JP2662226B2 - Channel switching control device in simulated moving bed continuous separation device - Google Patents

Channel switching control device in simulated moving bed continuous separation device

Info

Publication number
JP2662226B2
JP2662226B2 JP62290541A JP29054187A JP2662226B2 JP 2662226 B2 JP2662226 B2 JP 2662226B2 JP 62290541 A JP62290541 A JP 62290541A JP 29054187 A JP29054187 A JP 29054187A JP 2662226 B2 JP2662226 B2 JP 2662226B2
Authority
JP
Japan
Prior art keywords
passage
longitudinal
path
concentric
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62290541A
Other languages
Japanese (ja)
Other versions
JPS643379A (en
Inventor
賢太郎 平田
良夫 福井
貞雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP62290541A priority Critical patent/JP2662226B2/en
Priority to US07/248,083 priority patent/US4923616A/en
Priority to KR1019880012399A priority patent/KR890004754A/en
Publication of JPS643379A publication Critical patent/JPS643379A/en
Application granted granted Critical
Publication of JP2662226B2 publication Critical patent/JP2662226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は疑似移動床連続分離装置に用いて好適な流路
切換制御装置に関するものである。 (従来の技術) 吸着剤を充填した複数の充填体を直列かつ循環連結し
た疑似移動床を用いて混合溶液中の各成分を連続的に分
離回収する方法は良く知られている。 従来、疑似移動床による連続分離手段としては、充填
床群を4つのゾーンに画成し、各床を循環連結する配管
に付設した遮断弁および原液、プロダクト液等の系外の
液の流出入を切換制御する自動弁および/またはロータ
ーリー弁を用いて、それぞれの充填床の機能を液の流れ
の下流側に順次移動させることにより連続分離を行わせ
た。 一方、酸素反応液からのアミノ酸の回数等の、原液中
の特定成分のみの回収や、被吸着能が大幅に異なる成分
の分離回収等に適した、従来の4ゾーン方式に比して充
填床数を削減合理化した3ゾーン方式による連続分離手
段が提案されている(特開昭62−91205号公報参照)。 混合原料中の各成分に遂次選択作用させて吸着分離、
脱着、回収等させる疑似移動床連続分離装置は、前述の
ように回転弁による液の流出入口の切換えに伴い、充填
床間を連続する特定の遮断弁の開閉を行わせるための制
御装置を不可欠とした。 また、従来の4ゾーン方式に流路切換制御弁として用
いられていたものは、例えば第12図に示す固定盤(イ)
と、第13図に示す回転盤(ロ)とによるものであり、こ
れは第14図に示すように、充填床間の循環流とは独立に
配置されており、従って循環ポンプに負荷される循環流
は切換えに伴い、その性状変化とともに循環流量もまた
大幅な変化とするため循環ポンプの負荷調整のために切
換時期の検出、切換えに伴う流量変更等に高価なプロセ
スコンピュータのコントロールシステムを必要とした。 即ち、固定盤(イ)は中心より同心状に配し、半径方
向適宜間隔拡径する第1同心円通路(ハ)、第2同心円
通路(ニ)、第3同心円通路(ホ)、第4同心円通路
(ヘ)と、第4同心円通路(ヘ)の外側に周方向に等分
かつ環状に配しそれぞれ下開口する縦路(ト),(ト)
…および(ト′),(ト′)…と、周方向に四等分とな
る位置関係で任意に選ばれた中心より反射側に位置する
縦路(ト),(ト)を結ぶ直径線上で第1同心円通路
(ハ)、第3同心円通路(ホ)に、それぞれ形成され下
開口する流路(チ),(リ)と、前記直径線に直交する
直径線上で第2同心円通路(ニ)、第4同心円通路
(ヘ)にそれぞれ形成され下開口する流露(ヌ),
(ル)とを有する。 また、回転盤(ロ)は前記固定盤(イ)における第1
同心円通路(ハ)、第3同心円通路(ホ)の流路
(チ),(リ)と、縦路(ト),(ト)とに相当する接
続路(ラ),(ワ),(カ),(ヨ)を連ねそれぞれ半
径方向外方に延びる通路(タ),(レ)と、第2同心円
通路(ニ)、第4同心円通路(ヘ)の流路(ヌ),
(ル)と、縦路(ト),(ト)とに相当する接続路
(ソ),(ツ),(ネ),(ウ)を連ねそれぞれ半径方
向外方に延びる通路(オ),(ク)とを有する。 このように形成した固定盤(イ)上に回転盤(ロ)を
回転自在に設け、回転盤(ロ)を所要角度回転して流路
切換制御を行うものであり、これを4ゾーン方式疑似移
動床連続分離装置に適用した場合、例えば第14図のよう
になる。 (発明が解決しようとする問題点) 疑似移動連続分離装置においてかかる従来の方式で
は、液の流出入口の切換えに伴い特定の遮断弁の開閉を
行わせるための特別の制御装置を必要とし、また従来の
4ゾーン方式の流路切換制御弁では循環流の変化に伴う
頻繁な循環ポンプの負荷調整が必須であり、適切な流路
切換制御を行うには高価なプロセスコピュータのコント
ロールシステムを必要とするという問題点があった。 (問題点を解決するための手段) 本発明は数個のゾーンを設定した方式、例えば3ゾー
ン方式の疑似移動床連続分離装置において、液の流出入
口の切換えを簡易になし得、さらに脱着能の大きい溶離
液を用い、この溶離液が他のゾーンに流入するのを防止
して脱着ゾーンのみに流入させたい場合等に用いて好適
な、また従来の4ゾーン方式において循環ポンプによる
循環流をも配設し、切換時期、流量変更等を行うための
高価なコントロールシステムを不必要とする流路切換制
御装置を提供するものであって、本発明は中心より同心
状に配し半径方向に適宜間隔拡径し、かつ下開口する流
路を有する4以上nの同心円通路と、同心円通路群の回
りに周方向等間隔環状に配しそれぞれ下開口する3以上
mの1対の縦路よりなる第1段環状縦路群および第2段
環状縦路群とを有してなる固定盤を設け、前記固定盤に
おけるそれぞれの同心円通路上の適宜位置および第1段
環状縦路群、第2段環状縦路群の縦路と同一位置で中心
より各々、関係配置した接続路と、前記固定盤における
同心円通路上の接続路よりそれぞれ外方に延び第1段環
状縦路群、第2段環状縦路群のうちの1対の縦路に相当
する1対の接続路を連ねるl個の通路と、同心円通路上
の接続路よりそれぞれ外方に延び第1段環状縦路群、第
2段環状縦路群のうちの1対の縦路に相当する1対の接
続路の一方のみを連ねる2k個の通路と、残りの第1段環
状縦路群、第2段環状縦路群のうちの1対の縦路に相当
する1対の接続路を連ねる通路とを有し、かつ前記k,l,
m,nがm≧k+l,n=2k+l(但しk≠0)なる関係を満
足する回転盤を設け、前記回転盤を固定盤上に回動自在
としたことを特徴とする疑似移動床連続分離装置におけ
る流路切換制御装置である。 本発明の流路切換制御装置において、固定盤の第1段
環状縦路群および第2段環状縦路群における縦路の数m
は、疑似移動床分離装置における充填床の数に対応する
3以上の任意の数であるが、一般には各成分の分離のし
易さ、操作性等の面からm=12のものが多く用いられ
る。2段の環状縦路群は、通常循環流の流れに沿って各
充填床の入口側および出口側の配管それぞれに接続され
る。即ち、各充填床の流出液はすべて本発明の流路切換
制御装置を介して次床へ供給される。 固定盤の同心円通路は、充填床群からなる系への原
液、溶離液等の供給、プロダクト液、ラフィネート液等
の系外への抜出し等、系外との流入出ラインや、循環ポ
ンプを設置する場合の循環流を制御するためのもので、
その数nは4以上の任意の数であるが、一般には2成分
の分離が主であるので、4〜8の範囲である。 回転盤の同心円通路上の接続路と縦路に相当する接続
路とを連ねる通路の数2kおよびlは、前記固定盤の同心
円通路の数nとn=2k+l≧4の関係を満足する範囲
で、目的に応じて適宜選ばれる。但し、k≠0である。
同心円通路上の接続路の位置は、通常工作のし易さ、操
作性等の面から1対の通路k,kは比較的近傍に、その他
は極力分散配置するように選ばれ、接続路を連ねる通路
は、最短で連絡するように工作される。 (作用) 固定盤に2段の環状縦路群を設け、かつ回転盤に同心
円通路上の接続路と2段の環状縦路群のうち1対の縦路
に相当する1対の接続路の一方のみを連ねる一組以上の
通路を形成したことによって系外流出入および各充填床
流出入ラインの切換制御を可能ならしめ、それにより流
路切換時期の検出、流量変更等頻繁な制御を行わずに各
床の役割を逐次代えながら一連のサイクルを繰り返せし
めることができる。 さらに本発明装置を用いることにより、各充填床間の
配管を直列に循環接続し得て配管系を簡素化することが
できる。 (実 施 例) 本発明装置の実施例を図面について説明する。 第3図を参照して実施例1を説明すれば、本発明の流
路切換制御装置1は、円盤状の固定盤2の上面に下方開
口する有底円筒状のケーシング3の周壁部3a下端を固着
してあり、これら固定盤2とケーシング3とで画成した
内部室間に円盤状の回転盤4と封止体5とを内接し、固
定盤2、回転盤4、封止体5、ケーシング3のそれぞれ
中心に挿貫し、適宜駆動機構(図示しない)により回転
自在とした作動軸6を設けてある。 前記回転盤4は、この場合、上体4Aとテフロン製下体
4Bとを一体としてなるとともに前記作動軸6に一体回転
するように取付けてあり、封止体5は逆皿状を呈し、底
壁5a、周壁5bを回転盤4の上面、周面にそれぞれ摺接
し、ケーシング内の空間部に作動軸6の通気路7から供
給された圧力空気により回転盤4の密封作動を確保する
ようにしてある。 前記固定盤2は、第1図に示すように、中心より同心
状に配し半径方向に等間隔拡径する第1同心円通路81
第2同心円通路82、第3同心円通路83、第4同心円通路
84を形成してあり、最外周の第4同心円通路84の外側に
周方向等間隔環状に配し、かつ下開口する12個の第1段
環状縦路群9の縦路91,92,93,94,95,96,97,98,99,910,9
11,912を形成し、第1段環状縦路群9の外側にこれらと
半径方向位置を同じくした同数の第2段環状縦路群10の
縦路101,102,103,104,105,106,107,108,109,1010,1011,
1012を形成してあり、また中心より反対側に位置するそ
れぞれの第1段環状縦路群9の縦路91,97と第2段環状
縦路群10の縦路101,107とを結ぶ第1直径線11上に配し
第1同心円通路81と第3同心円通路83に、それぞれ中心
より反対側に配置するとともに下開口する流路121,122
を形成し、前記第1直径線11に直交する第2直径線13上
に中心より反対側に位置する第1段環状縦路群9の縦路
910,94、第2段環状縦路群10の縦路1010,104とともに置
し、第2同心円通路82における縦路910寄りに下開口す
る流路14を形成し、さらに、第1直径線11、第2直径線
13とで画成した1つの象限内で第1段環状縦路群9、第
2段環状縦路群10のうちの1対である縦路96,106と対応
する直径線上外の関係位置の第4同心円通路84に形成
し、かつ下開口する流路15を固定盤2に形成してある。 次に回転盤4は、第2図に示すように、固定盤2の第
1直径線11上の第1段環状縦路群9、第2段環状縦路群
10の縦路91,101および97,107に相当する接続路16,17お
よび18,19を連ねる位置に相当する第1通路20および第
2通路21を形成し、第2直径線13上の第2同心円通路82
の流路14に相当する接続路22を形成し、第2直径線13上
の半径方向外方にそれぞれ延び、対応する第1段階環状
縦路群9、第2段環状縦路群10の縦路94,104、910,1010
に相当する接続路23,24,25,26を連ねる位置に相当する
第3通路27、第4通路28を形成し、前記第4通路28は接
続路25,26と接続路22とを直接路として連通させてあ
る。 次いで、固定盤2の第1段環状縦路群9、第2段環状
縦路群10の対応する一対の縦路92,102、93,103、95,1
05、96,106、98,108、99,109、911,1011、912,1012に相
当する接続路29,30、31,32、33,34、35,36、37,38、39,
40、41,42、43,44をそれぞれ形成してあり、接続路35,3
6をのぞき接続路29,30,31,32,33,34,37,38,39,40,41,4
2,43,44を各々一対に連ね半径方向外方に延び対応する
位置に配した第5通路45、第6通路46、第7通路47、第
8通路48、第9通路49、第10通路50、第11通路51とを回
転盤4に形成してある。 さらに、接続路35を通る第14通路52は接続路36を通る
第15通路53と互いに平行状としてあり、第14通路52にお
ける中心側に形成した接続路54は固定盤2における流路
122と連通自在とし、第15通路53に形成した接続路55は
固定盤2における流路15と連通自在としてある。また、
接続路22は流路14に連通自在とし、第5通路45の延長上
に形成した連続路56は流路121に連通自在としてある。 本発明は前記のように構成するから、第3図に示すよ
うに、固定盤2に対して回転盤4が位置したとき、例え
ば縦路94から供給された液は接続23から第3通路27を通
り、一方は接続路24より縦路104を通って排出する。 本発明装置を第4図に示す疑似移動床連続分離装置に
適用し、混合原料(F)を吸着分離(R)、脱着
(D)、回収(E)の一連サイクルに作用せしめる場合
について詳細に説明する。 第1図乃至第4図を参照して説明すれば、固定盤2の
縦路910に充填床C12の出口を接続し、以下順次逆時計廻
りに、第1段環状縦路群9の縦路99,98,・・・,91,912,
911に充填床C1,C2,・・・,C9,C10,C11の出口を接続す
る。また、縦路1010に充填床C1の入口を接続し、以下順
次逆時計廻りに、第2段環状縦路群10の縦路109,108,・
・・,101,1012,1011に充填床C2,C3,・・・,C10,C11,C12
の入口を接続する。そして、固定盤2の流路14より原液
を、流路15より溶離液を供給し、流路122よりラフィネ
ートを、流路121よりプロダクトを排出するようにす
る。 第3図に示すような回転盤4の位置では、原液は流路
14、第2同心円通路82を経て回転盤4の接続路22から第
9通路28を通り、途中で充填床C12から流出し、縦路910
を経て流入する液と合流し、回転盤4の接続路26を経て
縦路1010より充填床C1へと流入する。 充填床C1から流出する液は縦路99、回転盤4の接続路
39から第9通路49を通り、回転盤4の接続路40を経て縦
路109より充填床C2へと流入する。以下同様にして、充
填床C2から流出する液は充填床C3へと流入し、充填床C3
から流出する液は充填床C4へと流入する。 充填床C4から流出するラフィネートは縦路96、回転盤
4の接続路35から第14通路52を通り、回転盤4の接続路
54から第3同心円通路83を経て流路122より抜出され
る。 溶離液は流路15、第4同心円通路84を経て回転盤4の
接続路55から第15通路53を通り、回転盤4の接続路36を
経て縦路106より充填床C5へと流入する。 充填床C8から流出する液は縦路92、回転盤4の接続路
29から第5通路45を通り、一部は回転盤4の接続路30を
経て縦路102より充填床C9へと流入し、他は回転盤4の
接続路56から第1同心円通路81を経て流路121よりプロ
ダクトとして抜出される。 液出入口の切換えは回転盤4を逆時計廻りに30度回転
させることにより、原液は充填床C2へ、プロダクトは充
填床C9へ流れる等、順次、下流側へ移動される。 充填床C1〜C12への流れ系統、切換制御系統を第3図
に示すような回転盤4位置において例示すれば表(1)
に示すようになる。 また、第3図に示す位置から、回転盤4を30度回転
し、切換えた場合は表(2)に示すようになる。 即ち、表(1)を参照して、例えば混合原料(F)は
供給ラインから本発明に係る流路切換制御装置1の固定
盤2の流路14、同心円通路82を通って、回転盤4の接続
路22、通路28に入り、床C12から固定盤2の縦路910を通
り、回転盤4の接続路25からの流れと合流し、接続路26
を通って床C1へ送給され、床C8と床C9とは直結し、床C8
からの流れの一部(E)は流路12、より抜出される。 所定時間後、回転盤4を30度回転すると、表(2)に
示すように、混合原料(F)は床C1の流れと合流しC
2へ、床C9と床C10は直結、床C10の流れの一部(E)が
流路121を介して抜出される。また、回路盤4が90度回
転すると、混合原料(F)は床C3の流れと合流し床C4
送給され、床C11の流れの一部(E)が流路121を介して
抜出される。 このようにして、回転盤4が一回転し、元位置に戻る
ことによって各床C1〜C12のそれぞれの役割を逐次代え
ながら一連のサイクルを繰り返えす。 本実施例においては、固定盤の同心円通路を、各槽と
接続する第1〜第4同心円通路とし、第1段環状縦路
群、第2段環状縦路群を周方向に12等分とし、これに対
応して回転盤の接続路、通路を設定したが、これに限定
されることなく、本発明の精神を逸脱しない範囲におけ
る設計変更は自由である。 次に、本発明の実施例2として流路切換制御装置57を
第5図、第6図および第7図を参照して説明する。 流路切換制御装置57の固定盤58は前記第1実施例の流
路切換制御装置1における固定盤2の構造に、さらに第
5同心円通路85と流路59を付加したものとし、回転盤60
を第1実施例の回転盤4の構造に、さらに第2同心円通
路82に通じる接続路61および第1実施例の第2段環状縦
路群10に通じる接続路30とを結び、かつ第5通路45と交
差する第12通路62を付加したものとしてある。 本実施例に係る流路切換制御装置57による場合につい
て充填床C8からのプロダクト流は全量同心円通路を経て
抜き出される。 充填床C9へは、吸着ゾーンへ流れても支障のない溶
媒、通常は原液に用いられている溶媒と同じ溶媒を第2
同心円通路82を経て、回転盤60の内部の通路に形成され
た接続路から固定盤58の縦路を経て供給される。 これにより、充填床C5から供給された溶離液は充填床
C9以降のゾーンへ流れることはない。 流出入口の切換えは回転盤60を逆時計方向に30度回転
することにより順次、下流側へ移動される。 さらに、本発明の実施例3として4ゾーン方式に用い
た実施例を第8図、第9図および第10図を参照して説明
する。 固定盤63は第8図に示すように、中心より同心状に配
し半径方向に等間隔拡径する第1同心円通路641、第2
同心円通路642、第3同心円通路643、第4同心円通路64
4、第5同心円通路645、第6同心円通路646を形成して
あり、最外周の第6同心円通路646の外側に周方向等間
隔環状に配し、かつ下開口する12個の第1段環状縦路群
65の縦路651,652,653,654,655,656,657,658,659,6510,6
511,6512を形成し、第1段環状縦路群65の外側にこれら
と半径方向位置を同じくした同数の第2段環状縦路群66
の縦路661,662,663,664,665,666,667,668,669,6610,66
11,6612を形成してあり、また中心より反対側に位置す
るそれぞれの第1段環状縦路群65の縦路651,657と第2
段環状縦路群66の縦路661,667とを結ぶ第1直径線67上
に配し第1同心円通路641と第3同心円通路643に、それ
ぞれ中心より反対側に位置するとともに下開口する流路
681,682を形成し、前記第1直径線67に直交する第2直
径線69上に中心より反対側に位置する第1段環状縦路群
65の縦路6510,654、第2段環状縦路群66の縦路6610,664
とともに位置し、第2同心円通路642と第4同心円通路6
44にそれぞれ中心より反対側に位置し、かつ下開口する
流路701,702を形成し、さらに、第1直径線67、第2直
径線69とで画成した1つの象限内で第1段環状縦路群6
5、第2段環状縦路群66のうちの1対である縦路653、65
3と対応する直径線上外の関係位置の第5同心円通路6
45、第6同心円通路646に形成し、かつ下開口する流路7
1,72を固定盤63に形成してある。 次に回転盤73は第9図に示すように、固定盤63の第1
直径線67上の第1同心円通路641の流路681、第3同心円
通路643の流路682に相当する接続路74,75よりそれぞれ
半径方向外方に延び、対応する第1段環状縦路群65、第
2段環状縦路群66の縦路651,661および657,667に相当す
る接続路76,77および78,79を連ねる位置に相当する第1
通路80および第2通路81を形成し、第2直径線69上の第
2同心円通路642の流路701、第4同心円通路644の流路7
02に相当する接続路82,83よりそれぞれ半径方向外方向
に延び、対応する第1段環状縦路群65、第2段環状縦路
群66の縦路6510,6610,654,664に相当する接続路86,87,8
4,85を連ねる位置に相当する第4通路89、第3通路88を
形成し、前記第5同心円通路645の流路71に相当する接
続路90と第1段環状縦路群65の縦路653に相当する接続
路91と連ね外方に延び対応する位置に配した第5通路92
と、第6同心円通路646の流路72に相当する接続路93と
第2段環状縦路群66の縦路663に相当する接続路94とを
連ね外方に延び対応する位置に配した第6通路95と、第
1段環状縦路群65、第2段環状縦路群66の対応する一対
の縦路652,662,655,665,656,666,658,668,659,669,6
510,6610,6511,6611,6512,6612に相当する接続路96,97,
98,99,100,101,102,103,104,105,106,107,108,109をそ
れぞれ連ね半径方向外方に延び対応する位置に配した第
7通路110の第8通路111、第9通路112、第10通路113、
第11通路114、第12通路115、第13通路116とを回転盤73
に形成してある。 本実施例では前記のように構成するから、第10図に示
すように、固定盤63に対して回転盤73が位置したとき、
例えば縦路657から供給された液は接続路78から第2通
路81を通り、一方は接続路79より縦路667を通って排出
し、他方は接続路75から第3同心円通路643を通り流路6
82を通って排出する。 本発明装置を第11図に示す疑似移動床連続分離装置に
適用した場合について詳細に説明する。 混合原料(F)を吸着分離(R)、脱着(D)回収
(E)の一連サイクルに作用せしめる場合に第11図に示
される破線部分に囲まれた流路を有する本発明の流路切
換制御装置157を配設し、第10図に示す如く配置した状
態で、固定盤63の縦路654に充填床C12の出口を接続し、
縦路654より時計廻りの順で第1段環状縦路群65の各縦
路に充填約C1〜充填床C11の出口を接続するとともに、
縦路664に充填床C1の入口を接続し、縦路654より同じく
時計廻りの順で第2段環状縦路群66の各縦路に充填床C2
〜充填床C12の入口を接続する。 充填床C1〜C12への流れ系統、切換制御系統を第10図
に示すような回転盤73位置において例示すれば表(3)
に示すようになる。 また、第10図に示す位置から、回転盤73を時計廻りに
30度回転し、切換えた場合は表(4)に示すようにな
る。 即ち、表(3)を参照して、例えば混合原料(F)は
供給ラインから本発明に係る流路切換制御装置157の固
定盤63の流路701、同心円通路642を通って、回転盤73の
接続路82、通路89に入り、床C6から固定盤63の縦路6510
を通り、回転盤73の接続路86からの流れと合流し、接続
路87を通って床C7へ送給され、床C7と床C8とは直結し、
床C9からの流れの一部(R)は流路681より抜出され
る。 所定時間後、回転盤73を30度回転すると、表(4)に
示すように、混合原料(F)は床C7の流れと合流しC
8へ、床C9と床C10は直結、床C10の流れの一部(R)が
流路681を介して抜出される。また、回転盤73が90度回
転すると、混合原料(F)は床C9の流れと合流し床C10
へ送給され、床C12の流れの一部(R)が流路681を介し
て抜出される。 このようにして、回転盤73が一回転し、元位置に戻る
ことによって各床C1〜C12のそれぞれの役割を逐次代え
ながら一連のサイクルを繰り返えす。 本実施例においては、固定盤の同心円通路を、各槽と
接続する第1〜第4同心円通路と循環ポンプと接続する
第5同心円通路、第6同心円通路との6本とし、第1段
環状縦路群、第2段環状縦路群を周方向に12等分とし、
おれに対応して回転盤の接続路、通路を設定したが、こ
れに限定されることなく、本発明の精神を逸脱しない範
囲における設計変更は自由である。 (発明の効果) 本発明の流路切換制御装置を用いれば、疑似移動床連
続分離装置における液の流出入口の切換えを簡易になし
得ることができ、さらに目的に応じて、例えば着脱能の
大きい溶離液を用いる場合、この溶離液が他のゾーンに
流入するのを防止して脱着ゾーンのみに流入させること
および循環ポンプを用いる場合に、循環ポンプ負荷を一
定とすることができる。
The present invention relates to a flow path switching control device suitable for use in a simulated moving bed continuous separation device. (Prior Art) A method of continuously separating and recovering each component in a mixed solution using a simulated moving bed in which a plurality of packed bodies filled with an adsorbent are connected in series and circulated and connected is well known. Conventionally, as a continuous separation means using a simulated moving bed, a packed bed group is defined in four zones, and a shutoff valve attached to a pipe that circulates and connects each bed, and inflow and outflow of liquids such as undiluted solution and product liquid outside the system. By using an automatic valve and / or a rotary valve that controls the switching of the fluidized bed, the function of each packed bed is sequentially moved to the downstream side of the liquid flow to perform continuous separation. On the other hand, compared to the conventional 4-zone method, it is suitable for the recovery of only specific components in the stock solution such as the number of amino acids from the oxygen reaction solution, and for the separation and recovery of components having significantly different adsorption capacities. A continuous separation means using a three-zone system in which the number is reduced and rationalized has been proposed (see JP-A-62-91205). Adsorption and separation by successively acting on each component in the mixed raw material,
The simulated moving bed continuous separation device for desorption, recovery, etc., requires a control device to open and close a specific shut-off valve that is continuous between the packed beds, as described above, with the switching of the liquid outflow and inlet ports by the rotary valve. And The one used as a flow path switching control valve in the conventional four-zone system is, for example, a fixed plate (a) shown in FIG.
And the rotating disk (b) shown in FIG. 13, which is arranged independently of the circulating flow between the packed beds as shown in FIG. 14, and is therefore loaded on the circulating pump. As the circulation flow changes, the circulation flow rate also changes drastically along with the change in its properties, so an expensive process computer control system is required to detect the switching timing and change the flow rate accompanying the switching for load adjustment of the circulation pump. And That is, the fixed platen (a) is arranged concentrically from the center, and the first concentric passage (c), the second concentric passage (d), the third concentric passage (e), and the fourth concentric circle whose diameter is appropriately increased in the radial direction. Longitudinal paths (g), (g) which are equally and circumferentially arranged in the circumferential direction outside the passage (f) and the fourth concentric passage (f) and open downward respectively.
... and (G '), (G') ... on the diameter line connecting the longitudinal routes (G) and (G) located on the reflection side from the center arbitrarily selected in a positional relationship that is equally divided in the circumferential direction. In the first concentric passage (c) and the third concentric passage (e), the flow passages (h) and (h) formed and opened downward, respectively, and the second concentric passage (d) on a diameter line orthogonal to the diameter line. ), Flow dew (nu) formed in the fourth concentric passage (f) and opening downward, respectively.
(R). Further, the rotary disk (b) is the first disk in the fixed disk (b).
Connection paths (L), (W), and (F) corresponding to the flow paths (H) and (H) of the concentric circular path (C) and the third concentric circular path (E) and the longitudinal paths (G) and (G). ), (Y), and paths (T) and (V) extending radially outward, and flow paths (N) and (F) of a second concentric path (D) and a fourth concentric path (F).
(R) and connecting paths (S), (T), (N), and (C) corresponding to the longitudinal paths (G) and (G), respectively, and the paths (O) and ( H). A rotary disk (b) is rotatably provided on the fixed disk (a) formed in this way, and the rotary disk (b) is rotated by a required angle to perform flow path switching control. When applied to a moving bed continuous separation apparatus, for example, it is as shown in FIG. (Problems to be Solved by the Invention) Such a conventional system in the quasi-moving continuous separation device requires a special control device for opening and closing a specific shut-off valve in accordance with the switching of the liquid outflow / inlet, and In the conventional four-zone type flow path switching control valve, frequent adjustment of the load of the circulating pump due to the change of the circulating flow is indispensable, and an expensive process computer control system is required to perform appropriate flow path switching control. There was a problem of doing. (Means for Solving the Problems) In the present invention, in a simulated moving bed continuous separation apparatus of a system in which several zones are set, for example, a three-zone system, it is possible to easily switch the liquid inlet / outlet, and furthermore, the desorption ability It is suitable for use when the eluent having a large diameter is used and it is desired to prevent the eluent from flowing into another zone and flow only into the desorption zone. The present invention also provides a flow path switching control device that does not require an expensive control system for performing switching timing, flow rate change, and the like, and the present invention is arranged concentrically from the center and radially. 4 or more concentric passages having flow paths which are appropriately enlarged in diameter and open downward, and a pair of longitudinal paths of 3 or more m which are arranged around the concentric passages in a ring at equal intervals in the circumferential direction and open downward respectively. First Stage Ring Road Group And a fixed plate having a second-stage annular longitudinal path group, and an appropriate position on each of the concentric circular paths in the fixed plate and the longitudinal paths of the first-stage annular longitudinal group and the second-stage annular longitudinal group. And a connection path which is arranged at the same position from the center at the same position as above, and extends outwardly from a connection path on a concentric passage in the fixed plate, and is one of a first-stage annular longitudinal path group and a second-stage annular longitudinal path group. One of a pair of connecting paths corresponding to a pair of longitudinal paths, and one of a first-stage annular longitudinal path group and a second-stage annular longitudinal path group which extend outward from the connecting paths on the concentric circular paths. 2k passages connecting only one of a pair of connecting roads corresponding to one pair of longitudinal roads, and a pair of longitudinal roads of the remaining first-stage circular longitudinal group and second-stage circular longitudinal group. And a passage connecting a corresponding pair of connection paths, and the k, l,
A quasi-moving floor continuous separation, characterized in that a rotating disk is provided which satisfies the relationship m ≧ k + 1, n = 2k + 1 (where k ≠ 0), and the rotating disk is rotatable on a fixed disk. It is a flow path switching control device in the device. In the flow path switching control device of the present invention, the number m of longitudinal paths in the first-stage annular longitudinal group and the second-stage annular longitudinal group of the fixed board
Is an arbitrary number of 3 or more corresponding to the number of packed beds in the simulated moving bed separation apparatus, but in general, m = 12 is often used from the viewpoint of easy separation of each component and operability. Can be The two-stage annular vertical path group is connected to each of the inlet and outlet pipes of each packed bed along the flow of the circulating flow. That is, all the effluent of each packed bed is supplied to the next bed via the flow path switching control device of the present invention. The concentric passage of the fixed board is equipped with inflow / outflow lines to the outside of the system, such as supply of undiluted solution and eluent to the system consisting of packed bed groups, extraction of product liquid, raffinate solution, etc., and a circulation pump. To control the circulating flow when
The number n is an arbitrary number of 4 or more, but generally ranges from 4 to 8 because separation of two components is mainly performed. The number of paths 2k and 1 connecting the connecting path on the concentric circular path of the rotating disk and the connecting path corresponding to the longitudinal path is within a range satisfying the relationship of n = 2k + 1 ≧ 4 with the number n of concentric circular paths of the fixed disk. Is appropriately selected according to the purpose. However, k ≠ 0.
The position of the connection path on the concentric path is usually selected so that the pair of paths k, k are relatively close to each other and the others are distributed as much as possible from the viewpoint of ease of work, operability, etc. The connecting passages are constructed so that they can be contacted in the shortest possible time. (Operation) A two-stage annular longitudinal path group is provided on the fixed board, and the rotary disc has a connection path on a concentric circular path and a pair of connection paths corresponding to a pair of longitudinal paths in the two-stage annular longitudinal path group. By forming at least one set of passages connecting only one side, it is possible to control the switching of outflow / inflow and outflow / outflow lines of each packed bed, thereby avoiding frequent control such as detection of flow path switching timing and flow rate change. A series of cycles can be repeated while sequentially changing the role of each floor. Further, by using the apparatus of the present invention, the pipes between the packed beds can be circulated in series and the piping system can be simplified. (Embodiment) An embodiment of the present invention will be described with reference to the drawings. Referring to FIG. 3, a first embodiment of the present invention will be described. A flow path switching control device 1 according to the present invention includes a lower end of a peripheral wall 3a of a bottomed cylindrical casing 3 which opens downward on the upper surface of a disk-shaped fixed plate 2. The disk-shaped rotary disk 4 and the sealing body 5 are inscribed between the internal chambers defined by the fixed disk 2 and the casing 3. , An operating shaft 6 which is inserted through the center of each of the casings 3 and is rotatable by a drive mechanism (not shown). In this case, the turntable 4 includes an upper body 4A and a Teflon lower body.
4B is integrated with the operating shaft 6 so as to rotate integrally therewith. The sealing body 5 has an inverted dish shape, and the bottom wall 5a and the peripheral wall 5b are slid on the upper surface and the peripheral surface of the turntable 4, respectively. The rotating disk 4 is sealed by the pressurized air supplied from the air passage 7 of the operating shaft 6 to the space inside the casing. As shown in FIG. 1, the fixed platen 2 is provided with a first concentric passage 8 1 , which is arranged concentrically from the center and is expanded at equal intervals in the radial direction.
2nd concentric passage 8 2 , 3rd concentric passage 8 3 , 4th concentric passage
8 4 Yes to the formation, vertical passage 9 1 12 of the first stage annular vertical passage group 9 on the outside of the outermost fourth concentric passage 8 4 arranged in the circumferential direction at equal intervals annular, and to the lower opening, 9 2 , 9 3 , 9 4 , 9 5 , 9 6 , 9 7 , 9 8 , 9 9 , 9 10 , 9
11 , 9 12 , and the same number of longitudinal paths 10 1 , 10 2 , 10 3 , 10 2 of the second-stage annular longitudinal path group 10 having the same radial position on the outside of the first-stage annular longitudinal path group 9. 4 , 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , 10 10 , 10 11 ,
10 12 are formed, and the longitudinal paths 9 1 , 9 7 of the first-stage annular longitudinal group 9 and the longitudinal paths 10 1 , 10 of the second-stage annular longitudinal group 10 located on the opposite side from the center. 7 and a first concentric passage 81 disposed on the first diameter line 11 which connects to the third concentric passage 8 3, channel 12 1 of the lower opening while disposed on the opposite side of the center, respectively, 12 2
And a longitudinal path of a first-stage annular longitudinal path group 9 located on a second diameter line 13 orthogonal to the first diameter line 11 and located on the opposite side from the center.
9 10, 9 4, and location with the vertical path 10 10, 10 4 of the second stage annular vertical passage group 10, and a flow path 14 to the lower opening in the vertical channel 9 10 closer to the second concentric passageway 82, further , First diameter wire 11, second diameter wire
13 and the outer relation on the diameter line corresponding to the pair of longitudinal paths 9 6 , 10 6 of the first-stage annular longitudinal path group 9 and the second-stage annular longitudinal path group 10 within one quadrant defined by 13. forming a fourth concentric passage 8 4 position, and is formed with channel 15 to the lower opening in the fixed platen 2. Next, as shown in FIG. 2, the turntable 4 includes a first-stage annular longitudinal path group 9 and a second-stage annular longitudinal path group on the first diameter line 11 of the fixed disk 2.
Vertical channel 9 of 10 1, 10 1 and 9 7, 10 7 the first passage 20 and second passage 21 corresponds to a position contiguous with the connecting channel 16, 17 and 18, 19 corresponding to form, the second diameter line 2nd concentric passage on 13 8 2
The connection paths 22 corresponding to the flow paths 14 are formed, and extend outward in the radial direction on the second diameter line 13. Road 9 4 , 10 4 , 9 10 , 10 10
A third passage 27 and a fourth passage 28 are formed at positions corresponding to the connecting passages 23, 24, 25, and 26, and the fourth passage 28 connects the connecting passages 25, 26 and the connecting passage 22 directly. It is communicated as. Next, a pair of corresponding longitudinal paths 9 2 , 10 2 , 9 3 , 10 3 , 9 5 , 1 of the first stage annular longitudinal path group 9 and the second stage annular longitudinal path group 10 of the fixed platen 2.
0 5 , 9 6 , 10 6 , 9 8 , 10 8 , 9 9 , 10 9 , 9 11 , 10 11 , 9 12 , 10 12 Corresponding connection paths 29, 30, 31, 32, 33, 34, 35 , 36,37,38,39,
40, 41, 42, 43, 44 are formed respectively, and connection paths 35, 3
Connection path 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 4 except 6
A fifth passage 45, a sixth passage 46, a seventh passage 47, an eighth passage 48, a ninth passage 49, and a tenth passage in which 2, 43, 44 are connected in a pair to extend radially outward and are arranged at corresponding positions. 50 and an eleventh passage 51 are formed in the turntable 4. Further, the fourteenth passage 52 passing through the connection passage 35 is parallel to the fifteenth passage 53 passing through the connection passage 36, and the connection passage 54 formed on the center side of the fourteenth passage 52 is a passage in the fixed platen 2.
12 freely 2 and communicating, connecting channel 55 formed in the 15th passage 53 is a universal flow path 15 communicating with the fixed platen 2. Also,
Connecting channel 22 is freely communicating to the flow channel 14, a continuous passage 56 formed on the extension of the fifth passage 45 is in the channel 12 1 as lifting communicate. Since the present invention is constructed as above, as shown in FIG. 3, when the rotary disc 4 is positioned with respect to the fixed plate 2, for example, the liquid supplied from the vertical passage 9 4 third passage from the connection 23 through 27, one discharges through Tatero 10 4 the connecting passage 24. The case where the apparatus of the present invention is applied to the simulated moving bed continuous separation apparatus shown in FIG. 4 and the mixed raw material (F) is allowed to act on a series of cycles of adsorption separation (R), desorption (D), and recovery (E) will be described in detail. explain. 1. Referring to FIG. 1 through FIG. 4, to connect the outlet of the packed bed C 12 in the longitudinal passage 9 10 of the fixed platen 2, successively counterclockwise around, the first stage annular vertical passage group 9 or less Longitude 9 9 , 9 8 , ..., 9 1 , 9 12 ,
9 11 packed bed C 1, C 2, ···, connects the outlet of the C 9, C 10, C 11 . The vertical path 10 and 10 to connect the inlet of the packed bed C 1, the following sequential counterclockwise around the vertical passage 109 of the second stage annular vertical passageway groups 10, 10 8, -
.., packed beds C 2 , C 3 , ..., C 10 , C 11 , C 12 at 10 1 , 10 12 , 10 11
Connect the entrance of. Then, the stock solution from the flow passage 14 of the fixed platen 2, and supplies the eluent from the channel 15, the raffinate from the flow path 12 2, so as to discharge the product from the channel 12 1. At the position of the turntable 4 as shown in FIG.
14, the second concentric passage 8 of 2 through the rotary disc 4 connecting channel 22 through the ninth passage 28, flows out from the packed bed C 12 in the middle, longitudinal channel 9 10
Merges with the liquid flowing through, to flow through the connecting channel 26 of the rotating disk 4 into the packed bed C 1 from the vertical path 10 10. The liquid flowing out of the packed bed C 1 is the vertical path 9 9 , the connecting path of the turntable 4
From 39 through the ninth passage 49, and flows into the packed bed C 2 from the vertical path 109 through the connection path 40 of the rotating disk 4. In the same manner, the liquid flowing out of the packed bed C 2 flows into the packed bed C 3, packed bed C 3
Liquid flowing out flows into the packed bed C 4. The raffinate flowing out of the packed bed C 4 passes through the vertical path 9 6 , the connection path 35 of the turntable 4, the fourteenth path 52, and the connection path of the turntable 4.
From 54 through the third concentric channel 8 3 withdrawn from the flow passage 12 2. Eluent flow path 15, the fourth connection passage 55 of the rotating disk 4 through a concentric passage 8 4 through the 15th passage 53, and from the vertical path 106 through the connection path 36 of the rotating disk 4 into the packed bed C 5 Inflow. The liquid flowing out of the packed bed C 8 is the vertical path 9 2 , the connecting path of the turntable 4
From 29 through the fifth passage 45, part flows into the packed bed C 9 than the vertical path 10 2 via the connecting channel 30 of the rotating disk 4, the other first concentric passage from the connecting passage 56 of the rotating disk 4 8 withdrawn from the flow passage 12 1 as a product through the 1. By switching the liquid entrance will be rotated 30 degrees rotary disc 4 in the opposite clockwise, stock solution to packed bed C 2, etc. Product flows to packed bed C 9, and are sequentially moved to the downstream side. Flow system to the packed bed C 1 -C 12, if illustrated in the rotating disk 4 position as shown a switching control system in Figure 3 Table (1)
It becomes as shown in. In addition, when the turntable 4 is rotated by 30 degrees from the position shown in FIG. 3 and is switched, the result is as shown in Table (2). That is, with reference to Table (1), such as mixed raw material (F) passes through the flow path 14, a concentric passageway 82 of the fixed platen 2 of the channel switching control device 1 according to the present invention from the supply line, the rotary disc 4 of the connecting channel 22, enters the passage 28, through the vertical path 9 10 of the fixed platen 2 from the floor C 12, joins the flow from the connecting channel 25 of the rotating disk 4, the connecting channel 26
Through the floor C 1 , the floor C 8 and the floor C 9 are directly connected, and the floor C 8
A part (E) of the flow from the flow path is extracted from the flow path 12. After a predetermined time, when the turntable 4 is rotated by 30 degrees, as shown in Table (2), the mixed raw material (F) merges with the flow of the bed C 1 and
To 2, bed C 9 and the floor C 10 is directly connected to a portion of the floor C 10 stream (E) is withdrawn through the passage 12 1. Further, when the circuit board 4 is rotated 90 degrees, the mixed material (F) is fed to the floor C 4 merges with the flow of bed C 3, a portion of the floor C 11 stream (E) is a flow channel 12 1 Is pulled out through. In this way, the rotating disk 4 is rotated once, repeat a series of cycles while sequentially changing the respective roles of each bed C 1 -C 12 by returning to its original position Es. In this embodiment, the concentric passages of the fixed board are first to fourth concentric passages connected to each tank, and the first-stage annular longitudinal path group and the second-stage annular longitudinal path group are equally divided into 12 in the circumferential direction. The connection paths and passages of the turntable are set correspondingly. However, the present invention is not limited thereto, and design changes may be freely made without departing from the spirit of the present invention. Next, a flow path switching control device 57 as a second embodiment of the present invention will be described with reference to FIG. 5, FIG. 6, and FIG. Fixed platen 58 of the passage switching control device 57 and obtained by adding the fixed platen to the second structure, further fifth concentric passage 8 5 and the flow path 59 in the channel switching control device 1 of the first embodiment, the rotating disk 60
The structure of the rotating disk 4 of the first embodiment, bear a connecting passage 30 which further leads to the second stage annular vertical passage group 10 of the connecting passage 61 and the first embodiment second communicating concentric passageways 82, and the A twelfth passage 62 intersecting with the fifth passage 45 is added. Product stream from the packed bed C 8 for the case of the flow path switching control device 57 according to this embodiment is withdrawn through the total amount concentric passage. To packed bed C 9 is a solvent having no problem even if the flow to the adsorption zone, usually the same solvent used in the stock solution a second
Through the concentric passage 82, it is supplied through the vertical passage of the fixed plate 58 from formed inside the passage of the rotating disk 60 connecting channel. Thus, eluent packed bed is supplied into the packed bed at C 5
It does not flow to C 9 or later of the zone. Switching of the outflow / inlet port is sequentially performed by rotating the turntable 60 counterclockwise by 30 degrees to the downstream side. Further, an embodiment using a four-zone system as Embodiment 3 of the present invention will be described with reference to FIGS. 8, 9 and 10. FIG. As shown in FIG. 8, the fixed platen 63 is arranged concentrically from the center and has a first concentric circular passage 64 1 , which is radially expanded at equal intervals, and a second concentric passage 64 1 .
Concentric passage 64 2 , third concentric passage 64 3 , fourth concentric passage 64
4, the fifth concentric passage 64 5, Yes to form a sixth concentric passages 64 6, 12 of the first to the outside of the sixth concentric passages 64 6 of the outermost disposed circumferentially equidistantly cyclic, and to lower opening One-stage circular longitudinal group
65 longitudinal routes 65 1 , 65 2 , 65 3 , 65 4 , 65 5 , 65 6 , 65 7 , 65 8 , 65 9 , 65 10 , 6
5 11 , 65 12 are formed, and the same number of second-stage annular longitudinal path groups 66 having the same radial position outside the first-stage annular longitudinal path group 65 are formed.
66 1 , 66 2 , 66 3 , 66 4 , 66 5 , 66 6 , 66 7 , 66 8 , 66 9 , 66 10 , 66
11, 66 Yes 12 to form, also vertical path 65 1, 65 7 of each of the first stage annular vertical passage group 65 located opposite from the center and the second
The stage annular vertical passage 66 1 in the longitudinal passageway groups 66, 66 7 and the first concentric passage 64 1 and the third concentric channel 64 3 disposed on the first diameter line 67 connecting, as well as positioned on the opposite side of the respective central Flow path opening downward
68 1, 68 2 is formed, first stage annular vertical passage group located on the opposite side from the center on the second diameter line 69 which is perpendicular to the first diameter line 67
65 longitudinal routes 65 10 , 65 4 , second stage annular longitudinal route group 66 longitudinal routes 66 10 , 66 4
And the second concentric passage 64 2 and the fourth concentric passage 6
4 4 located on the opposite side of the center, respectively, and to form a flow passage 70 1, 70 2 to the lower opening, further first diameter line 67, in a single quadrant in which form images out a second diameter line 69 First-stage ring road group 6
5. Longitudinal paths 65 3 , 65 which are a pair of the second-stage annular longitudinal path group 66
Fifth concentric passage 6 at a position outside the diameter line corresponding to 3
4 5, the passage 7 6 formed concentrically passage 64 6 and to the lower opening
1,72 are formed on the fixed plate 63. Next, as shown in FIG.
Flow channel 68 1 of the first concentric passage 64 1 in the diametrical line 67, respectively the connecting passage 74 and 75 extending radially outwardly, corresponding to the flow path 68 2 of the third concentric channel 64 3, corresponding first stage annular vertical passage group 65, the first corresponding to the vertical path 65 1, 66 1 and 65 7, 66 positions contiguous with the connecting channel 76, 77 and 78 and 79 corresponding to 7 of the second stage annular vertical passage group 66
Forming a passage 80 and second passage 81, the second concentric channel 64 second channel 70 1 of the second diametrical line 69, the flow path 7 of the fourth concentric passage 64 4
0 2 , extending radially outward from the connecting paths 82, 83, respectively, and corresponding to the first paths 65 10 , 66 10 , 65 4 of the first-stage annular longitudinal path group 65 and the second-stage annular longitudinal path group 66. Connection route 86,87,8 equivalent to 66 4
Fourth passage 89 which corresponds to the position contiguous with 4,85, the third passage 88 is formed, the vertical connection line 90 to the first stage annular vertical passage group 65 corresponding to the flow path 71 of the fifth concentric passages 64 5 fifth passage 92 arranged in positions corresponding extends outwardly lined with connecting passage 91 corresponding to the road 65 3
If, distribution to the sixth concentric passages 64 and 6 connecting passage 93 corresponding to the channel 72 of the vertical passage 66 3 extending in the connection passage 94 and the chosen outwardly equivalent to the corresponding position of the second stage annular vertical passage group 66 A pair of corresponding longitudinal paths 65 2 , 66 2 , 65 5 , 66 5 , 65 6 , 66 6 , 65 of the sixth passage 95 and the corresponding first-stage annular longitudinal path group 65 and second-stage annular longitudinal path group 66. 8 , 66 8 , 65 9 , 66 9 , 6
5 10 , 66 10 , 65 11 , 66 11 , 65 12 , 66 12
98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109 are connected to each other and extend radially outward, and the eighth passage 111, the ninth passage 112, the tenth passage 113 of the seventh passage 110,
The eleventh passage 114, the twelfth passage 115, and the thirteenth passage 116 are
It is formed in. In this embodiment, since the configuration is as described above, as shown in FIG. 10, when the rotary disk 73 is positioned with respect to the fixed disk 63,
For example the vertical path 65 7 liquid supplied from through the second passage 81 from the connecting passage 78, one is discharged through Tatero 66 7 the connecting path 79, the other connection path 75 from the third concentric channel 64 3 Through the flow path 6
8 Discharge through 2 . The case where the apparatus of the present invention is applied to the simulated moving bed continuous separation apparatus shown in FIG. 11 will be described in detail. When the mixed raw material (F) is subjected to a series of cycles of adsorption separation (R), desorption (D), and recovery (E), the flow path switching of the present invention having a flow path surrounded by a broken line shown in FIG. the control device 157 is disposed, in a state of being arranged as shown in FIG. 10, connects the outlet of the packed bed C 12 in the longitudinal passage 65 4 of the stationary platen 63,
With connecting the outlet of the filling about C 1 ~ packed bed C 11 to each longitudinal path of the first stage annular vertical passage group 65 in this order clockwise from the vertical path 65 4,
Vertical path 66 and 4 to connect the inlet of the packed bed C 1, also from the vertical path 65 4 filled in the order of clockwise in the vertical path of the second stage annular vertical passage group 66 bed C 2
Connecting the inlet of ~ packed bed C 12. Flow system to the packed bed C 1 -C 12, To exemplify the turntable 73 position as shown a switching control system in Fig. 10 Table (3)
It becomes as shown in. Also, from the position shown in FIG. 10, turn the turntable 73 clockwise.
When rotated 30 degrees and switched, the results are as shown in Table (4). That is, referring to Table (3), for example, the mixed raw material (F) is rotated from the supply line through the flow path 70 1 of the fixed plate 63 and the concentric path 64 2 of the fixed plate 63 of the flow path switching control device 157 according to the present invention. connecting channel 82 of the panel 73, enters the passage 89, the vertical path 65 10 of the fixed plate 63 from the floor C 6
The street and joins the flow from the connecting channel 86 of the rotating disk 73, is fed to the floor C 7 through the connection passage 87, directly to the floor C 7 and the floor C 8,
Part of the flow from the floor C 9 (R) is withdrawn from the passage 68 1. After a predetermined time, when the turntable 73 rotates 30 degrees, as shown in Table (4), mixed feed (F) is combined with stream of bed C 7 C
To 8, the floor C 9 and the floor C 10 is directly connected to a portion of the floor C 10 Flow (R) is withdrawn through the passage 68 1. When the turntable 73 rotates 90 degrees, the mixed raw material (F) merges with the flow of the floor C 9 and the floor C 10
To be fed, part of the floor C 12 Flow (R) is withdrawn through the passage 68 1. In this way, the rotary disc 73 is rotated once, repeat a series of cycles while sequentially changing the respective roles of each bed C 1 -C 12 by returning to its original position Es. In this embodiment, the number of concentric passages of the fixed plate is six, that is, the first to fourth concentric passages connected to each tank, the fifth concentric passages connected to the circulation pump, and the sixth concentric passages. The longitudinal group and the second-stage annular longitudinal group are divided into 12 equal parts in the circumferential direction,
The connection paths and passages of the turntable are set corresponding to this, but the present invention is not limited thereto, and design changes may be freely made without departing from the spirit of the present invention. (Effect of the Invention) By using the flow path switching control device of the present invention, it is possible to easily switch the liquid outflow / inlet port in the simulated moving bed continuous separation device, and furthermore, for example, according to the purpose, for example, the detachability is large. When an eluent is used, it is possible to prevent the eluent from flowing into another zone and to flow only into the desorption zone, and when using a circulation pump, the load of the circulation pump can be kept constant.

【図面の簡単な説明】 第1図は本発明の第1の例に係る装置の固定盤の平面
図、第2図は同・回転盤の平面図、第3図は第1図、第
2図におけるIII−III線相当部分の断面図、第4図は本
発明装置を疑似移動床型クロマト分離装置に配設した場
合の説明図、第5図は本発明の第2の例に係る装置の固
定盤の平面図、第6図は同・回転盤の平面図、第7図は
第5図、第6図におけるVII−VII線相当部分の断面図、
第8図は本発明の第3の例に係る装置の固定盤の平面
図、第9図は同・回転盤の平面図、第10図は第8図、第
9図におけるX−X線相当部分の断面図、第11図は本発
明装置を4ゾーン方式疑似移動床型クロマト分離装置に
配設した場合の説明図、第12図は従来の流路切換制御装
置の固定盤の平面図、第13図は同・回転盤の平面図、第
14図は従来の装置を4ゾーン方式疑似移動床型クロマト
分離装置に配設した場合の説明図である。 1,57,157……流路切換制御装置、2,58,63……固定盤、
4,60,73……回転盤、81〜85,641〜646……同心円通路、
9,65……第1段環状縦路群、10,66……第2段環状縦路
群、91〜912,101〜1012……縦路、121,122,14,59,681,6
82,701,702,71,72……流路、16〜19,22〜26,29〜44,54
〜56,61,74〜79,82〜87,90,91,93,94……接続路、20,2
1,45〜53,62,80,81,88,89,92,95,110〜116……通路。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of a fixed plate of an apparatus according to a first embodiment of the present invention, FIG. 2 is a plan view of the same rotary plate, FIG. FIG. 4 is a cross-sectional view of a portion corresponding to the line III-III in FIG. 4, FIG. 4 is an explanatory view in the case where the apparatus of the present invention is disposed in a simulated moving bed type chromatographic separation apparatus, and FIG. 5 is an apparatus according to a second example of the present invention. FIG. 6 is a plan view of the same rotary plate, FIG. 7 is a sectional view of a portion corresponding to line VII-VII in FIG. 5, FIG.
FIG. 8 is a plan view of a fixed plate of the device according to the third embodiment of the present invention, FIG. 9 is a plan view of the same rotary plate, FIG. 10 is a view corresponding to line XX in FIGS. FIG. 11 is an explanatory view of a case where the apparatus of the present invention is arranged in a four-zone type pseudo moving bed type chromatographic separation apparatus, FIG. 12 is a plan view of a fixed plate of a conventional flow path switching control apparatus, FIG. 13 is a plan view of the rotary disc, and FIG.
FIG. 14 is an explanatory view of a case where the conventional apparatus is provided in a 4-zone type pseudo moving bed type chromatographic separation apparatus. 1,57,157 …… Channel switching control device, 2,58,63 …… Fixed board,
4,60,73 …… Rotary disk, 8 1 to 8 5 , 64 1 to 64 6 …… Concentric circular passage,
9,65… First-stage annular longitudinal route group, 10,66… Second-stage annular longitudinal route group, 9 1 to 9 12 , 10 1 to 10 12 …… Longitudinal route, 12 1 , 12 2 , 14, 59,68 1 , 6
8 2 , 70 1 , 70 2 , 71,72 …… Channel, 16-19,22-26,29-44,54
〜56,61,74〜79,82〜87,90,91,93,94 …… Connection road, 20,2
1,45-53,62,80,81,88,89,92,95,110-116 ... passage.

Claims (1)

(57)【特許請求の範囲】 1.中心より同心状に配し半径方向に適宜間隔拡径し、
かつ下開口する流路を有する4以上nの同心円通路と、
同心円通路群の回りに周方向等間隔環状に配しそれぞれ
下開口する3以上mの1対の縦路よりなる第1段環状縦
路群および第2段環状縦路群とを有してなる固定盤を設
け、 前記固定盤におけるそれぞれの同心円通路上の適宜位置
および第1段環状縦路群、第2段環状縦路群の縦路と同
一位置で中心より各々関係配置した接続路と、前記固定
盤における同心円通路上の接続路よりそれぞれ外方に延
び第1段環状縦路群、第2段環状縦路群のうちの1対の
縦路に相当する1対の接続路を連ねるl個の通路と、同
心円通路上の接続路よりそれぞれ外方に延び第1段環状
縦路群、第2段環状縦路群のうちの1対の縦路に相当す
る1対の接続路の一方のみを連ねる2k個の通路と、残り
の第1段環状縦路群、第2段環状縦路群のうちの1対の
縦路に相当する1対の接続路を連ねる通路とを有し、か
つ前記k,l,m,nがm≧k+l、n=2k+l(但しk≠
0)なる関係を満足する回転盤を設け、 前記回転盤を前記固定盤上に回動自在としたことを特徴
とする疑似移動床連続分離装置における流路切換制御装
置。
(57) [Claims] Arranged concentrically from the center and expanded at appropriate intervals in the radial direction,
And 4 or more n concentric passages having a flow path that opens downward,
A first-stage annular longitudinal path group and a second-stage annular longitudinal path group are disposed around the concentric circular passage group in a circumferentially equidistant annular shape and each have a pair of longitudinal roads of 3 m or more and each opening downward. A fixed board, provided with appropriate positions on the respective concentric passages in the fixed board, the first-stage annular longitudinal path group, and connection paths respectively arranged from the center at the same position as the longitudinal paths of the second-stage annular longitudinal path group; Each of the fixed plates extends outward from the connection path on the concentric path, and connects a pair of connection paths corresponding to a pair of vertical paths in the first-stage annular vertical-path group and the second-stage annular vertical-path group. And one of a pair of connecting paths extending outward from the connecting paths on the concentric circular paths and corresponding to a pair of longitudinal paths in the first-stage annular longitudinal path group and the second-stage annular longitudinal path group. And a pair of longitudinal roads of the remaining first-stage circular longitudinal group and second-stage circular longitudinal group. And a passage contiguous with a pair of connection paths, and wherein k, l, m, n is m ≧ k + l, n = 2k + l (where k ≠
0) A rotary plate that satisfies the following relationship is provided, and the rotary plate is rotatable on the fixed plate.
JP62290541A 1987-03-23 1987-11-19 Channel switching control device in simulated moving bed continuous separation device Expired - Lifetime JP2662226B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62290541A JP2662226B2 (en) 1987-03-23 1987-11-19 Channel switching control device in simulated moving bed continuous separation device
US07/248,083 US4923616A (en) 1987-09-24 1988-09-23 Method of separating chemical components in simulated moving bed
KR1019880012399A KR890004754A (en) 1987-09-24 1988-09-24 Chemical Separation Method and Channel Connection Control Valve Used in Denture Transfer Bed

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6865387 1987-03-23
JP62-68653 1987-03-23
JP62290541A JP2662226B2 (en) 1987-03-23 1987-11-19 Channel switching control device in simulated moving bed continuous separation device

Publications (2)

Publication Number Publication Date
JPS643379A JPS643379A (en) 1989-01-09
JP2662226B2 true JP2662226B2 (en) 1997-10-08

Family

ID=26409856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62290541A Expired - Lifetime JP2662226B2 (en) 1987-03-23 1987-11-19 Channel switching control device in simulated moving bed continuous separation device

Country Status (1)

Country Link
JP (1) JP2662226B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168201B2 (en) * 2009-03-19 2013-03-21 東レ株式会社 Pressurized fluid passage switching method and separation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134286A (en) * 1982-02-04 1983-08-10 Toray Ind Inc Rotary valve
JPS62180176A (en) * 1986-02-05 1987-08-07 Toray Ind Inc Rotary valve

Also Published As

Publication number Publication date
JPS643379A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
US4923616A (en) Method of separating chemical components in simulated moving bed
US20050269268A1 (en) Simulated moving bed separation process and device
EP0096567B1 (en) Multiple valve apparatus for performing a fluid-solids contacting process
US4705627A (en) Absorption apparatus including rotary valve
US3192954A (en) Distributing valve
US4614204A (en) Rotary valve for interconnecting conduits in three groups
JP6685274B2 (en) Method, valve and chromatography system in a continuous chromatography system
US10309938B2 (en) Rotary valve
US5705061A (en) Simulated moving bed adsorptive separation apparatus
US6719001B2 (en) Fluid-directing multiport rotary valve
US20160313289A1 (en) Rotary valve
US8349175B1 (en) Rotary valve apparatus for simulated moving bed separations
ZA200503109B (en) Rotary distribution apparatus
US3789989A (en) Flow distribution apparatus
JP2662226B2 (en) Channel switching control device in simulated moving bed continuous separation device
US4569371A (en) Axial multiport rotary valve
US3134403A (en) Rotatable spindle pilot valve
US5133869A (en) Continuous high performance liquid chromatography
KR100741751B1 (en) Simulated moving bed adsorptive separation process using two adsorption chambers in series and equipment used for the same
US3728843A (en) Process for continuous separation of liquid or gas mixtures on a fixed bed of solids
JPH0221850B2 (en)
EP0231567B1 (en) Axial multiport rotary valve
CN206262156U (en) Multicolumn chromatography equipment
Liang et al. The design and operation of a simulated moving bed for the separation of intermediate retention components from a multi-component feedstock with a very strong retention component
JPS6350523Y2 (en)