JP2659848B2 - Isothermal forging of short fiber FRM - Google Patents

Isothermal forging of short fiber FRM

Info

Publication number
JP2659848B2
JP2659848B2 JP13704190A JP13704190A JP2659848B2 JP 2659848 B2 JP2659848 B2 JP 2659848B2 JP 13704190 A JP13704190 A JP 13704190A JP 13704190 A JP13704190 A JP 13704190A JP 2659848 B2 JP2659848 B2 JP 2659848B2
Authority
JP
Japan
Prior art keywords
forging
temperature
frm
short fiber
isothermal forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13704190A
Other languages
Japanese (ja)
Other versions
JPH0433737A (en
Inventor
明男 高橋
正治 清水
隆之 都筑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13704190A priority Critical patent/JP2659848B2/en
Publication of JPH0433737A publication Critical patent/JPH0433737A/en
Application granted granted Critical
Publication of JP2659848B2 publication Critical patent/JP2659848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は短繊維系FRM鍛造品のマクロ欠陥(内部剥
離)の発生を防止するための等温鍛造法に関する。
Description: TECHNICAL FIELD The present invention relates to an isothermal forging method for preventing occurrence of macro defects (internal delamination) in a short fiber FRM forged product.

〔従来の技術〕[Conventional technology]

等温鍛造法とは鍛造される材料(ワーク)と金型とを
同じ温度に加熱し、その温度を維持したままで鍛造を行
う塑性加工法であり、チタン合金、超合金等の難加工材
に対して適用されている。FRMに対してもこれらの金属
材料に対するのと同様のプロセスで等温鍛造法が適用さ
れており、その温度、荷重プロフィールは第2図に示す
通りである。
Isothermal forging is a plastic working method in which the material to be forged (work) and the mold are heated to the same temperature and forging is performed while maintaining the same temperature, and is used for difficult-to-machine materials such as titanium alloys and super alloys. Applied to The isothermal forging method is applied to FRM in the same process as for these metallic materials, and the temperature and load profile are as shown in FIG.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

短繊維系FRMは塑性加工が可能なことから、等温鍛造
法が賦形技術として利用されているが、FRMは従来の金
属材料に比べて剪断変形による欠陥を極めて生じ易く、
デッドメタルが生じないよう型形状に対する細かな配慮
が必要である。しかし、メタルフローを均一に制御し
て、マクロ的な剪断欠陥を防止しても、FRMは本質的に
ミクロ欠陥を内在しており、等温鍛造後の材料には繊維
/マトリックス界面等に多くのミクロ欠陥が存在する。
また、短繊維系FRMは材料製造プロセス上どうしても材
料内に相当量の水素ガスが存在し、繊維含有量が多くな
るにつれ水素ガス量も増加する傾向にある。
Isothermal forging is used as shaping technology because short-fiber FRM can be plastically processed, but FRM is extremely susceptible to defects due to shear deformation compared to conventional metal materials,
It is necessary to pay close attention to the mold shape so that dead metal does not occur. However, even if the metal flow is controlled uniformly to prevent macro-shear defects, the FRM inherently has micro defects, and the material after isothermal forging has many defects at the fiber / matrix interface etc. There are micro defects.
Also, in the short fiber-based FRM, a considerable amount of hydrogen gas is present in the material due to the material production process, and the amount of hydrogen gas tends to increase as the fiber content increases.

短繊維系FRMは上記の2つの特異性があるため、第2
図に示すような従来の等温鍛造法における温度、荷重プ
ロフィールで鍛造を行うと、鍛造温度からの冷却中ある
いはその後の熱処理(溶体化処理)中に水素ガスがミク
ロ欠陥をサイトとして凝集し、内圧を発生して鍛造品内
部にマクロ的な剥離を発生するという問題があり、製造
歩留りが極めて悪くなっている。
The short fiber-based FRM has the above two specificities,
When forging is performed at the temperature and load profile in the conventional isothermal forging method as shown in the figure, hydrogen gas agglomerates using micro defects as sites during cooling from the forging temperature or during subsequent heat treatment (solution treatment), and the internal pressure increases. This causes a problem that macroscopic peeling occurs inside the forged product, and the production yield is extremely poor.

〔課題を解決するための手段〕[Means for solving the problem]

短繊維系FRM等温鍛造材におけるマクロ欠陥(内部剥
離)の発生は、前記の通り、鍛造により生成したミクロ
欠陥への水素ガスの凝集によるものであると考えられる
ことから、鍛造により生成するミクロ欠陥量の極少
化、水素ガス含有量の低減により内部剥離の発生を防
止することが可能であると考えられる。
As described above, the occurrence of macro defects (internal peeling) in the short fiber FRM isothermal forging material is considered to be due to the aggregation of hydrogen gas into the micro defects generated by forging. It is considered that internal peeling can be prevented by minimizing the amount and reducing the hydrogen gas content.

のミクロ欠陥量極少化の観点からは、液相を生成す
る温度での塑性加工は好ましくないことから、固相線温
度以下で鍛造することが必要であり、最も優れた塑性流
動特性を示す固相線直下の温度が最適条件である。
From the viewpoint of minimizing the amount of micro defects, plastic working at a temperature at which a liquid phase is generated is not preferable, so it is necessary to forge at a temperature not higher than the solidus temperature. The temperature just below the phase line is the optimal condition.

また、の水素ガス含有量低減のためには素材製造時
に充分な脱ガスを行うのが望ましいが、溶湯加工含浸法
で材料製造する場合にはガス量の低減は難しく、鍛造前
素材あるいは鍛造材の状態で脱ガス処理することが必要
となる。脱ガス処理は水素の拡散が活発となる極力高い
温度(固相線温度以上)で行うことが望ましいが、FRM
は拘束しない状態で固相線温度以上に加熱すると割れが
発生し易いことから鍛造前素材状態での完全な脱ガスは
難しく、また等温鍛造も前記の通り固相線温度以下で行
うことから、鍛造中の水素ガス量低下もあまり期待でき
ない。以上のことから鍛造が終了してから脱ガスを行う
ことが必要となるが、鍛造材は金型内に拘束した状態で
加熱することが可能であり、この場合には部分液相の生
ずる固相線温度以上に加熱しても割れを発生しないこと
から、繊維/マトリックス界面等に比較的安定に存在す
る水素ガスも減少させることができる。従って等温鍛造
を行ってから一旦冷却後あるいは鍛造後そのまま金型内
で荷重を負荷したまま固相線温度以上に加熱、保持、そ
して冷却することにより、割れを発生させずに効率良く
水素ガスを低減させることが可能となる。
In order to reduce the hydrogen gas content, it is desirable to perform sufficient degassing at the time of material production, but it is difficult to reduce the gas amount when producing the material by the melt impregnation method, and the material before forging or the forged material It is necessary to perform the degassing process in the state described above. It is desirable to perform degassing at the highest possible temperature (above the solidus temperature) where hydrogen diffusion is active.
Since it is easy to generate cracks when heated above the solidus temperature in a state where it is not restrained, complete degassing in the material state before forging is difficult, and isothermal forging is also performed at the solidus temperature or lower as described above, A decrease in the amount of hydrogen gas during forging cannot be expected much. From the above, it is necessary to perform degassing after forging is completed.However, the forged material can be heated while being restrained in the mold, and in this case, the solid liquid in which a partial liquid phase is generated Since cracking does not occur even when heated to a temperature higher than the phase line temperature, the amount of hydrogen gas relatively stably present at the fiber / matrix interface or the like can also be reduced. Therefore, after performing isothermal forging, once cooling or forging, heating, holding, and cooling to a temperature equal to or higher than the solidus temperature while applying a load in the mold as it is, hydrogen gas is efficiently generated without generating cracks. It becomes possible to reduce.

本発明は以上の技術的事実に基いて完成されたもの
で、短繊維系FRMをそのマトリックス金属の固相線温度
以下で鍛造し、一旦、冷却後あるいは鍛造に引き続き、
金型内で荷重を負荷したままで固相線温度以上に加熱/
冷却することを特徴とする短繊維系FRMの等温鍛造法で
ある。
The present invention has been completed based on the above technical facts, forging a short fiber FRM below the solidus temperature of the matrix metal, once, after cooling or following forging,
Heating above the solidus temperature while applying a load in the mold /
This is an isothermal forging method for short fiber FRM, which is characterized by cooling.

本発明で対象とするマトリックス金属としてはアルミ
ニウム合金であれば、どのようなものも使用でき、強化
繊維となる短繊維としてはSiC,Al2O3などのウィスカ、
粒子が使用できる。
Any aluminum alloy can be used as the matrix metal targeted in the present invention, and whiskers such as SiC and Al 2 O 3 as short fibers serving as reinforcing fibers,
Particles can be used.

〔作用〕[Action]

短繊維系FRM等温鍛造品の鍛造後の冷却中あるいはそ
の後の溶体化処理中に発生するマクロ欠陥(内部剥離)
を防止するために採用した技術的手段は固相線温度以
下(できれば直下)の温度で鍛造する。鍛造後、金型
内で荷重を負荷したままで固相線温度以上に加熱、保
持、冷却する。の2点である。
Macro defects (internal delamination) generated during cooling after forging or subsequent solution treatment of short fiber FRM isothermal forgings
The technical measures adopted to prevent the forging are forging at a temperature below the solidus temperature (preferably directly below). After forging, heating, holding, and cooling to a temperature not lower than the solidus temperature while applying a load in the mold. 2 points.

は内部剥離の起点(核)となるミクロ欠陥を最少化
する効果があり、 はミクロ欠陥に凝集して内部剥離を引き起す水素ガ
スを低減させる効果を有している。
Has the effect of minimizing microdefects, which are the starting points (nuclei) of internal delamination, and has the effect of reducing hydrogen gas that aggregates into microdefects and causes internal delamination.

〔実施例〕〔Example〕

以下、本発明の一実施例として、7075合金(Al−5.1
〜6.1Zn−2.1〜2.9Mg−1.2〜2.0Cu)をSiCウィスカで強
化したSiCw/7075FRMによる飛昇体翼モデルの鍛造例を、
温度、荷重プロフィールを示す第1図によって説明す
る。
Hereinafter, as one embodiment of the present invention, 7075 alloy (Al-5.1
-6.1Zn-2.1-2.9Mg-1.2-2.0Cu) forged example of a flying wing model by SiCw / 7075FRM reinforced with SiC whiskers.
FIG. 1 shows temperature and load profiles.

上記材料の固相線温度は500℃付近(Al−Zn−Mg−Cu
四元共晶温度は477℃。固相線温度は偏析の程度によっ
て異ってくるが、ほぼ500℃と考えられる。)であるこ
とから、鍛造温度は固相線温度直下の480℃として鍛造
によるミクロ欠陥の発生を少くし、鍛造後金型内で荷重
を負荷したままで固相線温度以上の530℃に加熱、保
持、冷却して水素ガス量を低減させて、その後の溶体化
処理におけるマクロ欠陥(内部剥離)の発生を防止し
た。
The solidus temperature of the above material is around 500 ° C (Al-Zn-Mg-Cu
The quaternary eutectic temperature is 477 ° C. Although the solidus temperature varies depending on the degree of segregation, it is considered to be approximately 500 ° C. ), The forging temperature is set to 480 ° C just below the solidus temperature to reduce the occurrence of micro defects due to forging, and after forging, heating to 530 ° C above the solidus temperature while applying a load in the die By maintaining, cooling and reducing the amount of hydrogen gas, the occurrence of macro defects (internal peeling) in the subsequent solution treatment was prevented.

この実施例では翼モデルの鍛造は荒地鍛造、型鍛造の
2工程で行い、鍛造温度は2工程とも480℃とした。金
型内で荷重を負荷したまま加熱、保持、冷却する加圧/
加熱処理は型鍛造の後に実施したが、これは荒地鍛造の
後に実施してもよく、各工程で行えば更に有効である。
また、この実施例では等温鍛造に引き続いて昇温を行っ
て加圧/加熱処理も実施したが、一旦冷却した後に改め
て加圧/加熱処理を行っても同様の効果が得られる。
In this embodiment, the forging of the wing model was performed in two steps of wasteland forging and die forging, and the forging temperature was 480 ° C. in both steps. Pressurizing / heating, holding, and cooling while applying a load in the mold
Although the heat treatment was performed after the die forging, it may be performed after the rough land forging, and it is more effective if performed in each step.
Further, in this embodiment, the pressure / heat treatment was performed by raising the temperature following the isothermal forging. However, the same effect can be obtained by performing the pressure / heat treatment again after cooling once.

加圧/加熱処理の温度及び荷重条件は、必要以上に塑
性変形をさせることなく、効率よく脱ガスを行える条件
とすることが必要であり、特に最終の鍛造工程の後で実
施する場合には注意が必要である。
The temperature and load conditions of the pressurization / heating treatment need to be conditions under which degassing can be performed efficiently without causing plastic deformation more than necessary. Particularly, when the degassing is performed after the final forging step, Caution must be taken.

〔発明の効果〕〔The invention's effect〕

本発明による等温鍛造プロセスを適用することによ
り、鍛造中に生成するミクロ欠陥量及び鍛造後の材料に
含まれる水素ガス量が低減され、これによって溶体化処
理工程でのマクロ欠陥(内部剥離)の発生が防止され
る。
By applying the isothermal forging process according to the present invention, the amount of micro defects generated during forging and the amount of hydrogen gas contained in the material after forging are reduced, and thereby, macro defects (internal delamination) in the solution treatment step are reduced. The occurrence is prevented.

特に繊維(例えばSiCウィスカ)含有量の多い高強度F
RMでは素材の水素含有量が多いことから、鍛造品の製品
歩留りが大幅に向上する。
In particular, high-strength F with a high fiber (eg, SiC whisker) content
In RM, the product yield of forged products is greatly improved due to the high hydrogen content of the material.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明よる等温鍛造法の温度、荷重プロフィー
ルを示す図、第2図は従来の等温鍛造法の温度、荷重プ
ロフィールを示す図である。
FIG. 1 is a diagram showing the temperature and load profile of the isothermal forging method according to the present invention, and FIG. 2 is a diagram showing the temperature and load profile of the conventional isothermal forging method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 都筑 隆之 愛知県名古屋市港区大江町10番地 三菱 重工業株式会社名古屋航空宇宙システム 製作所内 (56)参考文献 特開 昭61−132263(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takayuki Tsuzuki 10 Oecho, Minato-ku, Nagoya City, Aichi Prefecture Mitsubishi Heavy Industries, Ltd. Nagoya Aerospace System Works (56) References JP-A-61-132263 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】短繊維系FRMをそのマトリックス金属の固
相線温度以下で鍛造し、一旦、冷却後あるいは鍛造に引
き続き、金型内で荷重を負荷したままで固相線温度以上
に加熱/冷却することを特徴とする短繊維系FRMの等温
鍛造法。
1. A short fiber FRM is forged at a temperature not higher than the solidus temperature of its matrix metal. After cooling or forging, the FRM is heated to a temperature higher than the solidus temperature while applying a load in a mold. Isothermal forging of short fiber FRM, characterized by cooling.
JP13704190A 1990-05-29 1990-05-29 Isothermal forging of short fiber FRM Expired - Fee Related JP2659848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13704190A JP2659848B2 (en) 1990-05-29 1990-05-29 Isothermal forging of short fiber FRM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13704190A JP2659848B2 (en) 1990-05-29 1990-05-29 Isothermal forging of short fiber FRM

Publications (2)

Publication Number Publication Date
JPH0433737A JPH0433737A (en) 1992-02-05
JP2659848B2 true JP2659848B2 (en) 1997-09-30

Family

ID=15189483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13704190A Expired - Fee Related JP2659848B2 (en) 1990-05-29 1990-05-29 Isothermal forging of short fiber FRM

Country Status (1)

Country Link
JP (1) JP2659848B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2713662B1 (en) * 1993-12-08 1996-01-12 Snecma Process for obtaining a circular metal part reinforced with fibers.
US6609286B2 (en) 2000-05-10 2003-08-26 Honda Giken Kogyo Kabushiki Kaisha Process for manufacturing a part of a metal matrix composite material
CN104175062B (en) * 2013-05-28 2017-02-22 陕西华威锻压有限公司 All-fiber-texture large-size double-flange fan main shaft forging method
CN104175063B (en) * 2013-05-28 2016-12-28 陕西华威锻压有限公司 Whole fiber tissue large-scale coupling flange blower fan main shaft forging method
CN103894792B (en) * 2014-02-26 2017-05-24 陕西华威锻压有限公司 Method for machining forge piece of large-scale single-flange anti-explosion motor main shaft of all-fiber texture
CN109622840A (en) * 2018-12-11 2019-04-16 陕西宏远航空锻造有限责任公司 A kind of complicated 7075 aluminum alloy casing isothermy die forging methods of the more muscle classes of large size

Also Published As

Publication number Publication date
JPH0433737A (en) 1992-02-05

Similar Documents

Publication Publication Date Title
RU2477191C2 (en) Method of making hollow blower blade
CN104264001A (en) In-situ synthesized particle reinforced aluminum matrix composite material and preparation method thereof
JP2659848B2 (en) Isothermal forging of short fiber FRM
CN104475698B (en) A kind of liquid forging method of many areas exerted pressure on
RU2222635C2 (en) Method of treatment of metal materials and titanium aluminide blank made by this method
CN103381541A (en) Manufacturing method of composite high-strength nonferrous alloy wheel
Mulyukov et al. Current achievements on superplasticity and related phenomena at the Institute for Metals Superplasticity Problems
CN108330366A (en) A kind of self-reinforcing toughening magnesium alloy and preparation method thereof
CN103962487A (en) Large-scale solid-forging metal framework with lugs and manufacturing method thereof
CN103668013B (en) Method for super-plastic pretreatment of in situ aluminum base composite material
CN108796404A (en) A kind of extrusion process of vehicle body in-situ nano particle enhanced aluminum-based composite material
CN105705271A (en) Methods and apparatus to produce high performance axisymmetric components
CN109570418A (en) A kind of accurate forming method of aluminium alloy gusset class rectangle forging
CN110218919A (en) A kind of high-strength aluminum alloy material and preparation method thereof
US5403411A (en) Method for increasing the fracture resistance of titanium composites
US5232525A (en) Post-consolidation method for increasing the fracture resistance of titanium composites
CN109750238A (en) A kind of processing method of residual stress that eliminating light alloy material
CN111979457A (en) Ultrahigh-plasticity aluminum alloy and preparation method thereof
CN114012234A (en) Vacuum diffusion welding method for dissimilar metals of titanium alloy and magnesium alloy
CN110548829B (en) Forging method for controlling directional arrangement of aluminum matrix composite whiskers
CN107217181B (en) A kind of preparation method of high-strength Al-Si castings wrought alloy
JP2000271695A (en) Production of magnesium alloy material
JPH0733561B2 (en) Method of manufacturing tubular member with flange
Jiang et al. Physical field regulation of magnesium alloy wheel formed by backward extrusion process with multi-stage variable speed
US8603267B2 (en) Extrusion of glassy aluminum-based alloys

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees