JP2663443B2 - Fluid fuel combustion device - Google Patents
Fluid fuel combustion deviceInfo
- Publication number
- JP2663443B2 JP2663443B2 JP62164627A JP16462787A JP2663443B2 JP 2663443 B2 JP2663443 B2 JP 2663443B2 JP 62164627 A JP62164627 A JP 62164627A JP 16462787 A JP16462787 A JP 16462787A JP 2663443 B2 JP2663443 B2 JP 2663443B2
- Authority
- JP
- Japan
- Prior art keywords
- combustion
- cylinder
- burner
- radiation
- combustion chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Evaporation-Type Combustion Burners (AREA)
- Spray-Type Burners (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は燃焼室、特に周囲に強制的な送風経路空間を
もつ燃焼室を構成する耐熱性鋼板製の燃焼筒における局
部過熱現象をなくし、上部,下部のどの部分でも表面温
度の差が小さくて一様な温度分布をとることが可能な流
体燃料燃焼装置に関する。
(従来の技術)
流体燃料燃焼装置、殊にバーナで液体燃料を噴霧燃焼
する装置の場合、燃焼室での伝熱に関してはバーナ輝炎
からのふく射伝熱が主体とされており、この点は「燃焼
機器工学,昭和46年9月10日初版発行,昭和48年10月30
日5版発行,発行所日刊工業新聞社,第114,115頁,」
によっても明らかにされている通りであるが、この伝熱
形態は炎形状、燃焼完結度合により決定されてしまうた
めに、燃焼室を構成する燃焼筒の形状に関してはふく射
伝熱の影響を受けることから、均一した表面温度の分布
を得るべく種々の工夫が凝らされているのが現状であ
る。
ところで多用されているこの種燃焼装置の燃焼筒
(8)は、バーナ(5)の炎口部(6)に掩い破せる状
態で配設した有頂円筒形が大半であって、この燃焼筒
(8)自体を赤熱させてふく射熱を得させるようにして
なる構造である(第7図(イ)参照)。
(発明が解決しようとする問題点)
上述する従来の燃焼装置は第7図(ロ)の線図を参照
すれば明らかな通り、燃焼筒(8)における表面温度の
分布が、炎口部(6)の至近側部(A)において最高温
度、頂部近傍の側部(B)において最低温度となって、
著しく不均一であり、かつ、最高温度と最低温度との温
度差が大きくなり、その結果、過熱域である(A)部で
は燃焼筒材料の耐熱温度に達して歪み、劣化を促進させ
る問題があり、一方、低温域である(B)部では伝熱効
率の低下をもたらすこととなって、暖房機等に使用した
場合、加熱効率の低下による運転経費の増加及び短寿命
を招く欠点があった。
本発明はかかる従来の問題点の解決をはかるべく成さ
れたものであって、周囲に強制的な送風経路空間を有す
る暖房機等の燃焼室内に簡単な構造のふく射筒を追加配
設することによって、燃焼筒における表面温度の均一化
をはからせ、もって加熱効率を改善せしめる点を発明の
目的とする。
(問題点を解決するための手段)
しかして本発明は実施例を示す図面により明らかな如
く、周囲に強制的送風経路空間をもつ燃焼室(7)を構
成する耐熱性鋼板製の燃焼筒(8)をバーナ(5)の上
部に所要長さで備えた流体燃料燃焼装置であって、前記
燃焼筒(8)の燃焼室(7)内下半部に、バーナ(5)
の炎口部(6)を囲繞するように短筒状のふく射筒(1
1)を前記燃焼筒(8)に略同心的に立設せしめてな
り、前記ふく射筒(11)は、千鳥配列状に多数の切れ目
が付されたステンレス薄鋼板をそれ等切れ目に直角の板
面方向に引っ張ることにより形成される多数の波形の孔
(12)を有するラス材により構成されていると共に、そ
の多数の波形の孔(12)が各孔軸方向を筒の内側から外
側に向け斜め上方に指向するように立設されていること
を特徴とする。
(作用)
本発明は燃焼炎の近傍をラス材からなるふく射筒(1
1)で囲繞することにより、炎から燃焼筒(8)に対す
る直接ふく射を減じさせて加熱域を無くすると共に、炎
からの減じた直接ふく射と、ふく射筒(11)の孔(12)
周囲に存する縁材が奏する前縁効果を利用した対流伝熱
でふく射筒(11)自体の表面温度を高めることによる固
体ふく射との相乗作用で、燃焼筒(8)各部の表面温度
を均一化し温度分布の改善が果される。
(実施例)
以下、本発明の実施例を添付図面にもとづいて説明す
る。
第1図及び第2図は本発明の実施例に係る温風暖房機
であって、縦長で据置形のケーシング(1)は、前面下
部に吸込グリル(2)、前面の上部に吹出グリル(3)
を夫々有すると共に、内部をファン室と熱交換室との上
下2室に区切らせて、吸込グリル(2)に臨むファン室
には、対流ファン(4)を収設する一方、吹出グリル
(3)に臨む熱交換室には、バーナ(5)、該バーナ
(5)の炎口部(6)に臨む燃焼室(7)を構成する燃
焼筒(8)、熱交換器(9)及びコントロール部(10)
を収設している。
上記暖房機は、対流ファン(4)を駆動し、かつ、バ
ーナ(5)を燃焼運転させると、吸込グリル(2)から
室内空気が吹込まれてエアフイルタ(図示せず)で除塵
された後、対流ファン(4)、バーナ(5)の周囲及び
燃焼室(7)の周囲を順に経、吹出グリル(3)から室
内に向けて吹出されるようになっていて、この送風経路
を辿る間に空気は燃焼室(7)、熱交換器(9)で加熱
され温風となって吹出される。
なお、図示しないが、上記バーナ(5)は出口にオイ
ルレベラが接続されていると共に、給気口に対し給排気
筒から延びる給気管が接続されていて、燃焼用空気とし
て室外空気が供給され、燃料としては灯油が前記オイル
レベラを経由して供給される。
一方、燃焼室(7)は燃焼筒(8)の背壁上部に燃焼
ガスを送り出させる出口を設けていて、この出口に空気
対ガス形の熱交換器(9)の入口に接続し、さらにこの
熱交換器(9)の出口を排気管を介し給排気筒の排気筒
に連結せしめて燃焼後の排ガスが室内に流れ込まないよ
うに全量を戸外に排出させるように形成しており、かく
して室内空気を燃焼空気によって汚染させることのな
い、所謂、クリーン燃焼・排気形の暖房機が得られるの
である。
かかる構成の暖房機における燃焼装置は、バーナ
(5)及び燃焼室(7)を構成する燃焼筒(8)を要素
部材としているが、燃焼筒(8)は有頂円筒(例、直径
300mm、胴長466mm)をなして、耐熱性鋼板より製作さ
れ、例えば天板を素地のままのアルミ鍍金板により、胴
板を黒色化処理したアルミ鍍金鋼板により夫々製作し
て、燃焼ガスが漏洩しないよう気密を保持してバーナ
(5)の上部に掩わせて立設させている。
上記燃焼室(7)内には第3図に示す如く燃焼筒
(8)に同心させてふく射筒(11)を配設しており、こ
のふく射筒(11)を例えば直径150mm、胴長98mmの短円
筒に形成して前記炎口部(6)に囲繞させて立設せしめ
ている。
しかして前記ふく射筒(11)は、燃焼筒(8)が燃焼
室(7)とその周囲空間とをしや断する必要上、孔が一
切存しない板体から形成しているのに対して、燃焼ガス
を通過させることが必要であるために孔あき板から形成
している。
本発明に係るふく射筒(11)は、燃焼筒(8)に比較
して耐熱強度が格段にすぐれてなる材料から製作されて
おり、JIS規格で310Sに相当する耐熱性ステンレス鋼板
例えば0.8mm厚の板体から形成されてなるラス材を円筒
に組付けたものが用いられる。
上述するラス材は壁下地材として建築分野で利用され
るラスに類する構造であって、耐熱性ステンレス鋼板に
多数の短い切れ目を千鳥配列に付した後、この切れ目に
直角の板材面方向に引っ張ることによって第4図に拡大
示する如き横長菱形の孔(12)が千鳥配列で多数並列し
てなる孔あき板が形成される。
かかるラス材の特徴は、平板からパンチ加工により孔
を多数穿設してなる孔あき板が平板そのものであって、
各孔の軸は当然板面に直交しており、しかも製作に際し
て円周及び胴長に相当する二辺を持つ方形板が必要で材
料が多くなるのに対して、ラス材の場合は、円周より稍
々長く、胴長よりも遥るかに短い二辺の方形板から所要
の筒体が得られ材料面の節約が可能であることと、第5
図に断面示する如く、各孔(12)の孔軸方向が板面に対
し斜めに交叉し、炎口部(6)に囲繞配設時、内側より
外側に向け斜め上方に指向するように向けてなることと
の2点が挙げられる。
以上述べた構造を有するふく射筒(11)を用いたの
は、燃焼室(7)内に炎口部(6)を囲ませて筒体のし
や熱板を介設してみた場合に最高温度点(A)が上方に
移動することが実験的に明らかであったところよりし
て、孔あき円筒のしや熱板を用いればガスふく射を遮っ
て固体ふく射が発生するのと、一部ガスふく射を通過さ
せることによってふく射筒(11)自体を昇温させて、燃
焼筒(8)の下部側の温度低下を防止し得るのとの2つ
の利点が活かされるものと考えたからに他ならない。
実際に前記ふく射筒(11)を設けて燃焼実験を行った
ところ、ガスふく射を一部遮ることによって、ふく射筒
(11)の固体ふく射が発生してふく射率の点でガスふく
射よりも有利なふく射が行われるために燃焼筒(8)上
部の温度を高くさせることができ、さらに燃焼ガスの一
部が孔(12)を通過することでふく射筒(11)自体が燃
焼ガスに包まれてより高温となり固体ふく射強度が向上
する結果、第6図(ロ)に示す如く燃焼筒(8)の表面
温度を下部から上部に至る各部において均一な温度とす
ることが可能となり温度分布の改善がはかれた。
なお、第5図に断面示し、また、第6図(イ)に略示
する通り、ふく射筒(11)における各孔(12)の軸方向
を筒の内側から外側に至って斜め上に指向させるよう
に、ふく射筒(11)の配置を行ったことにより通過する
燃焼ガスの対流を促進すると共に孔(12)周囲の縁材の
前縁効果が相俟ってふく射筒(11)の表面温度をより高
め得る特長が発揮された。
(発明の効果)
本発明は上述の如く構成されたものであり、固体ふく
射を有効に得さしめるためのふく射筒(11)をラス材に
より燃焼筒(8)内の下半部でバーナー(5)の炎口部
(6)を囲繞するように立設し、その多数の孔を孔軸方
向を内側より外側に向けて斜め上方に指向させたことに
より、前述の説明より明らかなように燃焼筒(8)の表
面温度を各部が略々一様になる如く温度分布の改善がは
かれ、例えば灯油ガス化バーナを有する家庭用温風暖房
機で本発明に係るものと従来のものとについて比較した
ところ、従来のものが燃焼筒(8)において最高温度64
0℃,最低温度380℃で温度差が大であったのに対して、
本発明に係るふく射筒(11)を設けたものでは、略々44
0℃前後の均等な温度分布が得られて明らかに改善の実
が挙げられた。
その結果、燃焼筒(8)の局部過熱を防止して長寿命
が期され、また、低温部分が生じないようにしてふく射
効率を向上することができ、燃焼筒(8)の径を小さく
でき装置のコンパクト化がはかれる。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention eliminates a local overheating phenomenon in a combustion chamber, particularly a combustion cylinder made of a heat-resistant steel plate constituting a combustion chamber having a forced ventilation path space around the combustion chamber. The present invention relates to a fluid fuel combustion device capable of obtaining a uniform temperature distribution with a small difference in surface temperature between upper and lower portions. (Prior Art) In the case of a fluid fuel combustion device, particularly a device in which a liquid fuel is spray-burned by a burner, the heat transfer in the combustion chamber is mainly performed by radiant heat transfer from a burner bright flame. "Combustion Equipment Engineering, first edition published on September 10, 1967, October 30, 1973
5th edition, daily, Nikkan Kogyo Shimbun, 114, 115 pages, "
However, since this heat transfer form is determined by the flame shape and the degree of completion of combustion, the shape of the combustion cylinder that constitutes the combustion chamber is affected by radiation heat transfer. Therefore, at present, various measures have been devised in order to obtain a uniform surface temperature distribution. By the way, most of the combustion cylinders (8) of this kind of combustion apparatus, which are frequently used, have a cylindrical shape with a top, which is disposed so as to be able to break through a flame opening (6) of a burner (5). The structure is such that the tube (8) itself is red-heated to obtain radiant heat (see FIG. 7 (a)). (Problems to be Solved by the Invention) As apparent from the diagram of FIG. 7 (b), the conventional combustion apparatus described above shows that the distribution of the surface temperature in the combustion cylinder (8) is 6), the highest temperature is at the closest side (A), and the lowest temperature is at the side (B) near the top.
The temperature difference between the highest temperature and the lowest temperature is remarkably non-uniform, and as a result, in the superheated area (A), the temperature reaches the heat-resistant temperature of the combustion tube material, causing distortion and deterioration. On the other hand, on the other hand, the portion (B), which is a low-temperature region, causes a decrease in heat transfer efficiency, and when used in a heater or the like, there is a drawback in that an increase in operating cost due to a decrease in heating efficiency and a short life are caused. . SUMMARY OF THE INVENTION The present invention has been made to solve such a conventional problem, and it is an object of the present invention to additionally dispose a radiation cylinder having a simple structure in a combustion chamber such as a heater having a forced ventilation path space around the combustion chamber. Accordingly, it is an object of the present invention to make the surface temperature in the combustion cylinder uniform, thereby improving the heating efficiency. (Means for Solving the Problems) As will be apparent from the drawings showing the embodiments, the present invention relates to a combustion cylinder (7) made of a heat-resistant steel plate constituting a combustion chamber (7) having a forced ventilation path space around it. 8. A fluid fuel combustion device comprising a burner (5) at a required length above a burner (5), wherein a burner (5) is provided in a lower half portion of a combustion chamber (7) of the combustion cylinder (8).
A short cylindrical radiating cylinder (1) surrounds the flame opening (6) of the
1) is set up substantially concentrically on the combustion cylinder (8), and the radiating cylinder (11) is made of a stainless steel sheet having a large number of cuts in a staggered arrangement, and It is made of a lath material having a large number of corrugated holes (12) formed by pulling in the plane direction, and the large number of corrugated holes (12) direct each hole axis direction from the inside of the cylinder to the outside. It is characterized by being erected so as to be directed obliquely upward. (Effect) The present invention provides a flaring tube (1) made of a lath material in the vicinity of a combustion flame.
By surrounding in 1), the direct radiation from the flame to the combustion cylinder (8) is reduced to eliminate the heating zone, and the reduced direct radiation from the flame and the hole (12) in the radiation cylinder (11) are reduced.
The surface temperature of each part of the combustion cylinder (8) is made uniform by synergistic action with solid radiation by raising the surface temperature of the radiation cylinder (11) by convective heat transfer using the leading edge effect of the surrounding rim material. The temperature distribution is improved. (Example) Hereinafter, an example of the present invention is described based on an accompanying drawing. 1 and 2 show a hot air heater according to an embodiment of the present invention, in which a vertically long stationary casing (1) has a suction grill (2) at a lower front portion and a blow grill ( 3)
And the interior is divided into upper and lower chambers of a fan chamber and a heat exchange chamber, and a convection fan (4) is housed in the fan chamber facing the intake grill (2), while a blow-off grill (3) is provided. ), A burner (5), a combustion tube (8) constituting a combustion chamber (7) facing a flame port (6) of the burner (5), a heat exchanger (9) and a control. Department (10)
Has been acquired. When the convection fan (4) is driven and the burner (5) is driven to burn, the room air is blown from the suction grill (2) and dust is removed by an air filter (not shown). The air flows through the convection fan (4), around the burner (5) and around the combustion chamber (7) in order, and is blown from the blow grill (3) toward the room. The air is heated in the combustion chamber (7) and the heat exchanger (9) and is blown out as hot air. Although not shown, the burner (5) has an oil leveler connected to the outlet, and an air supply pipe extending from the air supply / exhaust cylinder to the air supply port, so that outdoor air is supplied as combustion air. Kerosene is supplied as fuel through the oil leveler. On the other hand, the combustion chamber (7) is provided with an outlet for sending out combustion gas at the upper part of the back wall of the combustion tube (8), and this outlet is connected to the inlet of an air-to-gas heat exchanger (9). The outlet of the heat exchanger (9) is connected to an exhaust pipe of a supply / exhaust pipe via an exhaust pipe so that the exhaust gas after combustion is discharged to the outside so that the exhaust gas does not flow into the room. A so-called clean combustion / exhaust type heater that does not contaminate the air with combustion air can be obtained. The combustion device in the heater having such a configuration has a burner (5) and a combustion tube (8) constituting a combustion chamber (7) as an element member.
300mm, body length 466mm) made of heat-resistant steel plate. For example, the top plate is made of bare aluminum plating plate, and the body plate is made of blackened aluminum plating steel plate, and the combustion gas leaks. It is erected on top of the burner (5) while keeping airtight so that it does not leak. In the combustion chamber (7), as shown in FIG. 3, a radiating tube (11) is arranged concentrically with the combustion tube (8). The radiating tube (11) is, for example, 150 mm in diameter and 98 mm in body length. And is erected around the flame port (6). In contrast, the radiation cylinder (11) is formed from a plate having no holes, because the combustion cylinder (8) needs to cut off the combustion chamber (7) and its surrounding space. Since it is necessary to pass the combustion gas, it is formed from a perforated plate. The irradiation cylinder (11) according to the present invention is made of a material having a remarkably superior heat resistance compared with the combustion cylinder (8), and is a heat-resistant stainless steel plate equivalent to 310S in JIS standard, for example, 0.8 mm thick. A lath member formed from the above plate body is assembled into a cylinder. The above-mentioned lath material has a structure similar to a lath used in the construction field as a wall base material. After a number of short cuts are formed in a staggered arrangement on a heat-resistant stainless steel plate, the cut is pulled in a direction perpendicular to the plate material surface. As a result, a perforated plate having a large number of horizontally long diamond-shaped holes (12) arranged in a staggered arrangement as shown in FIG. 4 is formed. The characteristic of such a lath material is that a perforated plate formed by punching many holes from a flat plate is a flat plate itself,
The axis of each hole is, of course, orthogonal to the plate surface. In addition, a square plate having two sides corresponding to the circumference and the body length is required for manufacturing, and the material is large. The required cylindrical body can be obtained from a two-sided rectangular plate slightly longer than the circumference and much shorter than the trunk length, and the material surface can be saved.
As shown in the cross section in the figure, the direction of the hole axis of each hole (12) crosses the plate surface obliquely, and when disposed around the flame opening (6), it is directed obliquely upward from inside to outside. There are two points. The use of the radiating cylinder (11) having the above-described structure is the best when the flame opening (6) is surrounded in the combustion chamber (7) and a cylindrical member or a hot plate is interposed. From the experimental results that the temperature point (A) moves upward, it is clear that solid radiation is generated by blocking gas radiation by using a perforated cylinder or a hot plate. There is no other way of thinking that the two advantages of being able to prevent the temperature of the lower part of the combustion cylinder (8) from being lowered by raising the temperature of the radiation cylinder (11) itself by passing the gas radiation are utilized. . When a combustion experiment was actually performed with the radiation tube (11) provided, solid radiation of the radiation tube (11) was generated by partially blocking gas radiation, which was more advantageous than gas radiation in terms of radiation rate. Since the radiation is performed, the temperature of the upper part of the combustion tube (8) can be increased, and furthermore, part of the combustion gas passes through the hole (12), so that the radiation tube (11) itself is wrapped in the combustion gas. As shown in FIG. 6 (b), the surface temperature of the combustion cylinder (8) can be made uniform at each part from the lower part to the upper part, and the temperature distribution can be improved. Was peeled off. The axial direction of each hole (12) in the irradiation tube (11) is directed obliquely upward from the inside to the outside of the tube, as shown in cross-section in FIG. 5 and schematically shown in FIG. Thus, the arrangement of the radiating cylinder (11) promotes the convection of the combustion gas passing therethrough, and at the same time, the leading edge effect of the rim material around the hole (12) is combined with the surface temperature of the radiating cylinder (11). The feature that can further enhance was exhibited. (Effects of the Invention) The present invention is configured as described above, and a radiating cylinder (11) for effectively obtaining solid radiation is burned in a lower half portion of a combustion cylinder (8) with a lath material. As is apparent from the above description, the erect portion is set up so as to surround the flame outlet portion (6) of (5), and the plurality of holes are directed obliquely upward with the hole axis direction directed from the inside to the outside. The temperature distribution is improved so that the surface temperature of the combustion tube (8) becomes substantially uniform in each part. For example, a home-use hot air heater having a kerosene gasification burner according to the present invention and a conventional hot air heater can be used. As a result, the maximum temperature of the combustion cylinder (8) was 64
Although the temperature difference was large at 0 ° C and the minimum temperature of 380 ° C,
In the case where the projection tube (11) according to the present invention is provided, approximately 44
A uniform temperature distribution of around 0 ° C. was obtained, which clearly showed improvement. As a result, it is possible to prevent local overheating of the combustion tube (8), prolong the service life, improve the radiation efficiency by preventing the occurrence of low-temperature portions, and reduce the diameter of the combustion tube (8). The device can be made more compact.
【図面の簡単な説明】
第1図は本発明の実施例に係る温風暖房機の斜視図、第
2図は同じく内部構造を示す正面図、第3図は第2図に
おける燃焼室の一部省略示拡大図、第4図は第3図図示
ふく射筒の部分拡大断面図、第5図は同じくふく射筒の
部分拡大断面図、第6図(イ)は本発明に係る燃焼装置
の略示構造図、第6図(ロ)は同図(イ)に対応する温
度分布線図、第7図(イ)は従来の燃焼装置の略示構造
図、第7図(ロ)は同図(イ)に対応する温度分布線で
ある。
(5)……バーナ、(6)……炎口部、
(7)……燃焼室、(8)……燃焼筒、
(11)……ふく射筒、(12)……孔。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a hot air heater according to an embodiment of the present invention, FIG. 2 is a front view showing the same internal structure, and FIG. FIG. 4 is a partially enlarged sectional view of the radiating cylinder shown in FIG. 3, FIG. 5 is a partially enlarged sectional view of the same radiating cylinder, and FIG. 6 (a) is a schematic diagram of a combustion apparatus according to the present invention. FIG. 6 (b) is a temperature distribution diagram corresponding to FIG. (A), FIG. 7 (a) is a schematic structural diagram of a conventional combustion device, and FIG. 7 (b) is the same diagram. It is a temperature distribution line corresponding to (a). (5) ... burner, (6) ... flame outlet, (7) ... combustion chamber, (8) ... combustion cylinder, (11) ... radiation cylinder, (12) ... hole.
Claims (1)
成する耐熱性孔板製の燃焼筒(8)をバーナ(5)の上
部に所要長さで備えた流体燃料燃焼装置であって、前記
燃焼筒(8)の燃焼室(7)内下半部にバーナ(5)の
炎口部(6)を囲繞するように短筒状のふく射筒(11)
を前記燃焼筒(8)に略同心的に立設せしめてなり、前
記ふく射筒(11)は、千鳥配列状に多数の切れ目が付さ
れたステンレス薄鋼板をそれ等切れ目に直角の板面方向
に引っ張ることにより形成される多数の波形の孔(12)
を有するラス材により構成されていると共に、その多数
の波形の孔(12)が各孔軸方向を筒の内側から外側に向
け斜め上方に指向するように立設されていることを特徴
とする流体燃料燃焼装置。(57) [Claims] A fluid fuel combustion device comprising a combustion tube (8) made of a heat-resistant perforated plate and having a required length above a burner (5), constituting a combustion chamber (7) having a forced ventilation path space around the burner (5), In the lower half portion of the combustion chamber (7) of the combustion cylinder (8), a short cylindrical radiating cylinder (11) is formed so as to surround the flame opening (6) of the burner (5).
Is erected substantially concentrically on the combustion cylinder (8), and the radiating cylinder (11) is provided with a stainless steel sheet provided with a number of cuts in a staggered arrangement in a sheet surface direction perpendicular to the cuts. Multiple corrugated holes (12) formed by pulling on
And a large number of corrugated holes (12) are erected so that the axial direction of each hole is directed obliquely upward from the inside to the outside of the cylinder. Fluid fuel combustion device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62164627A JP2663443B2 (en) | 1987-06-30 | 1987-06-30 | Fluid fuel combustion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62164627A JP2663443B2 (en) | 1987-06-30 | 1987-06-30 | Fluid fuel combustion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6410019A JPS6410019A (en) | 1989-01-13 |
JP2663443B2 true JP2663443B2 (en) | 1997-10-15 |
Family
ID=15796796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62164627A Expired - Fee Related JP2663443B2 (en) | 1987-06-30 | 1987-06-30 | Fluid fuel combustion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2663443B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS529956A (en) * | 1975-07-11 | 1977-01-25 | Matsushita Electric Ind Co Ltd | Burner |
JPS60189709U (en) * | 1984-05-29 | 1985-12-16 | 今西金属工業株式会社 | combustor |
-
1987
- 1987-06-30 JP JP62164627A patent/JP2663443B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6410019A (en) | 1989-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2348934B1 (en) | Parallel tube burner with improved cooling and reduced size | |
AU2015203977B2 (en) | Multi-cone fuel burner apparatus for multi-tube heat exchanger | |
US20100116226A1 (en) | Boiler with a combustion head cooling system | |
US3509867A (en) | Radiant and convective heater | |
US2682867A (en) | Floor furnace with tubular heating element | |
US3359965A (en) | Radiant heaters | |
US3794014A (en) | Hot-air furnace | |
CA1037335A (en) | Oil stove | |
JP2663443B2 (en) | Fluid fuel combustion device | |
WO2018216467A1 (en) | Water heating apparatus | |
TWI649522B (en) | Water heater having a down fired combustion assembly | |
US2752912A (en) | Forced air flow air heating furnace | |
US3223078A (en) | Warm air furnace | |
US2697428A (en) | Forced-air, forced-draft unit heater | |
JP2793955B2 (en) | Combustion device stack structure | |
US2809627A (en) | Circular-type, forced air, forced draft unit heater | |
JPH0629623Y2 (en) | Hot air heater | |
US3985115A (en) | Hot air furnace | |
JP2000018729A (en) | Heat exchanger with heat transfer fin | |
CN211119965U (en) | Gas water heating equipment convenient to dismantle and maintain | |
JP4095539B2 (en) | Long surface combustion burner | |
KR890005078Y1 (en) | Combustion chamber for heating arrangement | |
US1918617A (en) | Gas heater | |
USRE26575E (en) | Volk hot air furnace | |
US2215236A (en) | Hot air heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |