即ち
励起電圧VE は VE =(V0+VR)−V0=VR …(5) となり、空気過剰率λによらず一定に制御される。 【0031】リーン領域(λ>1)において、ポンピン
グ電流IP はX点→抵抗29→ジルコニア固体電解質2
0→ポテンシャル・グランドY点→増幅器30を介し
て、リアル・グランド26に流れる。 【0032】リッチ領域(λ<1)においては、ポテン
シャル・グランドY点→ジルコニア固体電解質20→抵
抗29→X点→増幅器25を介して、リアル・グランド
26に流れる。 【0033】理論空燃比(λ=1)においては、本セン
サは原理的にIP =0なる故、出力電圧E0 は雰囲気に
(4) 式で示す如く、(VR+V0)になる。 【0034】このように、本発明による空燃比センサの
一実施例によれば電極間の極性を切換えることなく、し
かも単一の電源回路でλ<1,λ=1及びλ>1の3状
態を連続的に検出できる利点が得られる。 【0035】図3に示す本発明の一実施例の構成により
測定した結果の一例を図4に示す。図4はV0 =4.5
5 ボルト,VR=0.45ボルトのときの測定結果を示
したものである。図中に実線で示されるように、リッチ
からリーン領域までの幅広い空燃比を連続的に検出する
ことができる。また、理論空燃比(λ=1)における出
力電圧E0はV0+VR =5ボルトと原理的に予測した値
になることも確認できた。 【0036】本実施例によれば、全領域の空燃比を高い
精度でリニアに検出でき、機関の状態に応じて空燃比の
円滑なフィードバック制御が可能となり、排気対策や燃
料経済性の点から従来システムよりはるかに優れた制御
システムの提供が可能になる。特に、リーン領域でのエ
ンジン制御を可能にできること、リッチ領域でのリニア
なフィードバック制御を可能にできることにより燃料効
率の大きな改善効果が期待できる。 【0037】センサ検出部のV−I特性を図5に示す。 【0038】図に示すように、ポンプ電流IP はある励
起電圧で一定の飽和電流値を示す。この飽和電流値を計
測することにより、空気過剰率λの検出が可能になる。
励起電圧VE がさらに大きくなると、ポンプ電流IP
飽和値より高い値を示す。これはジルコニア固体電解質
20がイオン伝導領域から電子伝導領域へ移行するため
である。空気過剰率λが小さいほど、小さい励起電圧V
R で電子伝導領域へ移行する。 【0039】λ>1の領域ではIP >0となり拡散抵抗
体24を介して第2の電極23部へ拡散で流入する酸素
の量に対応する。λ<1の領域ではIP <0となり、拡
散抵抗体24を介して第2の電極23部へ拡散で流入す
る一酸化炭素などの未燃ガスの量IP に対応する。な
お、図6はジルコニア固体電解質の温度Tg が700℃
のときのV−I特性である。 【0040】各空気過剰率λに対する飽和電流値IP
検出できれば、リッチからリーン領域までの幅広い空燃
比をリニアに検出することができる。図5のV−I特性
から理解できるように、空気過剰率λに対する励起電圧
特性をb特性,c特性あるいはd特性に設定することに
より、これらの飽和電流値を計測できる。 【0041】励起電圧特性がb特性の場合、λ=0.5
及びλ=1.5 近傍の飽和電流値の計測が困難になる。
これは励起電圧をc特性、望ましくはd特性のように変
更することにより解決される。 【0042】ジルコニア固体電解質は低温ほど、その内
部抵抗が増加するため、V−I特性の領域αは小さくな
る。従って低温ほど飽和電流値の計測が困難になり易
く、その程度はb特性が最も著しい。このために、ジル
コニア固体電解質をヒータにて高温度に加熱する必要が
ある。ジルコニア固体電解質をヒータにて、励起電圧特
性がb特性の場合は約750℃,c特性の場合は約70
0℃,d特性の場合は約670℃以上に加熱することが
望ましい。ヒータの所要電力や耐久性を考慮したとき、
b特性よりはc特性、c特性よりはd特性が望ましい。 【0043】なお、これらの励起電圧特性は図2に示す
b,c,d特性にそれぞれ相当する。 【0044】図6は図2に示される励起電圧特性cを得
るための一実施例を示す。すなわち、図3の構成に新た
に抵抗33と抵抗34を電源28とX点との間に図のよ
うに接続したものである。この結果、ポンプ電流値IP
によって変化する出力電圧E0 に応じて、抵抗34部に
は電位差γIP が発生し、この値だけ第1の電極22,
第2の電極23間の差電圧即ち、両電極間の励起電圧V
E を変化させる。抵抗34の抵抗値γをジルコニア固体
電解質20の内部抵抗に近い値に設定すると、空燃比セ
ンサの出力電圧E0 は排ガス温度の影響を受けにくくな
る。電位γIP は抵抗値rの他に、ポンプ電流値IP
よっても変化する故、空気過剰率λに対しても自動的に
変化することになり、両電極間の差電圧即ち励起電圧V
Eは図2中の特性cのようになる。本実施例の構成によ
れば、ジルコニア固体電解質の酸素イオン伝導度の温度
依存性を改善できる。 【0045】図6の他の実施例を図7に示す。なお、増
幅器280は図3中の電圧源28と同等の機能を有す
る。この回路構成によれば、ジルコニア固体電解質20
の温度Tg が650℃の場合でもその出力特性は図4中
へ実線で示した値と同一になり、同様に温度影響の対策
に効果がある。 【0046】図8は図2に示す励起電圧特性dを得るた
めの駆動回路の一実施例を示す。基本的には図7の回路
構成に新たに、加減算用の増幅器281,2出力コンパ
レータ41及びスイッチ42と43を付加したものであ
る。ポンプ電流IP =0で反転する2出力コンパレータ
41の出力信号V,でスイッチ42と43を駆動し、
加減算用の増幅器281の+側入力端子と−側入力端子
に電圧vを交互に与える。増幅器25の+側入力端子Z
点の電位をV* 、抵抗33部の電流値をiとすると V*=V0+VR+v+ri atλ>1 V*=V0+VR−v+ri atλ<1 …(6) となる。 【0047】このような回路構成にすることにより、両
電極間の励起電圧特性を図2中の特性dの如く与えるこ
とができる。従って、各空気過剰率λに対応した飽和ポ
ンプ電流値IP を検出するのに、この励起電圧特性dが
適していることは図5に示したV−I特性からも容易に
理解することができる。 【0048】図8の回路構成による測定結果の一例を図
9に示す。なお、この図はv=0.15ボルトのときの測定
結果を示している。この場合、図に示すように、理論空
燃比λ=1で出力電圧E0 は2vだけステップ状に変化
する。 【0049】2vだけステップ状に変化する本実施例に
おいて本質的な問題ではなく、λ≦1の領域で図9の特
性へ2vだけ加算すれば、全領域でその出力電圧E0
特性はリニアになる。 【0050】本実施例の構成によれば電極劣化(界面抵
抗の増加)に基因する精度低下の改善に効果がある。 【0051】 【0052】図10はジルコニア固体電解質が平板,拡
散抵抗体が例えば1個の孔よりなる場合を示している。 【0053】図1と図10で同一番号のものは、同一の
機能を有するものである。大気は通路32を介して、第
1の電極22部へ導入される。排気ガス中の残存酸素や
未燃ガスは孔形状の拡散抵抗体24を介して、拡散室3
1内の第2の電極23部へ拡散で流入するものである。
ジルコニア固体電解質20に固着されたアルミナ絶縁層
211内のヒータ212によって、ジルコニア固体電解
質20は酸素イオン伝導度の高い高温(例えば、600
℃以上)度に加熱制御される。 【0054】 【発明の効果】本発明によれば、リッチ領域,理論空燃
比及びリーン領域の3状態の幅広い空燃比を簡単な構成
により高精度にて検出できる空燃比センサを提供でき
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for an air-fuel ratio control device of an internal combustion engine, and particularly to a wide range of air-fuel ratios in three states of a rich region, a stoichiometric air-fuel ratio and a lean region. The present invention relates to an air-fuel ratio sensor for an automobile that can be detected at a time. 2. Description of the Related Art In an internal combustion engine, a region where the excess air ratio λ is λ <1 (rich region), λ = 1 (theoretical air-fuel ratio), and a region where λ> 1 (lean region) ), And it is required that a single air-fuel ratio sensor detects a wide range of air-fuel ratios from a rich region to a lean region. On the other hand, the relationship between the concentration of residual oxygen in exhaust gas and the concentration of carbon monoxide with respect to the air-fuel ratio or excess air ratio λ is shown in FIG.
In the (O 2 ) concentration and rich region, the concentration of carbon monoxide (CO) as an unburned gas changes almost linearly in accordance with the air-fuel ratio. FIGS. 12A to 12C show the basic principle of a conventional air-fuel ratio sensor for individually detecting the air-fuel ratio in each region by using the residual oxygen concentration and the concentration of carbon monoxide. The air-fuel ratio sensor includes an electrode 1, a zirconia solid electrolyte 2, an electrode 3, a protective film 4, and an ammeter 5. FIG. 12 (A) shows an example in which an electrode 1 is used as a cathode and an electrode 3 is used as an anode, and an excitation voltage E of about 0.5 volt is applied between the two electrodes as known in Japanese Patent Application Laid-Open No. 53-66292. Thus, a rich region where λ <1 is detected. That is,
The protective film 4 functions as a gas diffusion resistor, and an oxygen gas that burns and reacts with unburned gas such as carbon monoxide diffused in the protective film 4 to the electrode 3 portion from the electrode 1 portion in contact with the atmosphere to the electrode 3 portion. , In the zirconia solid electrolyte 2 in the form of oxygen ions. Therefore, the pump current I P measured by the ammeter 5 is the amount of oxygen ions transferred from the electrode 1 to the electrode 3 and corresponds to the amount of unburned gas diffusing in the protective film 4 to the electrode 3. it is intended to analog detect the air-fuel ratio of the rich region from the I P value. As shown in FIG. 12B, when an electromotive force e λ between the two electrodes is detected with reference to the electrode 3 in contact with the exhaust atmosphere via the protective film 4, the value of the e λ becomes theoretically empty. ratio of about 1 volt, because the changes stepwise, are known for, for example, JP 47-37599 can be substantially digitally detect lambda = 1 from e lambda value. [0007] As shown in FIG.
When applying an excitation voltage E of approximately 0.5 volts between the electrodes as a cathode, the oxygen ions are pumped from 3 electrodes to the electrode part, the pump current I P by the ammeter 5 is measured.
The pumping current I P via the protective film, thus corresponding to the amount of oxygen diffusing into 3 parts electrodes, it can be detected with this I from P value lambda> 1 the lean region, for example, JP 52-69690
No. known. FIG. 13 shows an example of the characteristics of the conventional air-fuel ratio sensor shown in FIGS. 12 (A) to 12 (C). The characteristic in the lean region is indicated by a dashed line, the characteristic in the rich region is indicated by a dotted line, and the detection characteristic of the stoichiometric air-fuel ratio point is indicated by a solid line. As described above, it is known that each area is individually detected, but a configuration for smoothly detecting a wide range of air-fuel ratios by a consistent method has not yet been proposed. Since FIG. 12 (B) is not based on the principle based on diffusion control, the degree of gas diffusion resistance of the protective film 4 in FIG. 12 (B) is formed smaller than in FIGS. 12 (A) and 12 (C). In general, the thickness of the protective film 4 in FIG.
It is formed thin. Further, it is known that an air-fuel ratio can be detected in an analog manner from a terminal voltage generated between both electrodes by exciting a constant current between the electrodes, for example, in Japanese Patent Application Laid-Open Nos. 55-62349 and 55-1544.
Known as No. 50. It is shown that by switching the polarity of both electrodes, the air-fuel ratio in the rich and lean regions can be detected. However, it is not shown how and at what time the polarity is switched. A method for detecting the stoichiometric air-fuel ratio and the air-fuel ratio in the lean region by changing the connection between the electrodes and the electronic circuit and changing the measurement mode of the sensor is disclosed in Japanese Patent Laid-Open No.
Known as 48749. [0012] However, in the above-mentioned prior art, each region of the rich region or the lean region is individually detected, but consideration is given to the point of smoothly detecting a wide air-fuel ratio. Had not been. An object of the present invention is to provide an air-fuel ratio sensor capable of detecting the air-fuel ratio in three states of a rich region, a stoichiometric air-fuel ratio, and a lean region with a simple configuration and with high accuracy. [0014] The above objects are attained by forming a bag-shaped tubular zirconia solid electrolyte, a first electrode formed on the atmosphere side of the solid electrolyte, and formed on the exhaust atmosphere side of the solid electrolyte. A second electrode, a detection unit including a diffusion resistor formed on the second electrode, and a heater provided inside the solid electrolyte , for heating the solid electrolyte to 600 ° C. or higher , An air-fuel ratio sensor comprising a drive circuit for driving the detection unit, wherein the drive circuit has means for flowing current bidirectionally between the first electrode and the second electrode. This is achieved by setting the potential potential of the second electrode to a value higher than the ground level of the drive circuit. Since the potential potential of the exhaust atmosphere side electrode is set to a value higher than the ground level of the drive circuit for driving the detection unit, the potential is rich from the amount of oxygen ions flowing through the zirconia solid electrolyte. The air-fuel ratio in three states of the region, the stoichiometric air-fuel ratio and the lean region is continuously detected. FIG. 1 shows a mounting state of an air-fuel ratio sensor according to the present invention.
It is shown in FIG. The tubular detection unit 10 is disposed in a protective tube 12 having a hole 11, fixed in a plug 14 having a screw 13, and attached to an exhaust pipe 15 through which exhaust gas flows. 1
Reference numeral 6 denotes an electrode terminal, and 17 denotes a heater terminal. The detection unit 10 is connected to an electronic circuit (not shown) via these terminals. Note that a rod-shaped heater (such as a W heater formed on an alumina rod) is mounted inside the zirconia solid electrolyte 10, which is a bag-shaped detection unit, to heat it. Prior to the description of an embodiment of the present invention, the principle underlying the present invention will be described with reference to FIGS. Now, in FIG. 2 between the atmosphere atmosphere side electrode and the exhaust atmosphere side electrode, the characteristic of the curve a showing a stepwise change at the stoichiometric air-fuel ratio (λ = 1) is compared with the excitation voltage characteristic b in the figure. As shown by, a voltage V E (for example, 0.45 volt) of a predetermined magnitude is excited regardless of the excess air ratio λ, and the excitation voltage reduces the electromotive force of the curve in the rich region of λ <1. In the lean region where λ> 1, it is configured to increase conversely. The voltage V E may be applied to vary the predetermined inclination or stepwise as the characteristic c, d as described below. FIG. 1 is a diagram showing a principle configuration according to the present invention. In FIG. 1, it is composed of an oxygen concentration detecting section and a drive circuit for driving the detecting section. Reference numeral 20 denotes a bag-shaped tubular zirconia solid electrolyte, into which air is introduced. Reference numeral 21 denotes a rod-shaped heater which heats the zirconia solid electrolyte 20 to a high temperature of at least 600 ° C. or higher to improve the conductivity of oxygen ions. A first electrode 22 is formed on the zirconia solid electrolyte 20 on the air atmosphere side, and a second electrode 23 is formed on the exhaust gas atmosphere side. These electrodes are made of a platinum material having a thickness of several to several tens of μm, and are formed porous. A diffusion resistor 24 is formed on the surface of the second electrode 23, and the second electrode 2 is removed from the exhaust gas atmosphere.
It suppresses the inflow of oxygen and unburned gas such as carbon monoxide which flow into the third part by diffusion. The diffusion resistor 24 is obtained by plasma spraying spinel or the like, and is made porous.
In order to increase the resistivity of diffusion, the thickness is several hundred μm, which is several times the thickness of the theoretical air-fuel ratio sensor. The detection unit of the air-fuel ratio sensor is configured as described above. Reference numeral 25 denotes a differential amplifier, and V B is its power supply voltage. The second electrode 23 is connected to a potential ground 27 at a higher level than the real ground 26 by a fixed potential. The first electrode 22 is connected to the (−) side input terminal of the amplifier 25. Between (+) side input terminal and the potential ground of the amplifier 25, to connect the excitation voltage V voltage source 28 for R configuration. The amount of the fixed resistor 29 of resistance R of oxygen ions flowing through the zirconia solid electrolyte 20 medium, that is, for converting the oxygen pump current I P to the output voltage E 0. A drive circuit is configured by the above configuration. The operation will be described below. [0022] In the lean region, the potential of the second electrode 23 is lower by V R than the potential of the first electrode 22, the oxygen of the second electrode 23 part by the excitation voltage V R is oxygen in the electrode portion It is converted into ions (O ) and is transferred to the first electrode 22 by the oxygen pump action in the zirconia solid electrolyte 20. Then, it is oxidized again at this electrode portion and released into the atmosphere. At this time, a positive pump current I P (O - opposite to the) flows in the circuit, varying the output voltage E 0. Since the pump current value I P satisfying I P > 0 corresponds to the amount of oxygen flowing into the second electrode 23 from the exhaust gas atmosphere via the diffusion resistor 24 by diffusion, the following equation is established. That is, the excess air ratio lambda, when the K a proportionality constant I P = K (λ-1 ) ... (1) Consequently, the output voltage E 0 of the air-fuel ratio sensor when the potential of the potential ground and V 0 E 0 = V R + V 0 + I P R ... because a (2), (1) and (2), E 0 = V R + V 0 + K (λ-1) R … (3) At the stoichiometric air-fuel ratio (λ = 1), the amount of residual oxygen and residual unburned gas such as carbon monoxide in the exhaust gas that diffuses into the second electrode 23 via the diffusion resistor 24. Is a chemical equivalent, and both are completely burned by the catalytic action of the second electrode. Since oxygen is depleted in the second electrode 23, even if a voltage is excited between the first electrode 22 and the second electrode 23, no oxygen ions are transferred in the zirconia solid electrolyte 20. Therefore, the pump current flowing through the electronic circuit becomes I P = 0. The output voltage E 0 at this time is given by E 0 = V R + V 0 ... (4) from the equation (3), and becomes a constant value determined by the circuit constant. Equation (4) is I P
Because it does not change in value, the output voltage E 0 at λ = 1 has a very reliable characteristic. In the rich region, since the electromotive force between both electrodes is reduced to the excitation voltage level as described with reference to FIG. 2, oxygen ions are transferred from the first electrode 22 to the second electrode 23. It flows through the zirconia solid electrolyte 20 in the opposite direction as in the lean region. This oxygen ion flow acts to increase the oxygen concentration of the second electrode 23. The oxygen ions are oxidized at the second electrode 23 and become oxygen gas again, and unburned carbon monoxide or the like flowing into the second electrode 23 from the exhaust gas atmosphere through the diffusion resistor 24 by diffusion. Combustion with gas. Therefore, the amount of oxygen ions transferred from the first electrode 22 to the second electrode 23 in the zirconia solid electrolyte 20 depends on the amount of unburned gas flowing into the second electrode 23 by diffusion. The value corresponds to the quantity. In this case, the value of the pump current flowing through the electronic circuit is I P <0. The relationship between the concentration of unburned gas such as carbon monoxide and the excess air ratio λ is shown in FIG.
Equations (1) to (3) also hold in the rich region. However, in the lean region, λ> 1 so that I P > 0, and in the rich region, λ <1 so that I P <0. Next, an embodiment of a driving circuit for an air-fuel ratio sensor according to the present invention will be described with reference to FIG. In the figure, the same parts as those in FIG. 1 are indicated by the same numbers as those in FIG. The second electrode 23 is a potential ground 2
7 (point Y in the figure), and is controlled to a constant potential V 0 by the amplifier 30. The potential of the first electrode 22 is controlled by the amplifier 25 to (V 0 + V R ). Accordingly, the first electrode 22 differential voltage between the second electrode 23, i.e. the excitation voltage V E is V E = (V 0 + V R) -V 0 = V R ... (5) next, the air excess ratio λ It is controlled to be constant regardless. In the lean region (λ> 1), the pumping current IP is changed from the point X → the resistance 29 → the zirconia solid electrolyte 2
0 → potential ground Y point → flow to real ground 26 via amplifier 30. In the rich region (λ <1), the current flows to the real ground 26 via the potential ground Y point → the zirconia solid electrolyte 20 → the resistor 29 → the X point → the amplifier 25. At the stoichiometric air-fuel ratio (λ = 1), since the sensor of the present invention has I p = 0 in principle, the output voltage E 0 is different from that of the atmosphere.
(4) as shown by equation becomes (V R + V 0). As described above, according to the embodiment of the air-fuel ratio sensor according to the present invention, the three states of λ <1, λ = 1 and λ> 1 can be obtained without switching the polarity between the electrodes and using a single power supply circuit. Can be continuously detected. FIG. 4 shows an example of a result measured by the configuration of one embodiment of the present invention shown in FIG. FIG. 4 shows V 0 = 4.5.
5 shows the measurement results when V volts and V R = 0.45 volts. As shown by the solid line in the figure, it is possible to continuously detect a wide air-fuel ratio from a rich region to a lean region. Further, it was also confirmed that the output voltage E 0 at the stoichiometric air-fuel ratio (λ = 1) was V 0 + V R = 5 volt, which is a value predicted in principle. According to this embodiment, the air-fuel ratio in the entire region can be linearly detected with high accuracy, and the smooth feedback control of the air-fuel ratio can be performed in accordance with the state of the engine. It is possible to provide a control system far superior to the conventional system. In particular, a great improvement in fuel efficiency can be expected by enabling the engine control in the lean region and the linear feedback control in the rich region. FIG. 5 shows the VI characteristics of the sensor detector. As shown in the figure, the pump current IP shows a constant saturation current value at a certain excitation voltage. By measuring the saturation current value, the excess air ratio λ can be detected.
When the excitation voltage V E is further increased, the pump current I P indicates a higher saturation value value. This is because the zirconia solid electrolyte 20 moves from the ion conduction region to the electron conduction region. The smaller the excess air ratio λ, the lower the excitation voltage V
R moves to the electron conduction region. In the region of λ> 1, I P > 0, which corresponds to the amount of oxygen flowing into the second electrode 23 through the diffusion resistor 24 by diffusion. In the range of λ <1, I P <0, which corresponds to the amount I P of unburned gas such as carbon monoxide flowing into the second electrode 23 through the diffusion resistor 24 by diffusion. FIG. 6 shows that the temperature T g of the zirconia solid electrolyte was 700 ° C.
This is the VI characteristic at the time of. If the saturation current value I P for each excess air ratio λ can be detected, a wide air-fuel ratio from a rich to a lean region can be detected linearly. As can be understood from the VI characteristic in FIG. 5, by setting the excitation voltage characteristic with respect to the excess air ratio λ to the b characteristic, the c characteristic, or the d characteristic, these saturation current values can be measured. When the excitation voltage characteristic is the b characteristic, λ = 0.5
And the measurement of the saturation current value near λ = 1.5 becomes difficult.
This can be solved by changing the excitation voltage to a c-characteristic, preferably a d-characteristic. Since the internal resistance of the zirconia solid electrolyte increases as the temperature decreases, the area α of the VI characteristic decreases. Therefore, it becomes easier to measure the saturation current value at a lower temperature, and the b characteristic is the most remarkable. For this purpose, it is necessary to heat the zirconia solid electrolyte to a high temperature with a heater. The zirconia solid electrolyte is heated by a heater at about 750 ° C. when the excitation voltage characteristic is b characteristic and about 70 ° C. when the excitation voltage characteristic is c characteristic.
In the case of 0 ° C. and d characteristics, it is desirable to heat to about 670 ° C. or more. Considering the required power and durability of the heater,
The c characteristic is preferable to the b characteristic, and the d characteristic is preferable to the c characteristic. These excitation voltage characteristics correspond to the b, c, and d characteristics shown in FIG. FIG. 6 shows an embodiment for obtaining the excitation voltage characteristic c shown in FIG. That is, a resistor 33 and a resistor 34 are newly connected between the power supply 28 and the point X as shown in the drawing in FIG. As a result, the pump current value I P
In response to the output voltage E 0 that changes due to the potential change, a potential difference γI P is generated in the resistor 34, and the first electrode 22,
The difference voltage between the second electrodes 23, that is, the excitation voltage V between the two electrodes
Change E. When the resistance value γ of the resistor 34 is set to a value close to the internal resistance of the zirconia solid electrolyte 20, the output voltage E 0 of the air-fuel ratio sensor is less affected by the exhaust gas temperature. Since the potential γI P changes not only with the resistance value r but also with the pump current value I P , it automatically changes with respect to the excess air ratio λ.
E becomes like the characteristic c in FIG. According to the configuration of the present embodiment, the temperature dependence of the oxygen ion conductivity of the zirconia solid electrolyte can be improved. FIG. 7 shows another embodiment of FIG. Note that the amplifier 280 has the same function as the voltage source 28 in FIG. According to this circuit configuration, the zirconia solid electrolyte 20
Even when the temperature Tg is 650 ° C., its output characteristics become the same as the values shown by the solid lines in FIG. 4, which is also effective for countermeasures against temperature effects. FIG. 8 shows an embodiment of a drive circuit for obtaining the excitation voltage characteristic d shown in FIG. Basically, an addition / subtraction amplifier 281 and an output comparator 41 and switches 42 and 43 are newly added to the circuit configuration of FIG. The switches 42 and 43 are driven by the output signal V of the two-output comparator 41, which is inverted when the pump current I P = 0,
The voltage v is alternately applied to the positive input terminal and the negative input terminal of the addition / subtraction amplifier 281. + Input terminal Z of amplifier 25
The potential at the point V *, the current value of the resistor 33 parts and i V * = V 0 + V R + v + ri atλ> become 1 V * = V 0 + V R -v + ri atλ <1 ... (6). With such a circuit configuration, an excitation voltage characteristic between both electrodes can be given as a characteristic d in FIG. Therefore, to detect the saturation pumping current I P corresponding to each excess air ratio lambda, that the excitation voltage characteristic d is suitable be readily understood from the V-I characteristic shown in FIG. 5 it can. FIG. 9 shows an example of the measurement results obtained by the circuit configuration of FIG. This figure shows the measurement result when v = 0.15 volt. In this case, as shown in the figure, the output voltage E 0 changes stepwise by 2v at the stoichiometric air-fuel ratio λ = 1. This is not an essential problem in the present embodiment in which the output voltage E 0 changes in a stepwise manner by 2 v. If the characteristic of FIG. 9 is added by 2 v in the range of λ ≦ 1, the characteristic of the output voltage E 0 is linear in the entire range. become. According to the configuration of the present embodiment, there is an effect of improving accuracy reduction due to electrode deterioration (increase in interface resistance). FIG. 10 shows a case where the zirconia solid electrolyte is a flat plate and the diffusion resistor is a single hole, for example. 1 and 10 have the same function. The atmosphere is introduced into the first electrode 22 via the passage 32. The residual oxygen and unburned gas in the exhaust gas are diffused through the diffusion resistor 24 having a hole shape into the diffusion chamber 3.
1 flows into the second electrode 23 in the diffusion region 1 by diffusion.
By the heater 212 in the alumina insulating layer 211 fixed to the zirconia solid electrolyte 20, the zirconia solid electrolyte 20 is heated to a high temperature (for example, 600
(° C or higher). According to the present invention, it is possible to provide an air-fuel ratio sensor capable of detecting a wide range of air-fuel ratios in three states of a rich region, a stoichiometric air-fuel ratio, and a lean region with a simple configuration and high accuracy.

【図面の簡単な説明】 【図1】本発明による空燃比センサの原理構成図。 【図2】本発明の原理を説明するための起電力特性図。 【図3】本発明による空燃比センサの一実施例を示す回
路構成図。 【図4】本発明による空燃比センサの一特性を示す図。 【図5】V−I特性の一例。 【図6】本発明による空燃比センサの他の実施例。 【図7】本発明の他の実施例。 【図8】本発明の他の実施例。 【図9】本発明の空燃比センサの他の特性例。 【図10】本発明による空燃比センサの他の実施例を示
す回路構成図。 【図11】空燃比と排ガス濃度の関係。 【図12】従来の空燃比センサの原理説明図。 【図13】従来の空燃比センサの特性説明図。 【図14】本発明による空燃比センサの実装状態図。 【符号の説明】 20…ジルコニア固体電解質、22…第1の電極、23
…第2の電極、24…拡散抵抗体、27…ポテンシャル
・グランド、26…リアル・グランド。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a principle configuration diagram of an air-fuel ratio sensor according to the present invention. FIG. 2 is an electromotive force characteristic diagram for explaining the principle of the present invention. FIG. 3 is a circuit diagram showing an embodiment of an air-fuel ratio sensor according to the present invention. FIG. 4 is a diagram showing one characteristic of an air-fuel ratio sensor according to the present invention. FIG. 5 is an example of a VI characteristic. FIG. 6 shows another embodiment of the air-fuel ratio sensor according to the present invention. FIG. 7 shows another embodiment of the present invention. FIG. 8 shows another embodiment of the present invention. FIG. 9 shows another characteristic example of the air-fuel ratio sensor of the present invention. FIG. 10 is a circuit diagram showing another embodiment of the air-fuel ratio sensor according to the present invention. FIG. 11 shows the relationship between the air-fuel ratio and the exhaust gas concentration. FIG. 12 is a diagram illustrating the principle of a conventional air-fuel ratio sensor. FIG. 13 is a diagram illustrating characteristics of a conventional air-fuel ratio sensor. FIG. 14 is a mounting state diagram of an air-fuel ratio sensor according to the present invention. [Description of Signs] 20: zirconia solid electrolyte, 22: first electrode, 23
... Second electrode, 24. Diffusion resistor, 27. Potential ground, 26. Real ground.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三木 政之 茨城県日立市久慈町4026番地 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 昭61−144563(JP,A) 特開 昭55−44999(JP,A) 特開 昭57−29941(JP,A) 特開 昭57−178152(JP,A) 特開 昭58−179351(JP,A) 特開 昭59−170758(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Masayuki Miki               4026 Kuji-cho, Hitachi City, Ibaraki Prefecture Co., Ltd.                 Hitachi, Ltd.                (56) References JP-A-61-144563 (JP, A)                 JP-A-55-44999 (JP, A)                 JP-A-57-29941 (JP, A)                 JP-A-57-178152 (JP, A)                 JP-A-58-179351 (JP, A)                 JP-A-59-170758 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.袋管状のジルコニア固体電解質と、前記固体電解質
の大気雰囲気側に形成した第一の電極と、前記固体電解
質の排気雰囲気側に形成した第二の電極と、前記第二の
電極上に形成した拡散抵抗体とを備えた検出部と、前記
固体電解質の内部に設けられ、前記固体電解質を600
℃以上に加熱するためのヒータと、前記検出部を駆動す
るための駆動回路部とから構成された空燃比センサにお
いて、前記駆動回路部は前記第一の電極と前記第二の電
極との間に双方向に電流を流す手段を有し、前記第二の
電極のポテンシャル電位を前記駆動回路のグランドレベ
ルより高い値に設定することを特徴とする空燃比セン
サ。
(57) [Claims] A bag-shaped zirconia solid electrolyte, a first electrode formed on the atmosphere side of the solid electrolyte, a second electrode formed on the exhaust atmosphere side of the solid electrolyte, and a diffusion formed on the second electrode A detection unit including a resistor, and a detection unit provided inside the solid electrolyte,
In the air-fuel ratio sensor composed of a heater for heating to at least ℃ and a drive circuit unit for driving the detection unit, the drive circuit unit is located between the first electrode and the second electrode. An air-fuel ratio sensor, further comprising means for flowing a current in both directions, and setting a potential of the second electrode to a value higher than a ground level of the drive circuit.
JP4325179A 1992-12-04 1992-12-04 Air-fuel ratio sensor Expired - Lifetime JP2664319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4325179A JP2664319B2 (en) 1992-12-04 1992-12-04 Air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4325179A JP2664319B2 (en) 1992-12-04 1992-12-04 Air-fuel ratio sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60019982A Division JP2509905B2 (en) 1985-02-06 1985-02-06 Air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPH05240829A JPH05240829A (en) 1993-09-21
JP2664319B2 true JP2664319B2 (en) 1997-10-15

Family

ID=18173894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4325179A Expired - Lifetime JP2664319B2 (en) 1992-12-04 1992-12-04 Air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JP2664319B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2812247B2 (en) * 1995-06-01 1998-10-22 トヨタ自動車株式会社 Active state determination device for air-fuel ratio sensor
JP3284862B2 (en) * 1995-12-20 2002-05-20 トヨタ自動車株式会社 Active state determination device for air-fuel ratio sensor
JP2006300625A (en) * 2005-04-19 2006-11-02 Toyota Motor Corp Abnormality detection device of oxygen sensor
JP5360312B1 (en) 2013-01-29 2013-12-04 トヨタ自動車株式会社 Control device for internal combustion engine
JP2017207397A (en) * 2016-05-19 2017-11-24 日本特殊陶業株式会社 Gas concentration detecting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3247920A1 (en) * 1982-12-24 1984-06-28 Brown, Boveri & Cie Ag, 6800 Mannheim METHOD AND CIRCUIT FOR MEASURING THE OXYGEN CONCENTRATION IN GAS MIXTURES
JPS61144563A (en) * 1984-12-18 1986-07-02 Nissan Motor Co Ltd Air fuel ratio detecting method

Also Published As

Publication number Publication date
JPH05240829A (en) 1993-09-21

Similar Documents

Publication Publication Date Title
US6442998B2 (en) Gas concentration measuring apparatus compensating for error component of output signal
KR910006224B1 (en) Air fuel ratio detector
US6383354B1 (en) Gas concentration sensing apparatus
EP0994345B1 (en) Power supply control system for heater used in gas concentration sensor
EP1860431B1 (en) Gas concentration measuring apparatus with multiple amplification ranges
JP2004069547A (en) Control device of air/fuel ratio sensor
US4629549A (en) Oxygen sensor
KR950014742B1 (en) Air-fuel ratio detection system for engine exhaust gas
US4664773A (en) Air-to-fuel ratio sensor for an automobile
US20020043460A1 (en) Heater control device for air-fuel ratio sensor
JPH08506666A (en) Limiting current sensor for detecting lambda value in gas mixture
JPH0260142B2 (en)
US20070007134A1 (en) Gas concentration measuring apparatus designed to establish quick determination of degree of activation of gas sensor
JP2509905B2 (en) Air-fuel ratio sensor
JP2664319B2 (en) Air-fuel ratio sensor
KR100260651B1 (en) Air/fuel ratio sensor for an internal combustion engine
JPH0245819B2 (en)
JP2503159B2 (en) Oxygen detection sensor
JPH0413961A (en) Air/fuel ratio detector
JPH01155262A (en) Temperature controlling device of oxygen concentration sensor
JPH0436341B2 (en)
JPH0627078A (en) Air-fuel ratio detecting apparatus
EP0320502B1 (en) Method of detecting oxygen partial pressure
JPS62179655A (en) Method and apparatus for detecting air/fuel ratio
JPH0737957B2 (en) Oxygen concentration detector