JP2663515B2 - Schottky junction structure - Google Patents

Schottky junction structure

Info

Publication number
JP2663515B2
JP2663515B2 JP13347288A JP13347288A JP2663515B2 JP 2663515 B2 JP2663515 B2 JP 2663515B2 JP 13347288 A JP13347288 A JP 13347288A JP 13347288 A JP13347288 A JP 13347288A JP 2663515 B2 JP2663515 B2 JP 2663515B2
Authority
JP
Japan
Prior art keywords
height
semiconductor
schottky barrier
doped
junction structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13347288A
Other languages
Japanese (ja)
Other versions
JPH01302765A (en
Inventor
和之 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP13347288A priority Critical patent/JP2663515B2/en
Publication of JPH01302765A publication Critical patent/JPH01302765A/en
Application granted granted Critical
Publication of JP2663515B2 publication Critical patent/JP2663515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体のショットキー障壁高さが制御可能な
ショットキー接合構造に関するものである。
Description: TECHNICAL FIELD The present invention relates to a Schottky junction structure in which a Schottky barrier height of a semiconductor can be controlled.

(従来の技術) 単一金属を半導体と接触させた時のショットキー障壁
の高さは、理想的には金属の仕事関数と半導体の電力親
和力との差によって与えられるとされていた[フィジク
ス・オブ・セミコンダクター・デバイス(Physics of S
emiconductor Devices,1969年,John Wiley R Sons,In
c.]。従って任意の半導体に対してショットキー障壁の
高さを変化させる為には、仕事関数の異なる金属と接触
させればよいはずであった。しかし、半導体の種類によ
っては、仕事関数の異なる金属を接触させても、フェル
ミレベルが一定値に固定(ピニング)され、ショットキ
ー障壁の高さを変化させることの不可能なものもあっ
た。
(Prior Art) The height of a Schottky barrier when a single metal is brought into contact with a semiconductor is ideally given by the difference between the work function of the metal and the power affinity of the semiconductor [Physics. Of Semiconductor Devices (Physics of S
emiconductor Devices, 1969, John Wiley R Sons, In
c.]. Therefore, in order to change the height of the Schottky barrier with respect to an arbitrary semiconductor, it is necessary to make contact with metals having different work functions. However, depending on the type of semiconductor, even when metals having different work functions are brought into contact with each other, the Fermi level is fixed (pinned) to a constant value, and it is impossible to change the height of the Schottky barrier.

産業上の利用価値の高いIII−V族半導体はその顕著
な例であった[フィジカル・レビュー・レターズ(Phy.
Rev.Lett.)第22巻、1969年、第1433ページ]。
III-V semiconductors with high industrial value were a prominent example [Physical Review Letters (Phy.
Rev. Lett.) Volume 22, 1969, p. 1433].

(発明が解決しようとする問題点) ショットキー障壁の高さは、例えば整流特性を向上さ
せる為には高い方が良く、接触抵抗を低減させる為には
低い方が良い。さらにはショットキー障壁の高さは、ト
ランジスターのしきい値電圧を決定する重要な要素であ
る。従って前述のように利用価値の高いIII−V族化合
物半導体において、ショットキー障壁の高さが制御不可
能であることは、デバイス設計の上で大きなハンディと
なっていた。
(Problems to be Solved by the Invention) The height of the Schottky barrier is preferably higher for improving, for example, rectification characteristics, and lower for lowering contact resistance. Furthermore, the height of the Schottky barrier is an important factor that determines the threshold voltage of a transistor. Therefore, as described above, the fact that the height of the Schottky barrier is uncontrollable in a group III-V compound semiconductor having a high utility value has been a great handicap in device design.

本発明の目的は、半導体のショットキー障壁の高さが
制御可能なショットキー接合構造を提供することにあ
る。
An object of the present invention is to provide a Schottky junction structure in which the height of a Schottky barrier of a semiconductor can be controlled.

(問題点を解決するための手段) 本発明は、任意の金属とIII−V族化合物半導体によ
るショットキー接合構造において、前記III−V族化合
物半導体表面層に希土類金属をドーピングすることを特
徴とするショットキー接合構造を提供することにある。
(Means for Solving the Problems) The present invention is characterized in that, in a Schottky junction structure using an arbitrary metal and a III-V compound semiconductor, the surface layer of the III-V compound semiconductor is doped with a rare earth metal. To provide a Schottky junction structure.

(作用) 例えばn型半導体のショットキー障壁高さを増加させ
る為には、半導体表面にp+層を形成すれば良く、またこ
の高さを低下させる為には半導体表面にn+層を形成すれ
ば良いことが知られている。[ジャーナル・オブ・アプ
ラド・フィジクス(J.Appl.Psys.)第61巻、第5159頁]
しかし、このように表面に、n+、p+層を形成した場合逆
バイアス耐圧は低下してしまい、実際のデバイス応用上
大きな問題となる。そこで本発明者はドナー型、アクセ
プター型ドーパントをドーピングするかわりに、III−
V族化合物半導体中で電気的不活性な希土類金属をドー
ピングすることを考えていた。そして、n型GaAsに対し
てYbを、濃度を変えて表面深さ100Åにわたってドーピ
ングした場合のAlに対するショットキー障壁を求めたと
ころ、第1図に示すような障壁高さの濃度依存性がある
ことが判明した。ここではAl/n−GaAsの障壁高さが250m
eVの幅にわたって制御可能であることが示されている。
GaAsのドナー濃度(約1017cm-3)以下のYbドーピング量
では障壁高さは通常のAl/GaAsショットキー障壁と較べ
て120meVも高くなっており、Ybドーピング量を1017cm-3
以上に増加させていくとドーピング量につれて障壁高さ
は低下していき、ドーピング量1021cm-3では通常のAl/G
aAsショットキー障壁と較べて130meVも低くなる。さら
にはこれら全ての試料において逆バイアス耐圧は希土類
金属をドーピングしなかった場合よりも大きくなった。
(Operation) For example, to increase the Schottky barrier height of an n-type semiconductor, a p + layer may be formed on the semiconductor surface, and to reduce this height, an n + layer may be formed on the semiconductor surface. It is known that we should do it. [Journal of Aprado Physics (J. Appl. Psys.) Vol. 61, p. 5159]
However, when the n + and p + layers are formed on the surface as described above, the reverse bias withstand voltage is reduced, which is a serious problem in practical device application. Accordingly, the present inventor has proposed, instead of doping a donor-type or an acceptor-type dopant, III-
It has been considered to dope a rare earth metal that is electrically inactive in a group V compound semiconductor. Then, when the Schottky barrier against Al was obtained when Yb was doped into n-type GaAs over a surface depth of 100 ° while changing the concentration, there was a concentration dependency of the barrier height as shown in FIG. It has been found. Here, the barrier height of Al / n-GaAs is 250 m
It is shown to be controllable over a range of eV.
At a Yb doping amount below the GaAs donor concentration (about 10 17 cm -3 ), the barrier height is 120 meV higher than that of a normal Al / GaAs Schottky barrier, and the Yb doping amount is 10 17 cm -3.
With the above increase, the barrier height decreases with the doping amount, and at a doping amount of 10 21 cm -3 , the normal Al / G
130meV lower than aAs Schottky barrier. Further, in all of these samples, the reverse bias withstand voltage was larger than that in the case where the rare earth metal was not doped.

このような効果はYbだけでなく他の希土類金属をドー
ピングした場合にも見いだされた。またGaAs以外の他の
III−V族化合物半導体に対してドーピングした場合に
も見いだされた。この効果が表れる原因は必ずしも明ら
かではないが、ドーピングによって発生する歪などによ
ってフェルミレベルが変化するためと考えられる。
Such effects were found when doping other rare earth metals in addition to Yb. Also other than GaAs
It was also found when doping III-V compound semiconductors. The reason why this effect appears is not necessarily clear, but it is considered that the Fermi level changes due to distortion or the like caused by doping.

(実施例) 以下本発明の実施例を説明する。(Example) Hereinafter, an example of the present invention will be described.

(実施例1) n型GaAs半導体表面にDyを深さ300Åにわたって1017c
m-3ドーピングした場合のAlに対するショットキー障壁
を測定したところ、Dyをドーピングしなかったものと較
べて高い障壁高さと高い逆バイアス耐圧が得られた。実
験は清浄化したn型GaAs(001)基板上に分子線エピタ
キシャル成長法によってSi濃度2×1017cm-3をドープし
たn型GaAs 5000Åを成長し、その際最表面層200Åにわ
たってはさらにDyを1017cm-3ドーピングした。その後室
温にてAlを1000Å蒸着した。作製した試料に電極を付け
I−V測定、C−V測定により評価し、ショットキー障
壁高さ及び逆バイアス耐圧を決定した。その結果、障壁
高さはDyをドーピングしない場合より140meV高い0.90eV
という値が得られた。また逆バイアス耐圧もDyをドーピ
ングしない場合より5Vも高い値が得られた。
(Example 1) Dy is applied to the surface of an n-type GaAs semiconductor over a depth of 300 mm by 10 17 c
When the Schottky barrier against Al with m- 3 doping was measured, a higher barrier height and a higher reverse bias withstand voltage were obtained than those without Dy doping. In this experiment, n-type GaAs 5000Å doped with a Si concentration of 2 × 10 17 cm -3 was grown on a cleaned n-type GaAs (001) substrate by molecular beam epitaxy. 10 17 cm -3 doping. Then, Al was deposited at room temperature at 1000Å. An electrode was attached to the manufactured sample, and the sample was evaluated by IV measurement and CV measurement to determine the Schottky barrier height and the reverse bias withstand voltage. As a result, the barrier height is 0.90 eV, which is 140 meV higher than when Dy is not doped.
Was obtained. Also, the reverse bias withstand voltage was higher by 5 V than when no Dy was doped.

(実施例2) n型GaAs半導体表面にSmを深さ100Åにわたって1020c
m-3ドーピングした場合のAlに対するショットキー障壁
を測定したところ、Smをドーピングしなかったものと較
べて低い障壁高さと高い逆バイアス耐圧が得られた。
(Example 2) Sm was applied to the surface of an n-type GaAs semiconductor over a depth of 100 mm to 10 20 c.
When the Schottky barrier against Al in the case of m −3 doping was measured, a lower barrier height and a higher reverse bias withstand voltage were obtained as compared with the case where Sm was not doped.

実験は清浄化したn型GaAs(001)基板上に分子線エ
ピタキシャル成長法によってSi濃度2×1017cm-3をドー
プしたn型GaAs 5000Åを成長し、その際最表面層100Å
にわたってはさらにSmを1020cm-3ドーピングした。その
後室温にてAlを1000Å蒸着した。作製した試料に電極を
付けI−V測定、C−V測定により評価し、ショットキ
ー障壁高さ及び逆バイアス耐圧を決定した。その結果、
障壁高さはSmをドーピングしない場合より200meV低い0.
56eVという値が得られた。また逆バイアス耐圧もSmをド
ーピングしない場合より6Vも高い値が得られた。
In the experiment, 5000 nm of n-type GaAs doped with a Si concentration of 2 × 10 17 cm -3 was grown on a cleaned n-type GaAs (001) substrate by molecular beam epitaxy, and at this time, the outermost surface layer was 100 mm.
Further, Sm was further doped with 10 20 cm -3 . Then, Al was deposited at room temperature at 1000Å. An electrode was attached to the manufactured sample, and the sample was evaluated by IV measurement and CV measurement to determine the Schottky barrier height and the reverse bias withstand voltage. as a result,
The barrier height is 200meV lower than when Sm is not doped.
A value of 56 eV was obtained. In addition, the reverse bias withstand voltage was 6 V higher than that obtained when no Sm was doped.

本実施例においては、分子線エピタキシャル成長によ
り試料を作製した場合を示したが、本発明の効果は成長
方法によるものではない。従って、他の成長法で成長し
たIII−V族化合物半導体表面層に希土類金属を拡散あ
るいはイオン・インプランテーションによってドーピン
グした場合でも同様の効果がある。またIII−V族半導
体としてはGaAsに限るものではなく、InPや、InGaAs、I
nGaPなどにも適用できる。希土類金属としては実施例で
用いた以外の金属例えばCe、Pr、Nd、Pm、Eu、Gd、Tb、
Ho、Er、Tm、Yb、Luなどでも良い。また電極金属として
はAl以外のショットキー接合を形成する金属例えばAu、
Pd、Ag、Cu、Sn、In、Ti、Y、Na、Ni、Co、Fe、Cr、M
n、Sb、V、Wなど、あるいはWSiなどの合金であっても
本発明の効果は得られる。
In this embodiment, the case where a sample is manufactured by molecular beam epitaxial growth is shown, but the effect of the present invention is not based on the growth method. Therefore, the same effect can be obtained even when the rare-earth metal is doped into the surface layer of the group III-V compound semiconductor grown by another growth method by diffusion or ion implantation. Further, the III-V group semiconductor is not limited to GaAs, but may be InP, InGaAs, or IGaAs.
Also applicable to nGaP and the like. Rare earth metals other than those used in the examples, such as Ce, Pr, Nd, Pm, Eu, Gd, Tb,
Ho, Er, Tm, Yb, Lu, etc. may be used. As the electrode metal, a metal other than Al that forms a Schottky junction such as Au,
Pd, Ag, Cu, Sn, In, Ti, Y, Na, Ni, Co, Fe, Cr, M
The effects of the present invention can be obtained even with alloys such as n, Sb, V, W, and WSi.

(発明の効果) 以上説明したように本発明は、任意の金属とIII−V
族化合物半導体によるショットキー接合構造において前
記III−V族化合物半導体表面層に希土類金属をドーピ
ングすることによって、高い逆バイアス耐圧を持ちなが
らショットキー障壁高さを制御する効果がある。
(Effects of the Invention) As described above, the present invention can be applied to any metal and III-V
By doping the III-V compound semiconductor surface layer with a rare earth metal in a Schottky junction structure using a group compound semiconductor, there is an effect of controlling the Schottky barrier height while having a high reverse bias withstand voltage.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示すショットキー障壁高さ
の希土類濃度依存性の図である。
FIG. 1 is a diagram showing the dependence of the height of a Schottky barrier on the concentration of a rare earth element according to an embodiment of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】任意の金属とIII−V族化合物半導体によ
るショットキー接合構造において、前記III−V族化合
物半導体表面層に希土類金属がドーピングしてあること
を特徴とするショットキー接合構造。
1. A Schottky junction structure comprising an arbitrary metal and a group III-V compound semiconductor, wherein the surface layer of the group III-V compound semiconductor is doped with a rare earth metal.
JP13347288A 1988-05-30 1988-05-30 Schottky junction structure Expired - Fee Related JP2663515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13347288A JP2663515B2 (en) 1988-05-30 1988-05-30 Schottky junction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13347288A JP2663515B2 (en) 1988-05-30 1988-05-30 Schottky junction structure

Publications (2)

Publication Number Publication Date
JPH01302765A JPH01302765A (en) 1989-12-06
JP2663515B2 true JP2663515B2 (en) 1997-10-15

Family

ID=15105575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13347288A Expired - Fee Related JP2663515B2 (en) 1988-05-30 1988-05-30 Schottky junction structure

Country Status (1)

Country Link
JP (1) JP2663515B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725334B2 (en) * 1988-12-26 1998-03-11 日本電気株式会社 Schottky junction structure

Also Published As

Publication number Publication date
JPH01302765A (en) 1989-12-06

Similar Documents

Publication Publication Date Title
US5314547A (en) Rare earth slab doping of group III-V compounds
Chai et al. The effect of growth conditions on Si incorporation in molecular beam epitaxial GaAs
US5019530A (en) Method of making metal-insulator-metal junction structures with adjustable barrier heights
Greuter et al. Electrical properties of grain boundaries in polycrystalline compound semiconductors
Martin et al. Electrical properties of GaAs/GaN/GaAs semiconductor‐insulator‐semiconductor structures
EP0164720A2 (en) An ohmic contact for an intermetallic compound semiconductor and a method of providing such a contact
Duschl et al. Epitaxially grown Si/SiGe interband tunneling diodes with high room-temperature peak-to-valley ratio
Ahmed et al. Use of nonstoichiometry to form GaAs tunnel junctions
Wang et al. Molecular beam epitaxial GaAs‐Al x Ga1‐x As heterostructures for metal semiconductor field effect transistor applications
US6225200B1 (en) Rare-earth element-doped III-V compound semiconductor schottky diodes and device formed thereby
US4757369A (en) Group III-V semiconductor electrical contact
Ito et al. Minority‐electron mobility in p‐type GaAs
CN109979996B (en) Half-metal/semiconductor Schottky junction and preparation method thereof and Schottky diode
JP2663515B2 (en) Schottky junction structure
Esaki et al. The interface transport properties of Ge-GaAs heterojunctions
JP2725334B2 (en) Schottky junction structure
KR930000825B1 (en) Improved magnetoresistors
US5098859A (en) Method for forming distributed barrier compound semiconductor contacts
Chen et al. Structural and electrical contact properties of LPE grown GaAs doped with indium
Stareev et al. Tunneling behavior of extremely low resistance nonalloyed Ti/Pt/Au contacts to n (p)‐InGaAs and n‐InAs/InGaAs
Nash et al. Lateral n–i–p junctions formed in an InSb quantum well by bevel etching
Sun et al. X‐ray photoelectron spectroscopy and optoelectrical properties of low‐concentration erbium‐doped GaSb layers grown from Sb‐rich solutions by liquid‐phase epitaxy
Eger et al. Control of electron concentration in liquid-phase epitaxial layers of Pb1− xSnxTe by indium doping
Lim et al. PdGe-based ohmic contact on n-GaAs with highly and poorly doped layers
Tell et al. High‐resistance regions produced in an

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees