JP2662241B2 - Fast breeder reactor - Google Patents

Fast breeder reactor

Info

Publication number
JP2662241B2
JP2662241B2 JP63068083A JP6808388A JP2662241B2 JP 2662241 B2 JP2662241 B2 JP 2662241B2 JP 63068083 A JP63068083 A JP 63068083A JP 6808388 A JP6808388 A JP 6808388A JP 2662241 B2 JP2662241 B2 JP 2662241B2
Authority
JP
Japan
Prior art keywords
storage tube
core
fuel
fuel assembly
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63068083A
Other languages
Japanese (ja)
Other versions
JPH01242993A (en
Inventor
求 十亀
孔男 渡
周作 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63068083A priority Critical patent/JP2662241B2/en
Publication of JPH01242993A publication Critical patent/JPH01242993A/en
Application granted granted Critical
Publication of JP2662241B2 publication Critical patent/JP2662241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高速増殖炉に係り、特に高燃焼度、長期サイ
クル運転炉心に好適な炉心構成要素の構造に関する。
Description: TECHNICAL FIELD The present invention relates to a fast breeder reactor, and more particularly, to a structure of a core component suitable for a high burnup and a long cycle operation core.

[従来の技術] 従来の高速増殖炉では、特開昭62−195591号に記載の
ように、発熱量の比較的大きい炉心構成要素即ち炉心燃
料集合体は収納管なしとし、発熱量の比較的小さい炉心
構成要素は収納管有りとする構造が提案されている。炉
心燃料集合体の例として第2図に示すものが、また、収
納管有りの炉心構成要素の例として第3図に示すものが
知られている。なお、第2図のAA断面を第5図に示す。
第2図の炉心燃料集合体1と第3図の収納管有り炉心構
成要素2を炉心で隣接させた場合、双方の上部について
いるパッド3により相互の距離を保つ様にしているた
め、炉心燃焼集合体1と収納管有り炉心構成要素2は第
4図に横断面で示す様な隣接関係となる。即ち、炉心燃
料集合体を構成する炉心燃料要素4の1本当りの冷却材
流路面積は、炉心燃料集合体1内側では第4図中のS1
あるが、外周部ではS2あるいはS3で示される様に大きく
なる。このため、炉心燃料集合体の下方から流入した冷
却材は流路の広い外周部に偏って流れ易くなることか
ら、内側の炉心燃料要素表面温度は外周部の炉心燃料要
素表面温度より高くなる。また、同様の原因によって外
周部の炉心燃料要素表面温度は、内側に面した方向が高
く、外側に面した方向が低くなる。即ち外周部の燃料要
素における周方向温度差が顕著となる。この様に周方向
温度差が顕著になると、炉心燃料集合体内に局部的な温
度ピーキングが増大する。その結果、熱膨張及びスウエ
リングによる炉心燃料要素4の湾曲が加速される等の燃
料健全性上の問題が発生する。
[Prior Art] In a conventional fast breeder reactor, as described in Japanese Patent Application Laid-Open No. Sho 62-195591, a core component having a relatively large calorific value, that is, a core fuel assembly, has no storage tube, and a relatively large calorific value. A structure in which a small core component has a storage tube has been proposed. FIG. 2 shows an example of a core fuel assembly, and FIG. 3 shows an example of a core component having a storage tube. FIG. 5 shows an AA cross section of FIG.
When the core fuel assembly 1 shown in FIG. 2 and the core component 2 with a storage tube shown in FIG. 3 are adjacent to each other in the core, the mutual distance is maintained by the pads 3 provided on the upper portions of the cores. The assembly 1 and the core component 2 with the storage tube have an adjacent relationship as shown in the cross section in FIG. That is, the coolant flow area per one of the core fuel elements 4 constituting the core fuel assemblies, in the core fuel assembly 1 inside which is S 1 in FIG. 4, the outer peripheral portion S 2 or S It becomes larger as shown by 3 . For this reason, the coolant flowing from below the core fuel assembly tends to flow to the wide outer peripheral portion of the flow path, so that the inner core fuel element surface temperature becomes higher than the outer peripheral core fuel element surface temperature. For the same reason, the surface temperature of the core fuel element at the outer peripheral portion is high in the direction facing inward and low in the direction facing outward. That is, the circumferential temperature difference in the fuel element in the outer peripheral portion becomes significant. When the circumferential temperature difference becomes remarkable, local temperature peaking in the core fuel assembly increases. As a result, fuel integrity problems such as acceleration of the curvature of the core fuel element 4 due to thermal expansion and swelling occur.

第4図の場合は、炉心燃料集合体間及び炉心燃料集合
体と収納管有り炉心構成要素間の両方で、炉心燃料要素
1本当りの冷却材流路面積S3,S2が内側のS1よりも大き
くなっているが、炉心燃料集合体1間で生じる冷却材流
路面積S1とS2の違いの問題については、炉心燃料集合体
の断面を、インターナショナル コンフアレンス オン
フアスト ブリーダ リアクタフェニル パフォーマ
ンス トピカル ミーテイング(1979年)のアドバンス
ト コンセプト フオー フュエル アセンブリ デザ
イン中にエス・カプラン(International Conference o
n Fast Breeder Reactor Fuel Performance Topical Me
eting(1979);Advanced Concepts for Fuel Assembly
Design;S.Kaplan,etal.)が提案した第6図に示す形状
にすることにより解決することができる。この場合、第
6図に見られるように、炉心燃料集合体1は六角コーナ
に設置した6本のタイロッド7でグリッドスペーサ8の
軸方向位置を固定している。また隣接する炉心燃料集合
体の間は第7図に示す様にタイロッド7同志で接触して
いる。炉心燃料要素4中心間の距離d1及び炉心燃料要素
中心とタイロッド7中心との距離d2は同一であり、隣接
する炉心燃料集合体中の炉心燃料要素との距離d3とd1
同一である。従って、外周部の流路面積S2と内側の流路
面積S1は等しく冷却材流量の偏りもないため、前述の燃
料健全性上の問題は生じない。しかし、この場合におい
ても、炉心燃料集合体1と収納管有り炉心構成要素2間
の流路面積S3は、炉心燃料集合体1の脱装荷性を考慮し
てタイロッド7と収納管5の間に約1mmのギャップd4
設けているため、先のS1及びS2よりも大きくなり、冷却
材流量が収納管5の外面側に偏る構造となっている。
In the case of FIG. 4, the coolant flow passage areas S 3 and S 2 per core fuel element are S inside and between the core fuel assemblies and between the core fuel assemblies and the core components with storage tubes. While is larger than 1, for the coolant passage area S 1 and S 2 differences problems arising between the core fuel assembly 1, a cross section of the core fuel assemblies, International Konfuarensu on Fuasuto bleeder reactor phenyl performance Es Kaplan (International Conference o) during an advanced concept for fuel assembly design at Topical Meeting (1979)
n Fast Breeder Reactor Fuel Performance Topical Me
eting (1979); Advanced Concepts for Fuel Assembly
Design; S. Kaplan, et al.) Can solve the problem. In this case, as shown in FIG. 6, the core fuel assembly 1 has an axial position of the grid spacer 8 fixed by six tie rods 7 installed at hexagonal corners. Adjacent core fuel assemblies are in contact with each other by tie rods 7 as shown in FIG. The distance d 1 between the centers of the core fuel elements 4 and the distance d 2 between the center of the core fuel elements and the center of the tie rod 7 are the same, and are the same as the distances d 3 and d 1 between the core fuel elements in the adjacent core fuel assemblies. It is. Therefore, since there is no flow passage area S 2 and the inner flow passage area S 1 is equal coolant flow rate of deviation of the outer peripheral portion, there is no problem on the fuel integrity of the foregoing. However, also in this case, the flow passage area S 3 between the core fuel assembly 1 and the core component 2 with the storage tube is set between the tie rod 7 and the storage tube 5 in consideration of the unloading property of the core fuel assembly 1. since is provided a gap d 4 of about 1mm to, larger than the previous S 1 and S 2, the coolant flow has a structure biased on the outer surface side of the housing pipe 5.

[発明が解決しようとする課題] 従って、上記従来技術は、収納管有り炉内構造物側に
ある炉心燃料集合体外周部の炉心燃料要素1本当りの冷
却材流路面積S3と炉心燃料集合体内側の炉心燃料1本の
冷却材流路面積S1を同一にする点について配慮がされて
おらず、依然として炉心燃料集合体内の温度ピーキング
が大きく、炉心燃料要素の湾曲が加速される等の燃料健
全性上の問題があった。
[Problems to be Solved] Thus, the prior art described above, the coolant flow area S 3 per one core fuel elements of the core fuel assemblies outer peripheral portion in the housing tube there reactor internal side and the core fuel No consideration has been given to making the coolant flow area S1 of one core fuel inside the assembly the same, and the temperature peaking inside the core fuel assembly is still large, and the curvature of the core fuel element is accelerated. Fuel integrity issues.

本発明の課題は、炉心燃料要素1本当りの冷却材流路
面積を、炉心燃料集合体内側と収納管有り炉心構成要素
側にある外周とで同一とすることにより、燃料要素間の
温度差をなくし、健全性を向上させることにある。
An object of the present invention is to make the coolant flow passage area per core fuel element the same between the inside of the core fuel assembly and the outer periphery on the side of the core component with the storage tube, so that the temperature difference between the fuel elements is reduced. And to improve soundness.

[課題を解決するための手段] 上記課題は、収納管有り炉心構成要素と収納管無し燃
料集合体を隣接配置してなるものにおいて、前記収納管
無し燃料集合体内の各燃料要素当りの冷却材流路断面積
を等しくするための冷却材流路断面積調整部材を収納管
有り炉心構成要素と収納管無し燃料集合体の隣接境界部
に配置することにより解決される。
[Means for Solving the Problems] The object of the present invention is to provide a fuel cell system in which a core component with a storage tube and a fuel assembly without a storage tube are arranged adjacent to each other, and a coolant for each fuel element in the fuel assembly without a storage tube is provided. This problem can be solved by disposing a coolant flow path cross-sectional area adjusting member for equalizing the flow path cross-sectional area at an adjacent boundary between a core component having a storage tube and a fuel assembly having no storage tube.

[作用] 発熱量の比較的小さい収納有り炉心構成要素の収納管
外面の周方向に凹凸形状の冷却材流路断面積調整部材を
設けることにより、これに隣接する炉心燃料集合体の炉
心燃料要素1本当りの冷却材流路面積を他の炉心燃料要
素の場合と実質的に同一とすることができるため、全燃
料要素についての冷却を均一にすることができ炉心燃料
要素間の温度ピーキングおよび炉心燃料要素の湾曲を低
減することができ、従って燃料健全性が向上する。
[Operation] By providing a coolant flow path cross-sectional area adjusting member having a concave and convex shape in the circumferential direction on the outer surface of the storage tube of the storage core component having a relatively small calorific value, the core fuel element of the core fuel assembly adjacent thereto is provided. Since the coolant flow passage area per tube can be made substantially the same as that of the other core fuel elements, the cooling for all the fuel elements can be made uniform and the temperature peaking and the temperature peaking between the core fuel elements can be achieved. The curvature of the core fuel element can be reduced, thus improving fuel integrity.

[実施例] 以下、本発明の一実施例を第1図により説明する。Embodiment An embodiment of the present invention will be described below with reference to FIG.

第1図は、炉心燃料集合体1が2体と収納管有り炉心
構成要素の代表としてブランケット燃料集合体13が1体
の隣接関係を、6角コーナーの1箇所の横断面について
部分的に示したものである。炉心燃料集合体1にはグリ
ッドスペーサ8の一部も示されている。収納管即ち、ブ
ランケット燃料のラッパ管14の6角コーナー部にはタイ
ロッド7と安定的に接触が図れる様に凸部9と凹部10が
設けてあり、また、ラッパ管14とタイロッド7の間の距
離d4は第7図の場合と同じ約1mmである。炉心燃料要素
4とラッパ管14との距離d5は、ラッパ管14側に凹部10及
び凸部11を設けることにより第7図の場合よりも小さく
できる。従って、第1図の実施例では炉心燃料要素1本
当りの冷却材流路面積を内部と外周部で実質的に等しく
できる。即ちS1とS3を等しくできるため、炉心燃料集合
体1内の温度ピーキング及び炉心燃料要素4の湾曲を著
しく低減でき、燃料健全性を向上させることができる。
また、第7図の従来技術ではタイロッド7と収納管5は
線接触する構造であるが、第1図の実施例ではタイロッ
ド7とラッパ管14は面接触であるため、接触部の損傷低
減効果も有している。
FIG. 1 is a partial cross-sectional view of one cross section of a hexagonal corner showing the adjacent relationship of two core fuel assemblies 1 and one blanket fuel assembly 13 as a representative core component having a storage tube. It is a thing. A part of the grid spacer 8 is also shown in the core fuel assembly 1. A convex portion 9 and a concave portion 10 are provided at the hexagonal corner portion of the storage tube, that is, the wrapper tube 14 of the blanket fuel, so that the tie rod 7 can be stably contacted. the distance d 4 is the same about 1mm in the case of Figure 7. The distance d 5 between the core fuel element 4 and wrapper tube 14 can be made smaller than in the case of Figure 7 by providing the concave portion 10 and convex portion 11 in the wrapper tube 14 side. Therefore, in the embodiment of FIG. 1, the coolant flow passage area per core fuel element can be made substantially equal between the inside and the outside. That is, the equally of S 1 and S 3, can be significantly reduced curvature of the temperature peaking and the core fuel elements 4 of the reactor core fuel assembly 1, it is possible to improve the fuel integrity.
In the prior art of FIG. 7, the tie rod 7 and the storage tube 5 have a line contact structure, but in the embodiment of FIG. 1, the tie rod 7 and the trumpet tube 14 are in surface contact, so that the effect of reducing the damage of the contact portion is achieved. Also have.

第8図は、本発明の他の実施例を示したものである。
ラッパ管14の外形は、6角コーナ部の凸部9及びこれに
隣接する凹部10は第1図と同一であるが、それ以外の部
分の凸部11を廃した構成となっている。この様に形状が
簡略されたことで、第1図の実施例よりも製造性が向上
する。その結果炉心燃料要素1本当りの冷却材流路面積
は、炉心燃料集合体1の内部の値S2よりも外周部の値S3
の方がわずかに大きくなるが、外周部の炉心燃料要素4
とラッパ管14との距離d5は第1図と等しく、第7図の従
来技術のd5よりも小さくなる。従って炉心燃料集合体内
の温度ピーキング及び炉心燃料要素の周方向温度差は減
少し、湾曲を実質的に低減することができる。例えば、
炉心燃料集合体の発熱量が14.55MW,Na流量が53.1kg/se
c,炉心燃料要素外径10.5mm,炉心燃料要素配列ピッチ12.
2mmの場合、炉心上端高さにおける上記周方向温度差は
第7図の場合が約120℃であるのに対して第8図の場合
約30℃である。この様に、本実施例によれば、前述の温
度ピーキング及び湾曲を低減して燃料健全性の向上を図
るとともに、製造性の向上も同時に図ることができる。
上記の第1図及び第8図の実施例はいずれも本発明の収
納管に相当するラッパ管自体に直接冷却材流路断面積調
整部材を一体的に形成しているが、同部材をラッパ管と
別体に形成することも可能であり、その場合でもこれら
の実施例の作用効果は変わらない。
FIG. 8 shows another embodiment of the present invention.
The outer shape of the wrapper tube 14 is the same as that of FIG. 1 except that the convex portion 9 of the hexagonal corner portion and the concave portion 10 adjacent thereto are the same as in FIG. Due to the simplified shape, manufacturability is improved as compared with the embodiment of FIG. As a result, the coolant flow path area per core fuel element is smaller than the value S 2 inside the core fuel assembly 1 by the value S 3 at the outer peripheral portion.
Is slightly larger, but the core fuel element 4
The distance d 5 between the wrapper tube 14 equal to the first figure, smaller than d 5 of the prior art Figure 7. Accordingly, the temperature peaking in the core fuel assembly and the circumferential temperature difference of the core fuel elements are reduced, and the curvature can be substantially reduced. For example,
The calorific value of the core fuel assembly is 14.55MW, and the Na flow rate is 53.1kg / se
c, core fuel element outer diameter 10.5mm, core fuel element arrangement pitch 12.
In the case of 2 mm, the above-mentioned circumferential temperature difference at the core upper end height is about 120 ° C. in the case of FIG. 7 and about 30 ° C. in the case of FIG. As described above, according to the present embodiment, it is possible to improve the fuel integrity by reducing the above-described temperature peaking and bending, and to simultaneously improve the manufacturability.
In each of the embodiments shown in FIGS. 1 and 8, the member for adjusting the sectional area of the coolant flow path is integrally formed directly on the wrapper tube itself corresponding to the storage tube of the present invention. It is also possible to form it separately from the tube, in which case the effects of these embodiments remain the same.

[発明の効果] 以上の如く、本発明によれば炉心燃料要素1本当りの
冷却材流路面積を実質的に同等とすることができるの
で、炉心燃料集合体内の温度ピーキング及び炉心燃料要
素の湾曲を低減し、燃料健全性を向上させる効果があ
る。
[Effects of the Invention] As described above, according to the present invention, the coolant flow passage area per core fuel element can be made substantially equal, so that the temperature peaking in the core fuel assembly and the core fuel element This has the effect of reducing curvature and improving fuel integrity.

【図面の簡単な説明】[Brief description of the drawings]

第1図および第8図は、本発明の一実施例の炉心構成要
素設置状態の概略を表わす部分横断面図、第2図は従来
技術による炉心燃料集合体の縦断面図、第3図は従来技
術による収納管あり炉心構成要素の一部切欠表示による
斜視図、第4図及び第7図は、従来技術の炉心構成要素
設置状態の概略を表わす部分横断面図、第5図は第2図
のA−A矢視概略図、第6図は従来技術による炉心燃料
集合体の横断面図、第8図は本発明の他の実施例になる
炉心構成要素設置状態を示す部分横断面図である。 1……炉心燃料集合体、2……収納管有り炉心構成要
素、3……パッド、4……炉心燃料要素、5……収納
管、7……タイロッド、8……グリッドスペーサ、13…
…ブランケット燃料集合体、14……ラッパ管、9……凸
部、10……凹部。
1 and 8 are partial cross-sectional views schematically showing an installed state of core components according to one embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a core fuel assembly according to the prior art, and FIG. FIG. 4 and FIG. 7 are partial cross-sectional views schematically showing a state of installation of a core component of the prior art, and FIG. 6 is a cross-sectional view of a core fuel assembly according to the prior art, and FIG. 8 is a partial cross-sectional view showing an installed state of core components according to another embodiment of the present invention. It is. DESCRIPTION OF SYMBOLS 1 ... Core fuel assembly, 2 ... Core component with storage tube, 3 ... Pad, 4 ... Core fuel element, 5 ... Storage tube, 7 ... Tie rod, 8 ... Grid spacer, 13 ...
... blanket fuel assembly, 14 ... trumpet tube, 9 ... convex part, 10 ... concave part.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】収納管有り炉心構成要素と収納管無し燃料
集合体を隣接配置してなるものにおいて、前記収納管無
し燃料集合体内の各燃料要素当たりの冷却材流路断面積
を等しくするための冷却材流路断面積調整部材を収納管
有り炉心構成要素と収納管無し燃料集合体の隣接境界部
に配置するようにしたことを特徴とする高速増殖炉。
In a fuel cell having a storage tube-containing core and a storage tube-less fuel assembly disposed adjacent to each other, a coolant flow path cross-sectional area for each fuel element in the fuel tube without a storage tube is equalized. A fast breeder reactor characterized in that the coolant flow path cross-sectional area adjusting member is disposed at an adjacent boundary between a core component with a storage tube and a fuel assembly without a storage tube.
【請求項2】前記冷却材流路断面積調整部材を前記収納
管有り炉心構成要素の収納管の外周部に形成するように
したことを特徴とする高速増殖炉。
2. A fast breeder reactor wherein the coolant flow path cross-sectional area adjusting member is formed on an outer peripheral portion of a storage tube of the core component having the storage tube.
【請求項3】前記収納管無し燃料集合体の角部に多角形
断面を有するタイロッドを備えてなるものにおいて、同
燃料集合体に隣接する前記収納管有り炉心構成要素の収
納管の外周部の角部において前記タイロッドの多角形断
面に適合する形状を形成するようにしたことを特徴とす
る特許請求の範囲第1項記載の高速増殖炉。
3. A fuel assembly without a storage tube, comprising a tie rod having a polygonal cross section at a corner of the fuel assembly, wherein an outer peripheral portion of a storage tube of the core component with a storage tube adjacent to the fuel assembly is provided. 2. The fast breeder reactor according to claim 1, wherein a shape adapted to a polygonal cross section of said tie rod is formed at a corner.
【請求項4】前記冷却材流路断面積調整部材を前記収納
管有り炉心構成要素の収納管の外周部に形成するように
してなるものにおいて、同冷却材流路断面積調整部材を
同収納管の角部に形成し、その他の部分は平板にしたこ
とを特徴とする特許請求の範囲第2項記載の高速増殖
炉。
4. The coolant flow path cross-sectional area adjusting member is formed on an outer peripheral portion of a storage pipe of a core component having the storage pipe. 3. The fast breeder reactor according to claim 2, wherein the fast breeder reactor is formed at a corner of the tube, and other portions are made flat.
JP63068083A 1988-03-24 1988-03-24 Fast breeder reactor Expired - Fee Related JP2662241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63068083A JP2662241B2 (en) 1988-03-24 1988-03-24 Fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63068083A JP2662241B2 (en) 1988-03-24 1988-03-24 Fast breeder reactor

Publications (2)

Publication Number Publication Date
JPH01242993A JPH01242993A (en) 1989-09-27
JP2662241B2 true JP2662241B2 (en) 1997-10-08

Family

ID=13363499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63068083A Expired - Fee Related JP2662241B2 (en) 1988-03-24 1988-03-24 Fast breeder reactor

Country Status (1)

Country Link
JP (1) JP2662241B2 (en)

Also Published As

Publication number Publication date
JPH01242993A (en) 1989-09-27

Similar Documents

Publication Publication Date Title
US4235669A (en) Nuclear reactor composite fuel assembly
KR100836954B1 (en) A nuclear annular fuel rod including annular pellets with prominence and depression
JP2662241B2 (en) Fast breeder reactor
JPS5935183A (en) Fast breeder
CN111613350B (en) Pressurized water reactor fuel assembly capable of enhancing heat conduction between fuel elements
US3394049A (en) Nuclear reactor core configuration
US3964968A (en) Nuclear reactor fuel assembly
JPS6224187A (en) Fuel aggregate
JP2791132B2 (en) Fuel assembly
KR101071287B1 (en) Internal structure of wire spring type spacer grid
JPH0222717Y2 (en)
JPH0152714B2 (en)
JPH0315999B2 (en)
JPS6026307Y2 (en) Heat exchanger tube support structure
JPS62151785A (en) Fuel aggregate for boiling water type reactor
JP2522501B2 (en) Fuel assembly
JPS61237084A (en) Nuclear fuel aggregate
JP3103424B2 (en) Fuel spacer and fuel assembly
JP2001091682A (en) Fuel assembly and core for fast reactor
JPS5810677A (en) Nuclear fuel assembly
JPS61231482A (en) Core for fast breeder reactor
JPS6048197U (en) Fixed reflector for gas-cooled reactors
JPS6367591A (en) Fuel aggregate for fast breeder reactor
JPH0236918B2 (en)
JPS638590A (en) Support structure of grid spacer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees