JP2661769B2 - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JP2661769B2
JP2661769B2 JP2105459A JP10545990A JP2661769B2 JP 2661769 B2 JP2661769 B2 JP 2661769B2 JP 2105459 A JP2105459 A JP 2105459A JP 10545990 A JP10545990 A JP 10545990A JP 2661769 B2 JP2661769 B2 JP 2661769B2
Authority
JP
Japan
Prior art keywords
radiation detector
anode electrode
cathode electrode
electrode
discharge space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2105459A
Other languages
Japanese (ja)
Other versions
JPH044553A (en
Inventor
義文 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2105459A priority Critical patent/JP2661769B2/en
Publication of JPH044553A publication Critical patent/JPH044553A/en
Application granted granted Critical
Publication of JP2661769B2 publication Critical patent/JP2661769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、放射線検出器に関し、さらに詳しくいう
と、アノード電極およびカソード電極がXYマトリクス形
状に配置されている放射線検出器に関するものである。
Description: TECHNICAL FIELD The present invention relates to a radiation detector, and more particularly, to a radiation detector in which an anode electrode and a cathode electrode are arranged in an XY matrix shape.

[従来の技術] 第4図、第5図は、例えばノース・ホーランド・ハブ
リッシング カンパニー(NORTH−HOLLAND PUBULISHING
Co.)発光、原子核機器および方法(NUCLEAR INSTRUME
NTS AND METHODS)第141巻(1977)P.505〜509に記載さ
れた従来のアノード電極とカソード電極とがXYマトリク
ス形状に配置され放射線の2次元分布の検出を可能とし
た放射線検出器である。この放射線検出器は、絶縁体フ
レーム(1)によってXYマトリクス形状のアノード電極
(2)と、カソード電極(3)とが絶縁保持され、これ
を絶縁(4)および(5)で挟み、気密封着されてい
る。この放射線検出器内空間には、ネオン、アルゴン、
キセノン等の不活性ガス(6)が電離ガスとして封入さ
れている。
[Prior Art] FIGS. 4 and 5 show, for example, NORTH-HOLLAND PUBULISHING Company.
Co.) Luminescence, nuclear instruments and methods (NUCLEAR INSTRUME)
NTS AND METHODS) Vol. 141 (1977), pp. 505-509, is a radiation detector in which two-dimensional distribution of radiation can be detected by arranging an anode electrode and a cathode electrode in an XY matrix shape. . In this radiation detector, an anode electrode (2) in the form of an XY matrix and a cathode electrode (3) are insulated and held by an insulator frame (1), which is sandwiched between insulations (4) and (5), and hermetically sealed. Is being worn. In this radiation detector internal space, neon, argon,
An inert gas (6) such as xenon is sealed as an ionizing gas.

以上の構成になる放射線検出器の2次元分布の検出の
動作原理に関しては、中性子検出もX線やγ線の電離放
射線の検出も同じなので、以下では主にX線やγ線の電
離放射線の検出について説明する。X線や、γ線が検出
器の電極を構成する金属または電離用ガス(6)に当た
ると、光電効果、コンプトン効果、電子対生成のいずれ
かの過程により高エネルギーの電子を放出する。この高
エネルギーの電子が電離用ガス(6)を電離してイオン
対を作る。このイオン対は、イオン対の生成された領域
に対応するXYマトリクスの交点に配置されたアノード電
極(2)と、カソード電極(3)との間に印加された電
圧に伴う電界により、正イオンはカソード電極(3)
に、電子はアノード電極(2)に集められ、これが外部
測定回路を流れる信号電流として測定される。
Regarding the principle of operation of the two-dimensional distribution detection of the radiation detector having the above configuration, since the detection of neutrons and the detection of ionizing radiation of X-rays and γ-rays are the same, the following description will focus mainly on the ionizing radiation of X-rays and γ-rays. The detection will be described. When X-rays or γ-rays hit the metal or ionizing gas (6) constituting the electrode of the detector, high-energy electrons are emitted by any of the photoelectric effect, Compton effect, and electron pair generation. These high-energy electrons ionize the ionization gas (6) to form ion pairs. This ion pair is converted into a positive ion by an electric field accompanying a voltage applied between an anode electrode (2) disposed at an intersection of an XY matrix corresponding to a region where the ion pair is generated and a cathode electrode (3). Is the cathode electrode (3)
Next, the electrons are collected at the anode electrode (2), which is measured as a signal current flowing through an external measurement circuit.

[発明が解決しようとする課題] 以上のような従来の放射線検出器は、構造が複雑でそ
のためほとんどの製造工程を人手に頼っていたため生産
性が上がらず、生産コストが高くなるといった問題や、
各電極を空間中に配置するため、電離空間の不均一性に
よる信号の質の低下及び耐振動性能が劣る等の問題があ
った。
[Problems to be Solved by the Invention] The conventional radiation detectors as described above have a complicated structure, and therefore, most of the manufacturing processes rely on humans, so that productivity is not increased and production costs are increased.
Since the electrodes are arranged in the space, there are problems such as deterioration of signal quality due to non-uniformity of the ionization space and poor vibration resistance.

この発明は上記のような問題点を解決するためになさ
れたもので、低生産コストと、安定した特性を有する放
射線検出器を得ることを目的とする。
The present invention has been made to solve the above problems, and has as its object to obtain a radiation detector having low production cost and stable characteristics.

[課題を解決するための手段] この発明にかかる放射線検出器は、近年各種の電子デ
バイスの製造に用いられて発達した厚膜印刷技術または
フォトリソグラフィ技術を用いて主要構造であるXYマト
リクス形状のアノード電極とカソード電極を形成すると
ともに、一方の絶縁板の他方の絶縁板との間に空隙を有
してリブを取り付けたものである。
[Means for Solving the Problems] The radiation detector according to the present invention has a XY matrix shape which is a main structure using a thick film printing technology or a photolithography technology developed and used in the manufacture of various electronic devices in recent years. An anode electrode and a cathode electrode are formed, and a rib is attached with a gap between one insulating plate and the other insulating plate.

[作用] この発明においては、主要構造であるXYマトリクス形
状のアノード電極とカソード電極を厚膜印刷技術または
フォトリソグラフィ技術を用いて形成することにより、
また電離空間がリブで仕切られることにより、電極間距
離および電離空間が高い精度で制御され、従来あった電
離空間の不均一性による信号の質の低下及び耐振動性能
が劣る等の問題が解消され、同時に位置分解能も向上す
る。
[Function] In the present invention, the anode electrode and the cathode electrode in the XY matrix shape, which are the main structures, are formed by using a thick film printing technique or a photolithography technique.
In addition, since the ionization space is separated by ribs, the distance between the electrodes and the ionization space are controlled with high accuracy, and the problems such as the deterioration of signal quality and the poor vibration resistance due to the non-uniformity of the ionization space, which were conventionally encountered, are solved. At the same time, the position resolution is improved.

[実施例] 以下、この発明の一実施例を第1図、第2図を参照し
て説明する。図において絶縁板(21)と(24)はおれぞ
れ前記の第4図、第5図の絶縁板(4)(5)に対応す
る。アノード電極(22)、カソード電極(23)はそれぞ
れ前記の第4図、第5図のアノード電極(2)とカソー
ド電極(3)に対応し、アノード電極(22)は絶縁板
(21)上に、カソード電極(23)は絶縁板(24)上にそ
れぞれ厚膜印刷技術またはフォトリソグラフィ技術を用
いて形成される。電極用空間には電離ガス(25)が充填
されており、電離ガスとしては従来と同じくネオン、ア
ルゴン、キセノン等の不活性ガスを用いる。電離間距離
は同じく厚膜印刷技術またはフォトリソグラフィ技術を
用いて形成された低融点ガラスのリブ構造(26)や絶縁
物を挟むことで保持される。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In the figure, insulating plates (21) and (24) correspond to the insulating plates (4) and (5) in FIGS. 4 and 5, respectively. The anode electrode (22) and the cathode electrode (23) correspond to the anode electrode (2) and the cathode electrode (3) in FIGS. 4 and 5, respectively, and the anode electrode (22) is on the insulating plate (21). The cathode electrode (23) is formed on the insulating plate (24) by using a thick film printing technique or a photolithography technique. The electrode space is filled with an ionizing gas (25). As the ionizing gas, an inert gas such as neon, argon, or xenon is used as in the conventional case. The ionization distance is held by sandwiching a rib structure (26) of low melting point glass or an insulator similarly formed using a thick film printing technique or a photolithography technique.

このようにして厚膜印刷技術またはフォトリソグラフ
ィ技術を用いて放射線検出器の主要構造であるXYマトリ
クス形状のアノード電極(22)とカソード電極(23)を
形成した放射線検出器は従来最も製作期間を長く手作業
に頼ってきた電極部の組み立て工程をアノード電極(2
2)、カソード電極(23)を厚膜印刷技術またはフォト
リソグラフィ技術を用いて絶縁板に各個に形成したの
ち、2枚の絶縁板(21)(24)同士を位置合わせし、封
着する工程に置き換えることによって工期、コスト品質
の安定の面で大幅な改善が達成される。
In this way, the radiation detector using the thick film printing technology or photolithography technology to form the anode electrode (22) and the cathode electrode (23) in the XY matrix shape, which is the main structure of the radiation detector, has the longest production time. The process of assembling the electrode part, which has long relied on manual work, is called the anode electrode (2
2) The process of forming the cathode electrode (23) individually on the insulating plate using thick film printing technology or photolithography technology, and then aligning and sealing the two insulating plates (21) and (24). Substantial improvements in terms of work period and cost / quality stability can be achieved by replacing with.

また、電離空間がリブにより仕切られることにより、
電離間距離および電離空間が高い精度で制御され、従来
あった電離空間の不均一性による信号の質の低下及び耐
振動性能が劣る等の問題が解消され、同時に位置分解能
も向上する。また絶縁板とリブとの間に空隙があるので
電離ガスが拡散等により均一化され放電により電離ガス
が消費または組成が変わり特性が劣化することを防ぐこ
とになり有効である。
In addition, the ionization space is partitioned by ribs,
The ionization distance and the ionization space are controlled with high accuracy, and the problems such as the deterioration of the signal quality and the poor vibration resistance performance due to the non-uniformity of the ionization space, which have conventionally existed, are solved, and the position resolution is also improved. In addition, since there is a gap between the insulating plate and the rib, the ionized gas is made uniform by diffusion or the like, thereby preventing the consumption or composition of the ionized gas from being changed by discharge and preventing deterioration of characteristics.

なお、上記実施例では、X線やγ線の電離放射線に感
度を有する放射線検出器について示したが他の実施例と
して第3図に示すように、同構造の放射線検出器のカソ
ード電極(23)表面にボロン10同位体を濃縮したLaB
6(27)をコートすれば中性子感度を持たすことが可能
である。また2枚の絶縁板(21)(24)同士の位置合わ
せを容易にするため絶縁板の少なくとも一方を透明な例
えばガラス板としてもよい。
In the above embodiment, a radiation detector having sensitivity to ionizing radiation such as X-rays or γ-rays was shown. However, as another embodiment, as shown in FIG. ) LaB enriched with boron 10 isotope on the surface
6 It is possible to have neutron sensitivity by coating (27). In addition, at least one of the insulating plates may be a transparent glass plate, for example, in order to facilitate the alignment between the two insulating plates (21) and (24).

[発明の効果] 以上のように、この発明によれば、厚膜印刷技術また
はフォトリソグラフィ技術を用いて主要構造であるマト
リクス形状のアノード電極とカソード電極を形成するこ
とにより、工期、コスト、品質の安定の面で大幅な改善
が得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, a matrix-shaped anode electrode and a cathode electrode, which are main structures, are formed by using a thick film printing technique or a photolithography technique, so that the construction period, cost, and quality are improved. There is an effect that a significant improvement can be obtained in terms of stability.

また、電離空間がリブにより仕切られることにより電
離間距離および電離空間が高い精度で制御され信号の質
が向上し、また耐振動性能が向上する。また、絶縁板と
リブとの間に空隙があるので、電離ガスが拡散等により
均一化され、放電により電離ガスが消費または組成が変
わり特性が劣化することを防ぐ。
Further, since the ionization space is partitioned by the ribs, the ionization distance and the ionization space are controlled with high accuracy, so that the quality of signals is improved and the vibration resistance is improved. Further, since there is a gap between the insulating plate and the rib, the ionized gas is made uniform by diffusion or the like, thereby preventing the consumption or composition of the ionized gas from being changed by discharge and deterioration of characteristics.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例を説明するための要部破断
斜視図、第2図は同じく横断面図、第3図は他の実施例
を説明するための横断面図、第4図は従来の放射線検出
器の部分破断斜視図、第5図は同じく横断面図である。 (21)……絶縁板、(22)……アノード電極、(23)…
…カソード電極、(24)……絶縁板、(25)……電離ガ
ス、(26)……リブ、(27)……LaB6。 なお、各図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a fragmentary perspective view for explaining one embodiment of the present invention, FIG. 2 is a transverse sectional view of the same, FIG. 3 is a transverse sectional view for explaining another embodiment, and FIG. Is a partially broken perspective view of a conventional radiation detector, and FIG. 5 is a transverse sectional view of the same. (21) ... insulating plate, (22) ... anode electrode, (23) ...
... cathode electrode (24) ... insulating plate, (25) .... ionized gas, (26) ... ribs, (27) .... LaB 6. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】放電空間の隔ててXYマトリクス形状に配置
されたアノード電極およびカソード電極と、この両電極
を保持すると共に絶縁と放電空間の気密性を維持する一
対の絶縁板とを含み、上記放電空間に電離ガスを充填し
た平板型の放射線検出器において、上記アノード電極お
よび上記カソード電極を、厚膜印刷手段およびフォトリ
ソグラフィ手段のいずれかにより形成するとともに、上
記絶縁板の一方の絶縁板に、他方の上記絶縁板との間の
空隙を有してリブを取り付けたことを特徴とする放射線
検出器。
An anode electrode and a cathode electrode arranged in an XY matrix shape with a discharge space therebetween, and a pair of insulating plates for holding both electrodes and maintaining insulation and airtightness of the discharge space, In a flat-plate radiation detector filled with an ionizing gas in a discharge space, the anode electrode and the cathode electrode are formed by one of a thick-film printing unit and a photolithography unit, and are formed on one of the insulating plates. A radiation detector, wherein a rib is attached so as to have a gap between the other insulating plate.
JP2105459A 1990-04-23 1990-04-23 Radiation detector Expired - Lifetime JP2661769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2105459A JP2661769B2 (en) 1990-04-23 1990-04-23 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2105459A JP2661769B2 (en) 1990-04-23 1990-04-23 Radiation detector

Publications (2)

Publication Number Publication Date
JPH044553A JPH044553A (en) 1992-01-09
JP2661769B2 true JP2661769B2 (en) 1997-10-08

Family

ID=14408167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2105459A Expired - Lifetime JP2661769B2 (en) 1990-04-23 1990-04-23 Radiation detector

Country Status (1)

Country Link
JP (1) JP2661769B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032510A (en) * 2006-07-28 2008-02-14 Toshiba Corp Radioactivity measuring instrument and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169077A (en) * 1982-03-31 1983-10-05 Shimadzu Corp Scintillation camera
JPS60112069U (en) * 1983-12-31 1985-07-29 株式会社島津製作所 radiation detector
JPS6383759U (en) * 1986-11-21 1988-06-01

Also Published As

Publication number Publication date
JPH044553A (en) 1992-01-09

Similar Documents

Publication Publication Date Title
Oed Properties of micro-strip gas chambers (MSGC) and recent developments
US4047040A (en) Gridded ionization chamber
JPS629870B2 (en)
Pate et al. Disintegration-rate determination by 4π-counting: part I
Fonte et al. Feedback and breakdown in parallel-plate chambers
US5347131A (en) Gas ionizing-radiation detector
US2899582A (en) Geiger-muller detector
JPH0812249B2 (en) Device for detecting uncharged particles and determining their position
US4121106A (en) Shielded regenerative neutron detector
Barrelet et al. A two-dimensional, single-photoelectron drift detector for Cherenkov ring imaging
Iodice et al. Small-pad Resistive Micromegas: Comparison of patterned embedded resistors and DLC based spark protection systems.
JP2661769B2 (en) Radiation detector
Bouclier et al. Progress in Cherenkov ring imaging: Part 1. Detection and localization of photons with the multistep proportional chamber
GB1592487A (en) Radiation detector
US2852694A (en) Ionization chamber
US5025144A (en) Resistive anode encoder target and method producing baths charged and visual images
Bouclier et al. Microstrip gas chambers on thin plastic supports
JP2003207573A (en) Ionization radiation detector and manufacturing method of detector
US2485516A (en) Shallow plane proportional counter
Veloso et al. Application of a Microstrip Gas Counter in Energy‐Dispersive X‐Ray Fluorescence Analysis
US2595622A (en) Fission indicator
Agocs et al. Developments and the preliminary tests of resistive GEMs manufactured by a screen printing technology
JP2584912B2 (en) Gamma ray compensated neutron ionization chamber
Ishii et al. High-resolution PIXE with crystal spectrometer and position-sensitive proportional counter
US3646381A (en) Spherical halogen geiger tube