JP2664187B2 - Optical Palace Compressor - Google Patents

Optical Palace Compressor

Info

Publication number
JP2664187B2
JP2664187B2 JP63060002A JP6000288A JP2664187B2 JP 2664187 B2 JP2664187 B2 JP 2664187B2 JP 63060002 A JP63060002 A JP 63060002A JP 6000288 A JP6000288 A JP 6000288A JP 2664187 B2 JP2664187 B2 JP 2664187B2
Authority
JP
Japan
Prior art keywords
optical
pulse
diffraction gratings
adjusting
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63060002A
Other languages
Japanese (ja)
Other versions
JPH01233416A (en
Inventor
寛和 久保田
正隆 中沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63060002A priority Critical patent/JP2664187B2/en
Publication of JPH01233416A publication Critical patent/JPH01233416A/en
Application granted granted Critical
Publication of JP2664187B2 publication Critical patent/JP2664187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、簡単な構成でしかも圧縮特性の優れた光パ
ルス圧縮装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical pulse compression device having a simple configuration and excellent compression characteristics.

(従来の技術) 第2図は、従来の光パルス圧縮装置を示す構成図であ
る。第2図において、1は光パルスを出射するパルスレ
ーザ光源、2,4はレンズ、3はレンズ2及び4間に配設
された単一モード光ファイバ、5a,5bはレンズ4を介し
光ファイバ3の出射光パルスの分散性遅延路をなす一対
の回折格子、6は回折格子5a,5a間の間隔を調整するた
めの調整部、7,8はプリズム、9は石英棒である。
(Prior Art) FIG. 2 is a configuration diagram showing a conventional optical pulse compression device. In FIG. 2, reference numeral 1 denotes a pulse laser light source that emits an optical pulse, reference numerals 2 and 4 denote lenses, reference numeral 3 denotes a single mode optical fiber disposed between the lenses 2 and 4, and reference numerals 5a and 5b denote optical fibers via the lens 4. Reference numeral 3 denotes a pair of diffraction gratings forming a dispersive delay path of the emitted light pulse, 6 denotes an adjusting unit for adjusting the interval between the diffraction gratings 5a, 5a, 7 and 8 denote prisms, and 9 denotes a quartz rod.

第3図は、前記回折格子5a,5aの配置及び調整部6の
構成を示す図である。第3図によれば、回折格子5aは図
示しない固定台上に固定され、光ファイバ3の出射光パ
ルスが所定角度で入射するようになっている。回折格子
5bはその反射面が回折格子5aの反射面と平行となるよう
に調整部6の後記する移動ステージ62上に取り付けら
れ、回折格子5aで反射された光パルスが該反射面で反射
しプリズム7に出射するようになっている。調整部6は
回折格子5aの反射面と所定角度をなして延設された凸部
61aを有する固定ステージ61と、底面に設けた凹部62aが
前記凸部61aと嵌合し該凸部61aを案内として移動する移
動ステージ62と、螺動することによって移動ステージ62
を図中矢印で示す方向に位置調整する調整つまみ63
と、移動ステージ62を調整つまみ63の方向に引き戻すた
めの図示しないばねから構成されている。
FIG. 3 is a diagram showing the arrangement of the diffraction gratings 5a, 5a and the configuration of the adjustment unit 6. According to FIG. 3, the diffraction grating 5a is fixed on a fixed table (not shown) so that the light pulse emitted from the optical fiber 3 is incident at a predetermined angle. Diffraction grating
5b is mounted on a later-described moving stage 62 of the adjusting unit 6 so that its reflection surface is parallel to the reflection surface of the diffraction grating 5a, and the light pulse reflected by the diffraction grating 5a is reflected by the reflection surface and the prism 7 To be emitted. The adjusting part 6 is a convex part extending at a predetermined angle with the reflection surface of the diffraction grating 5a.
A fixed stage 61 having a fixed portion 61a; a moving stage 62 in which a concave portion 62a provided on the bottom surface is fitted with the convex portion 61a to move with the convex portion 61a as a guide;
Adjustment knob to adjust the position in the direction indicated by the arrow in the figure.
And a spring (not shown) for pulling back the moving stage 62 in the direction of the adjustment knob 63.

なお、ここでは調整部6により回折格子5a,5b間の間
隔は最適値に調整されているものとする。
Here, it is assumed that the interval between the diffraction gratings 5a and 5b has been adjusted to an optimum value by the adjusting unit 6.

上記構成において、パルスレーザ光源1から出射した
光パルスはレンズ2を介して光ファイバ3の一端側に入
射される。光パルスは光ファイバ3中で自己位相変調効
果と正の群速度分散によってパルス幅を広げ、同時に、
光パルスの前方の周波数が低く、後方にいくに従って周
波数が高くなるような変調を受けた光パルス、即ち、チ
ャーピングした光パルスに変換される。このチャーピン
グした光パルスは光ファイバ3の他端側から出射されレ
ンズ4を介して回折格子5aに入射され、ここで反射され
てさらに回折格子5bで反射されプリズム7に出射される
が、これら一対の回折格子5a,5bの有する負の群速度分
散により光パルス中の周波数の低い光パルスの前方の成
分を周波数の高い光パルスの後方の成分に比べて遅延さ
せることにより、最終的に光パルスは圧縮され、また、
チャーピングした光パルスは直線的、即ち、時間に対し
て周波数が一定の割合で変化するものであるが、その線
形成分は前記調整部6による回折格子5a,5b間の間隔調
整により補償されている。
In the above configuration, the light pulse emitted from the pulse laser light source 1 is incident on one end of the optical fiber 3 via the lens 2. The light pulse is expanded in the optical fiber 3 by the self-phase modulation effect and the positive group velocity dispersion, and at the same time,
The light pulse is converted into a modulated light pulse in which the frequency in front of the light pulse is low and the frequency increases as it goes backward, that is, a chirped light pulse. The chirped light pulse is emitted from the other end of the optical fiber 3, enters the diffraction grating 5a via the lens 4, is reflected there, is further reflected by the diffraction grating 5b, and is emitted to the prism 7. The negative group velocity dispersion of the pair of diffraction gratings 5a and 5b delays the front component of the low-frequency light pulse in the light pulse compared to the rear component of the high-frequency light pulse, so that the light The pulse is compressed and
The chirped light pulse is linear, that is, the frequency changes at a constant rate with respect to time, but the linear component is compensated by adjusting the interval between the diffraction gratings 5a and 5b by the adjusting unit 6. I have.

さらに、この線形成分が補償された光パルスをプリズ
ム7,8及び石英棒9を通過させ当該装置の出力特性に影
響を与える前記一対の回折格子5a,5bの有する分散の非
線形成分を打消し、良好な圧縮光パルスを得ていた。
Further, the optical pulse whose linear component has been compensated passes through the prisms 7 and 8 and the quartz rod 9 to cancel the nonlinear component of dispersion of the pair of diffraction gratings 5a and 5b which affects the output characteristics of the device. A good compressed light pulse was obtained.

このように従来の装置では回折格子の角度は固定であ
り、間隔のみを変化させていたため、回折格子の有する
分散の非線形成分は有害であり、除去する方法が考案さ
れてきた。
As described above, in the conventional apparatus, the angle of the diffraction grating is fixed, and only the interval is changed. Therefore, the nonlinear component of dispersion of the diffraction grating is harmful, and a method for removing it has been devised.

(発明が解決しようとする課題) しかしながら、上記装置によれば、光ファイバ中で生
じたチャーピングによる光パルスの非線形成分を補償す
るためのプリズム7,8及び石英棒9を構成要素としてい
るため、光学素子の増大にともなう装置構成の複雑化を
招くとともに、光学素子による光の反射、吸収等による
損失が発生し出力を大きくとることができないという問
題点があった。
(Problems to be Solved by the Invention) However, according to the above device, since the prisms 7, 8 and the quartz rod 9 for compensating for the non-linear component of the optical pulse due to chirping generated in the optical fiber are used as constituent elements. However, there is a problem that the configuration of the device is complicated due to an increase in the number of optical elements, and a loss occurs due to reflection and absorption of light by the optical elements, so that a large output cannot be obtained.

本発明の目的は、上記問題点に鑑み、光学素子数を低
減した単純な構成を実現し、しかも光ファイバ中で生じ
たチャーピングによる非線形成分を補償し、効率的な光
パルス圧縮が可能な光パルス圧縮装置を提供することに
ある。
In view of the above problems, an object of the present invention is to realize a simple configuration in which the number of optical elements is reduced, and to compensate for nonlinear components due to chirping generated in an optical fiber, thereby enabling efficient light pulse compression. An object of the present invention is to provide an optical pulse compression device.

(課題を解決するための手段) 本発明は、上記目的を達成するため、光パルスを出射
するパルスレーザ光源と、前記光パルスが伝搬する光フ
ァイバと、該光ファイバの出射光パルスの分散性遅延路
をなす一対の回折格子とよりなる光パルス圧縮装置にお
いて、該一対の回折格子間の間隔及び配置角度を調整す
る調整部を備えた。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a pulse laser light source that emits an optical pulse, an optical fiber through which the optical pulse propagates, and a dispersibility of an emitted optical pulse from the optical fiber. An optical pulse compression device including a pair of diffraction gratings forming a delay path includes an adjustment unit for adjusting an interval and an arrangement angle between the pair of diffraction gratings.

(作 用) 第1図は、本発明の原理を説明するための図である。
第1図において、θは入射光パルスと回折光のなす角
度、γは入射角、bは光路に沿った回折格子5a,5b間の
間隔、ωは光パルスの中心周波数、ANは回折格子5aの
法線である。ここで第1図の光学系を周波数ωの光パ
ルスが通過するに要する時間をτ、光速をc、dは回
折格子5a,5bの刻線数の逆数、分散の直線成分をμ
-1性、分散の非直線成分をσとすると、一対の回折格子
5a,5bの分散特性は次式のように表すことができる(E.
B.Treacy,IEEE J.QE,QE−5(1969)454参照)。
(Operation) FIG. 1 is a diagram for explaining the principle of the present invention.
In FIG. 1, θ is the angle between the incident light pulse and the diffracted light, γ is the incident angle, b is the distance between the diffraction gratings 5a and 5b along the optical path, ω 0 is the center frequency of the light pulse, and AN is the diffraction grating. This is the normal to 5a. Here, the time required for an optical pulse of frequency ω 0 to pass through the optical system of FIG. 1 is τ 0 , the speed of light is c, d is the reciprocal of the number of lines of the diffraction gratings 5a and 5b, and the linear component of dispersion is μ.
Assuming that the non-linear component of -1 property and dispersion is σ, a pair of diffraction gratings
The dispersion characteristics of 5a and 5b can be expressed as follows (E.
B. Treacy, IEEE J. QE, QE-5 (1969) 454).

τ=τ−(ω−ω)/μ+3σ(ω−ω+… …(1) τ0=bc-1(1+COSθ) …(2) μ-1=4π2bc/ω0 3d2 ×(1−(2πc/ωφ(−sinγ) …(3) σ=(2ωμ)-1(1+λ/d・sinγ+sin2γ) …(4) 上記(1)〜(4)式からわかるように、回折格子5
a,5a間の間隔を変化させることは、上記(2),(3)
のbを変化させることであり、回折格子5a,5bの配置間
隔を変化させることは、上記(3),(4)のγを変化
させることであり、このように、分散特性の直線成分と
非直線成分の大きさは別個に調整することができる。
τ = τ 0 − (ω−ω 0 ) / μ + 3σ (ω−ω 0 ) 2 + ... (1) τ0 = bc −1 (1 + COSθ) (2) μ −1 = 4π 2 bc / ω 0 3 d 2 × (1− (2πc / ω 0 φ (−sin γ) 2 ) (3) σ = (2ω 0 μ) −1 (1 + λ / d · sin γ + sin 2 γ) (4) The above (1) to (4) As can be seen from the equation, diffraction grating 5
Changing the interval between a and 5a is described in (2) and (3) above.
And changing the arrangement interval of the diffraction gratings 5a and 5b is to change γ in the above (3) and (4). The magnitude of the non-linear component can be adjusted separately.

しかし、従来はこの非直線成分をパルス圧縮に利用す
ることは行われていなかった。これは非直線成分は副次
的なものであるため、上記文献並びにそれに続く多くの
圧縮装置の設計において無視されているためである。
However, conventionally, this non-linear component has not been used for pulse compression. This is because the non-linear components are secondary and have been neglected in the above references and many subsequent compressor designs.

従って、本発明によれば、一対の回折格子の間隔及び
配置角度を調整するための調整部を設けたので、回折格
子間の間隔を調整することにより線形成分を補償できる
とともに、回折格子の配置角度を調整することにより非
線形成分を補償することができる。
Therefore, according to the present invention, since the adjusting unit for adjusting the interval and the arrangement angle of the pair of diffraction gratings is provided, the linear component can be compensated by adjusting the interval between the diffraction gratings, and the arrangement of the diffraction gratings can be compensated. By adjusting the angle, the non-linear component can be compensated.

(実施例) 第4図は、本発明による光パルス圧縮装置を示す構成
図であって、従来例を示す第2図と同一構成のものは同
一符号をもって表す。即ち、1はパルスレーザ光源、2,
4はレンズ、3は単一モード光ファイバ、5a,5bは一対の
回折格子である。
(Embodiment) FIG. 4 is a block diagram showing an optical pulse compression apparatus according to the present invention, and the same components as those in FIG. 2 showing the conventional example are denoted by the same reference numerals. That is, 1 is a pulse laser light source, 2,
4 is a lens, 3 is a single mode optical fiber, and 5a and 5b are a pair of diffraction gratings.

10は回折格子5a,5b間の間隔及び配置角度を調整する
ための調整部で、第5図はこの調整部10の構成を示す図
である。第5図によれば、当該調整部10は凸部11aが形
成された固定ステージ11bと、前記凸部11aと嵌合する凹
部11cが形成された移動ステージ11dと、螺動することに
より移動ステージ11dを図中矢印で示す方向に位置調
整可能な調整つまみ11eと、移動ステージ11dを調整つま
み11eの方向に引き戻すための図示しないばねから構成
されている平行移動ステージ11と,前記移動ステージ11
d上に固定されその上面に凸部(図示せず)が形成され
た円筒状の固定ステージ12a及び前記固定ステージ12aの
凸部に嵌合する凹部(図示せず)が形成されこの凸部に
沿って回転用つまみ12bの操作により回転可能でその上
面に回折格子5bが固定された回転ステージ12cとからな
る角度調整ステージ12と、図示しない固定台に固定され
角度調整ステージ12と同一構成を有しその上面に回折格
子5aが固定された角度調整ステージ13から構成されてお
り、回折格子5a,5bの各反射面は互いに平行状態を維持
するように用いられる。
Reference numeral 10 denotes an adjusting unit for adjusting the interval and the arrangement angle between the diffraction gratings 5a and 5b. FIG. 5 is a diagram showing the configuration of the adjusting unit 10. According to FIG. 5, the adjusting unit 10 comprises a fixed stage 11b having a convex portion 11a formed thereon, a moving stage 11d having a concave portion 11c fitted with the convex portion 11a, and a moving stage formed by screwing. An adjusting knob 11e capable of adjusting the position of 11d in the direction indicated by the arrow in the figure; a parallel moving stage 11 comprising a spring (not shown) for pulling the moving stage 11d back in the direction of the adjusting knob 11e;
A cylindrical fixed stage 12a which is fixed on d and has a convex portion (not shown) formed on the upper surface thereof, and a concave portion (not shown) which fits into the convex portion of the fixed stage 12a are formed. The angle adjustment stage 12 includes a rotation stage 12c which can be rotated along with a rotation knob 12b and has a diffraction grating 5b fixed on the upper surface thereof, and an angle adjustment stage 12 fixed to a fixed table (not shown). It has an angle adjustment stage 13 having a diffraction grating 5a fixed on its upper surface, and the reflection surfaces of the diffraction gratings 5a and 5b are used so as to maintain a parallel state with each other.

上記構成による光パルス圧縮装置では、平行移動ステ
ージ11の調整つまみ11eを螺動することにより移動ステ
ージ11dを移動させ回折格子5aと回折格子5bとの間隔を
調整するとともに、角度調整ステージ12,13の各回転用
つまみ12b,13bを操作し互いの反射面は平行状態を維持
するように配置角度を調整することにより、光ファイバ
3中で生じたチャーピングによる線形成分の補償はもと
より、非線形成分の補償も行なうことができる。
In the optical pulse compression device having the above configuration, the adjusting knob 11e of the parallel moving stage 11 is screwed to move the moving stage 11d to adjust the distance between the diffraction grating 5a and the diffraction grating 5b, and to adjust the angle of the angle adjusting stages 12, 13. By operating the rotation knobs 12b and 13b of the above and adjusting the arrangement angle so that the reflection surfaces of each other are kept parallel, not only the compensation of the linear component due to the chirping generated in the optical fiber 3 but also the nonlinear component Can be compensated.

第6図は、入力パルス幅50fsec,ピーク強度200KW,光
ファイバ長1.2cm,コア径4μm,回折格子の刻線数600本/
mmと仮定した場合の自己相関波形を示す図で、同図
(a)は回折格子5a,5bの間隔のみを調整した場合の波
形、同図(b)は間隔ともに配置角度も調整(前述の第
1図におけるγ=17゜)した場合の波形を示す図であ
り、両図とも横軸が時間、縦軸が自己相関の強度を示し
ている。第5図からわかるように、回折格子5a,5b間の
間隔のみを最適化した場合に比べて、回折格子5a,5bの
間隔のみならず配置角度も最適化した場合の方が、パル
ス幅は15%細くなり、ピーク強度は29%強くなっている
ことがわかる。
Fig. 6 shows an input pulse width of 50 fsec, a peak intensity of 200 KW, an optical fiber length of 1.2 cm, a core diameter of 4 µm, and 600 lines of diffraction grating.
FIG. 7A is a diagram showing an autocorrelation waveform when it is assumed to be mm. FIG. 7A shows a waveform when only the interval between the diffraction gratings 5a and 5b is adjusted, and FIG. FIG. 2 is a diagram showing waveforms when γ = 17 ° in FIG. 1, where the horizontal axis represents time and the vertical axis represents autocorrelation intensity. As can be seen from FIG. 5, the pulse width is smaller when the arrangement angle as well as the spacing between the diffraction gratings 5a and 5b is optimized than when only the spacing between the diffraction gratings 5a and 5b is optimized. It can be seen that the peak intensity is reduced by 15% and the peak intensity is increased by 29%.

第7図は、前記第6図と同様の計算を他の条件に基づ
いて行なった結果、即ち、入力パルス幅176fsec,ピーク
強度200KW,光ファイバ長1.3cm,コア径4μm,回折格子の
刻線数1200本/mmと仮定した場合の自己相関波形を示す
図で、同図(a)は回折格子5a,5bの間隔のみを調整し
た場合の波形、同図(b)は間隔とともに配置角度も調
整(前述の第1図におけるγ=46゜)した場合の波形を
示す図であり、両図とも横軸が時間、縦軸が自己相関の
強度を示している。第6図からわかるように、回折格子
5a,5b間の間隔のみを最適化した場合に比べて、回折格
子5a,5bの間隔のみならず配置角度も最適化した場合の
方が、パルス幅は24%細くなり、ピーク強度は48%強く
なっていることがわかる。
FIG. 7 shows the result of performing the same calculation as in FIG. 6 on the other conditions, namely, an input pulse width of 176 fsec, a peak intensity of 200 KW, an optical fiber length of 1.3 cm, a core diameter of 4 μm, and a diffraction grating. FIG. 8A is a diagram showing an autocorrelation waveform when assuming several 1200 lines / mm. FIG. 9A shows a waveform when only the interval between the diffraction gratings 5a and 5b is adjusted, and FIG. FIG. 7 is a diagram showing waveforms when the adjustment is performed (γ = 46 ° in FIG. 1 described above), and in both figures, the horizontal axis represents time, and the vertical axis represents the intensity of autocorrelation. As can be seen from FIG.
Compared to the case where only the interval between 5a and 5b is optimized, the pulse width is 24% narrower and the peak intensity is 48% when the arrangement angle as well as the interval between the diffraction gratings 5a and 5b is optimized. You can see that it is getting stronger.

本実施例によれば、一対の回折格子5a,5bの間隔及び
配置角度を調整するための調整部10を設けたので、回折
格子間の間隔を調整することにより線形成分を補償でき
るとともに、回折格子の配置角度を調整することにより
非線形成分を補償することができるので、プリズム、石
英棒等の光学素子を設ける必要がなくなり当該装置の構
成の単純化及び光の反射,吸収等による損失を低減でき
出力特性の改善を実現できる。
According to the present embodiment, since the adjusting unit 10 for adjusting the interval and the arrangement angle of the pair of diffraction gratings 5a and 5b is provided, the linear component can be compensated by adjusting the interval between the diffraction gratings, and the diffraction Since the nonlinear component can be compensated by adjusting the arrangement angle of the grating, there is no need to provide an optical element such as a prism or a quartz bar, so that the configuration of the device is simplified and the loss due to light reflection and absorption is reduced. The output characteristics can be improved.

なお、一対の回折格子5a,5bの間隔及び配置角度を調
整するための調整部10は、間隔及び配置角度を調整でき
るものであれば良く、本実施例に限定されるものでない
ことは勿論である。
The adjusting unit 10 for adjusting the interval and the arrangement angle of the pair of diffraction gratings 5a and 5b may be any as long as it can adjust the interval and the arrangement angle, and is not limited to the present embodiment. is there.

(発明の効果) 以上説明したように、本発明によれば、光パルスを出
射するパルスレーザ光源と、前記光パルスが伝搬する光
ファイバと、該光ファイバの出射光パルスの分散性遅延
路をなす一対の回折格子とよりなる光パルス圧縮装置に
おいて、該一対の回折格子間の間隔及び配置角度を調整
する調整部を備えたので、プリズム、石英棒等の光学素
子を設ける必要がなくなり部品点数の削減、当該装置の
構成の単純化及び光の反射,吸収等による損失を低減で
き出力特性の改善を実現できる利点がある。
(Effects of the Invention) As described above, according to the present invention, a pulse laser light source that emits an optical pulse, an optical fiber through which the optical pulse propagates, and a dispersive delay line of the optical pulse emitted from the optical fiber are provided. In the optical pulse compression device comprising a pair of diffraction gratings, an adjustment unit for adjusting the interval and the arrangement angle between the pair of diffraction gratings is provided, so that it is not necessary to provide an optical element such as a prism or a quartz rod, and the number of parts is reduced. There is an advantage that the output characteristics can be improved by reducing the number of components, simplifying the configuration of the device, and reducing the loss due to the reflection and absorption of light.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の原理を説明するための図、第2図は従
来の光パルス圧縮装置を示す構成図、第3図は従来の調
整部の構成を示す図、第4図は本発明による光パルス圧
縮装置を示す構成図、第5図は本発明に係る調整部の構
成を示す図、第6図は本発明による光パルス圧縮装置の
自己相関波形の数値計算例を示す図、第7図は本発明に
よる光パルス圧縮装置の自己相関波形の他の数値計算例
を示す図である。 図中、1……パルスレーザ光源、3……単一モード光フ
ァイバ、5a,5b……回折格子、10……調整部、11……平
行移動ステージ、12,13……角度調整ステージ。
FIG. 1 is a diagram for explaining the principle of the present invention, FIG. 2 is a configuration diagram showing a conventional optical pulse compression device, FIG. 3 is a diagram showing a configuration of a conventional adjusting unit, and FIG. FIG. 5 is a diagram showing a configuration of an adjusting unit according to the present invention, FIG. 6 is a diagram showing a numerical calculation example of an autocorrelation waveform of the optical pulse compressing device according to the present invention, FIG. FIG. 7 is a diagram showing another numerical calculation example of the autocorrelation waveform of the optical pulse compression device according to the present invention. In the drawing, 1 ... pulse laser light source, 3 ... single mode optical fiber, 5a, 5b ... diffraction grating, 10 ... adjustment unit, 11 ... translation stage, 12,13 ... angle adjustment stage.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光パルスを出射するパルスレーザ光源と、 前記光パルスが伝搬する光ファイバと、 該光ファイバの出射光パルスの分散性遅延路をなす一対
の回折格子とよりなる光パルス圧縮装置において、 該一対の回折格子間の間隔及び配置角度を調整する調整
部を備えた ことを特徴とする光パルス圧縮装置。
1. An optical pulse compression apparatus comprising: a pulse laser light source for emitting an optical pulse; an optical fiber through which the optical pulse propagates; and a pair of diffraction gratings forming a dispersive delay path for the emitted optical pulse from the optical fiber. 3. The optical pulse compression device according to claim 1, further comprising an adjusting unit that adjusts an interval and an arrangement angle between the pair of diffraction gratings.
JP63060002A 1988-03-14 1988-03-14 Optical Palace Compressor Expired - Fee Related JP2664187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63060002A JP2664187B2 (en) 1988-03-14 1988-03-14 Optical Palace Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63060002A JP2664187B2 (en) 1988-03-14 1988-03-14 Optical Palace Compressor

Publications (2)

Publication Number Publication Date
JPH01233416A JPH01233416A (en) 1989-09-19
JP2664187B2 true JP2664187B2 (en) 1997-10-15

Family

ID=13129460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63060002A Expired - Fee Related JP2664187B2 (en) 1988-03-14 1988-03-14 Optical Palace Compressor

Country Status (1)

Country Link
JP (1) JP2664187B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5014015A (en) * 1989-12-05 1991-05-07 Tektronix, Inc. Ultra-short optical pulse source
DE19733193B4 (en) * 1997-08-01 2005-09-08 Carl Zeiss Jena Gmbh Microscope with adaptive optics
FR2772937A1 (en) * 1997-12-19 1999-06-25 Thomson Csf Optical pulse expander/compressor
DE19827139C2 (en) * 1998-06-18 2002-01-31 Zeiss Carl Jena Gmbh Microscope with a short-pulse laser coupled in via an optical fiber
JP4550963B2 (en) * 2000-03-23 2010-09-22 浜松ホトニクス株式会社 Optical waveform shaping device
US7486705B2 (en) 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US7684450B2 (en) 2004-12-20 2010-03-23 Imra America, Inc. Pulsed laser source with adjustable grating compressor
US20080123105A1 (en) * 2005-01-17 2008-05-29 Kouji Seki Segmented Grating Alignment Device
JP4804767B2 (en) * 2005-02-18 2011-11-02 オリンパス株式会社 Ultra-short pulse laser transmitter
JP5702718B2 (en) * 2008-05-30 2015-04-15 コーニンクレッカ フィリップス エヌ ヴェ High-order dispersion compensator
US9172206B2 (en) 2013-03-15 2015-10-27 Canon Kabushiki Kaisha Fiber laser system
CN110226103B (en) * 2016-12-16 2023-08-01 博莱佳私人有限公司 Environmental spatial contour estimation

Also Published As

Publication number Publication date
JPH01233416A (en) 1989-09-19

Similar Documents

Publication Publication Date Title
JP2664187B2 (en) Optical Palace Compressor
US6195484B1 (en) Method and apparatus for arbitrary spectral shaping of an optical pulse
JP3546917B2 (en) Ultrashort light pulse transmission device, generation device and transmission method
Hebling Derivation of the pulse front tilt caused by angular dispersion
US4685107A (en) Dispersion compensated fiber Raman oscillator
US5033826A (en) High temporal resolution optical instrument
AU586349B2 (en) Optical fiber dispersion transformer
EP0795855A3 (en) Optical pickup apparatus
JPH09197355A (en) Device and method for shortening temporary continuance time of light input pulse
JP2003530598A (en) Method and apparatus for generating electro-optical delay
EP2354841B1 (en) Terahertz wave generation device
EP0235974A2 (en) Generation of a sequence of optical pulses and communication system using such pulses
JP2005533282A (en) Compensation of chromatic dispersion in optical fibers.
JP2014182402A (en) Fiber laser system
US20090034077A1 (en) Grating with angled output prism face for providing wavelength-dependent group delay
EP0411942B1 (en) Parametric pulsed laser system
EP2933882B1 (en) Device and method for stretching or compressing laser pulses
US7218443B2 (en) Generation of tunable light pulses
JPS596092B2 (en) Multiplex optical communication equipment
CN111650178B (en) Optical fiber cascade spectrum compression device and method based on wave front shaping
Eggleton et al. Recompression of pulses broadened by transmission through 10 km of non-dispersion-shifted fiber at 1.55 μm using 40-mm-long optical fiber Bragg gratings with tunable chirp and central wavelength
JPH09211504A (en) Laser pulse compressor
JP2001060734A (en) Ultrashort pulse wide band light wave generating method and device therefor
TW565715B (en) Adjustable fiber chromatic dispersion compensator
KR100725025B1 (en) Compensating for chromatic dispersion in optical fibers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees