JP2658534B2 - Temperature Compensation Method of Detection Sensitivity in Ultrasonic Sensor - Google Patents

Temperature Compensation Method of Detection Sensitivity in Ultrasonic Sensor

Info

Publication number
JP2658534B2
JP2658534B2 JP2228719A JP22871990A JP2658534B2 JP 2658534 B2 JP2658534 B2 JP 2658534B2 JP 2228719 A JP2228719 A JP 2228719A JP 22871990 A JP22871990 A JP 22871990A JP 2658534 B2 JP2658534 B2 JP 2658534B2
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic sensor
detection sensitivity
temperature
temperature compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2228719A
Other languages
Japanese (ja)
Other versions
JPH04110687A (en
Inventor
賢次郎 美麗
貴 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2228719A priority Critical patent/JP2658534B2/en
Publication of JPH04110687A publication Critical patent/JPH04110687A/en
Application granted granted Critical
Publication of JP2658534B2 publication Critical patent/JP2658534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

この発明は超音波センサが周囲温度の変動幅の大きい
環境で使われる場合の検出感度の温度補償方法に関す
る。
The present invention relates to a method for compensating temperature of detection sensitivity when an ultrasonic sensor is used in an environment where the fluctuation range of the ambient temperature is large.

【従来の技術】[Prior art]

超音波振動子より周期的にパルスを発射し、この超音
波パルスが被検出物体に当たって反射し、この反射波が
前記超音波振動子に戻るまでの経過時間を計測し、その
計測したデータに基づいて被検出物体までの距離を検知
し、この距離に比例したアナログ電圧を出力し、外部よ
り設定した距離範囲でスイッチ出力を出す超音波センサ
は、従来使用される周囲温度の如何に拘わず超音波振動
子の駆動電圧値と駆動電圧のパルス幅および超音波受信
回路の増幅率を一定に固定していた。
A pulse is periodically emitted from the ultrasonic vibrator, and the ultrasonic pulse is reflected upon the object to be detected, and the elapsed time until the reflected wave returns to the ultrasonic vibrator is measured. Based on the measured data, The ultrasonic sensor that detects the distance to the object to be detected, outputs an analog voltage proportional to this distance, and outputs a switch output within an externally set distance range, regardless of the conventionally used ambient temperature, The drive voltage value of the ultrasonic transducer, the pulse width of the drive voltage, and the amplification factor of the ultrasonic receiving circuit were fixed.

【発明が解決しようとする課題】[Problems to be solved by the invention]

超音波振動子から発射される超音波は空気中を伝播す
る時空気に吸収されて減衰する。その減衰度は第6図に
示すように周辺の空気の温度と湿度とによって変化す
る。そのために前記減衰度が大きい時と小さい時とでは
第7図に示すように最大検出距離に大きな差ができるの
で減衰度が小さい時は検出範囲外の物体を検知するとい
う誤動作を起こした。すなわち超音波センサを使用範囲
外に壁や柱等の物体がある場所で使う場合、超音波の減
衰が少なくなる冬期などでは被検出物体がない場合でも
定格検出距離以外の遠方の物体を第8図に示すように検
出するという誤動作を起こした。また超音波センサの背
面が大きな壁状であってかつ被検出物体の面積も大きい
使用条件で超音波の減衰が小さい環境では第9図に示す
ような多重反射による誤動作を起こす虞れがあった。さ
らに周囲温度が低温であって超音波の発射時間間隔が伸
びる場合にも第1反射波および第2反射波により第8図
および第9図に示すような誤動作を起こすという問題が
あった。 この発明の目的は上述した問題点に鑑み、超音波セン
サの誤動作を防止し、正常な姿で安定した検出ができる
ように超音波センサを提供することにある。
Ultrasonic waves emitted from the ultrasonic transducer are absorbed by air and attenuated when propagating in the air. The degree of attenuation varies depending on the temperature and humidity of the surrounding air as shown in FIG. As a result, there is a large difference in the maximum detection distance between the case where the attenuation is large and the case where the attenuation is small, as shown in FIG. That is, when the ultrasonic sensor is used in a place where there is an object such as a wall or a column outside the range of use, in the winter, when the attenuation of the ultrasonic wave is small, even if there is no object to be detected, a distant object other than the rated detection distance is used. The malfunction of detection as shown in the figure occurred. In an environment where the back surface of the ultrasonic sensor has a large wall shape and the area of the object to be detected is large and the attenuation of the ultrasonic wave is small, a malfunction due to multiple reflection as shown in FIG. 9 may occur. . Further, even when the ambient temperature is low and the emission time interval of the ultrasonic waves is extended, there is a problem that the first reflected wave and the second reflected wave cause malfunctions as shown in FIGS. An object of the present invention is to provide an ultrasonic sensor capable of preventing malfunction of the ultrasonic sensor and performing stable detection in a normal state in view of the above-described problems.

【課題を解決するための手段】[Means for Solving the Problems]

本発明では上記目的達成のため、超音波振動子より周
期的に超音波パルスを発射し、この超音波パルスが被検
出物体に当たって反射し、この反射波が前記超音波振動
子に戻るまでの経過時間を計測してその計測データによ
って被検出物体までの距離を検知し、この距離に比例し
たアナログ電圧を出力し、外部より設定した距離範囲で
スイッチ出力を出す超音波センサにおいて、超音波振動
子に印加される駆動電圧の電圧値を超音波センサの周囲
温度に合わせて制御し、検出感度の温度補償を行なっ
た。また超音波振動子に印加される駆動電圧のパルス幅
を超音波センサの周囲温度に合わせて制御し、検出感度
の温度補償を行なった。
In the present invention, in order to achieve the above object, an ultrasonic pulse is periodically emitted from the ultrasonic transducer, and the ultrasonic pulse is reflected upon the object to be detected, and a process until the reflected wave returns to the ultrasonic transducer. An ultrasonic sensor that measures the time, detects the distance to the object to be detected based on the measured data, outputs an analog voltage proportional to this distance, and outputs a switch output within a distance range set externally. The temperature of the detection sensitivity was compensated by controlling the voltage value of the driving voltage applied to the sensor according to the ambient temperature of the ultrasonic sensor. Further, the pulse width of the drive voltage applied to the ultrasonic transducer was controlled in accordance with the ambient temperature of the ultrasonic sensor, and the temperature of the detection sensitivity was compensated.

【作 用】[Operation]

超音波振動子に印加される駆動電圧の電圧値を超音波
センサの周囲温度に合わせて制御し、検出感度を調整す
ることにより、超音波の減衰が小さい環境において定格
検出距離以外の被検出物体を検出するような誤動作がな
くなる。 超音波振動子に印加される駆動電圧のパルス幅を超音
波センサの周囲温度に合わせて制御し、検出感度を調整
することにより、超音波の減衰が少ない環境において定
格検出距離以外の被検出物体を検出するような誤動作が
なくなる。
By controlling the voltage value of the drive voltage applied to the ultrasonic vibrator in accordance with the ambient temperature of the ultrasonic sensor and adjusting the detection sensitivity, the detected object other than the rated detection distance in an environment where the ultrasonic attenuation is small A malfunction such as detecting an error is eliminated. By controlling the pulse width of the drive voltage applied to the ultrasonic vibrator in accordance with the ambient temperature of the ultrasonic sensor and adjusting the detection sensitivity, the detected object other than the rated detection distance in an environment where the ultrasonic attenuation is small A malfunction such as detecting an error is eliminated.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

第1図はこの発明の第1の実施例である超音波センサ
の検出感度の温度補償方法を示す回路ブロック図であ
る。 超音波センサは超音波振動子1と、送信回路2と、受
信回路3と、ROM,RAM,A/D変換部4a,ゲート信号出力ポー
ト4bなどを備えたマイクロコンピュータ(以下単にマイ
コンと略称する)4と、A/D変換部に接続される温度感
知素子5と、出力回路6と、超音波振動子1に接続され
る昇圧変圧器7と、ドライブトランジスタ8と、ゲート
信号出力ポート4bと昇圧変圧器7の間に設けられる複数
個の双方向スイッチ9などにより構成されている。送信
回路2は、マイコン4の指令により超音波周波を発振
し、ドライブトランジスタ8をON,OFFさせて昇圧トラン
ス7でドライブ電圧を作り、これを超音波振動子1に送
信する。超音波振動子1は前記電気信号を超音波パルス
に変換して空気中に発射する。この発射された超音波パ
ルスは被検出物体に当たり反射されて反射波となりこの
反射波は再び超音波振動子1に入り電気信号に変換され
受信回路3にて増幅,整形されてマイコン4に入力する
ように接続されている。以下この動作を第2図に示すフ
ローチャートに基き説明する。図に示すS番号はフロー
チャートの各ステップを示すもので、ステップS1で周囲
温度を検知した温度感知素子5の電圧をA/D変換部4aで
デジタル値に変換する。このデジタル値とRAM(メモ
リ)に収納されている較正表と比較照合してゲータ出力
ポート4bを選択し(第1図に示すa,b,c,dの何れか)、
昇圧変圧器7の一次側中間タップの何れかを選び電圧VP
を印加する(S2)。送信回路2からの信号により超音波
振動子1から超音波パルスを発射し(S3)、被検出物体
からの反射波を前記超音波振動子1にて受波し、ここで
電子信号に変換し、受信回路3で増幅,整形してマイコ
ン4に送り反射時間を測定して距離換算を行ない(S
4)、その計測データを出力回路6に送り出力し(S
5)、そしてステップS1に戻る。 第3図はこの発明の第2の実施例である超音波センサ
の検出感度の温度補償方法を示す回路ブロック図で、こ
の実施例が前述した第1の実施例と異なる点は超音波振
動子に印加される駆動電圧のパルス幅を超音波センサの
周囲温度に合わせて制御し検出感度の温度補償を行なっ
た点で、第1図における昇圧変圧器7の一次側中間タッ
プを必要とせず、複数個の双方向スイッチ9およびゲー
ト信号出力ポート4bも不要である。このように構成され
た超音波センサ1の動作を第4図に示すフローチャート
に基き説明する。すなわち温度感知素子5の電圧をA/D
変換部4aでデジタル値に変換し(S11)、このデジタル
値とRAM(メモリ)に格納されている較正表と比較照合
して送波信号のパルス幅(超音波振動子1に電圧を印加
する時間)を可変する(S12)。次に送信回路2よりの
信号で超音波振動子1から超音波パルスを発射し(S1
3)、被検出物体からの反射波を前記超音波振動子1に
て受波し、ここで電気信号に変換したのち受信回路3で
増幅,整形してマイコン4に送り反射時間を測定して距
離換算を行ない(S14)。その計測データを出力回路6
に送り出力した(S15)のち(S11)に戻る。 第5図はこの発明の第3の実施例である超音波センサ
の検出感度の温度補償方法を示す回路ブロック図で、こ
の実施例では受信回路の増幅率を周囲温度に合せて制御
し、検出感度の温度補償をするためゲート信号出力ポー
ト4bよりの信号を双方向スイッチ9に印加して超音波振
動子と増幅用オペレーショナルアンプ10を導通させ、こ
の信号を受信回路3に入力するように構成している。こ
の超音波センサの動作を第2図にて示したフローチャー
トに基づき説明する。すなわち温度感知素子5の電圧を
A/D変換部4aでデジタル値に変換し(S1)、ステップ(S
2)でこのデジタル値とRAM(メモリ)に格納されている
較正表と比較照合してゲート出力ポート4bを選択して増
幅用オペレーションアンプ10の入力抵抗(R1,R2,R3,R
4)を選んで増幅率を設定し、超音波振動子1で受波し
た反射波を前段増幅する。この増幅用オペレーショナル
アンプ10の増幅率は で決まるので双方向スイッチ9の選択により増幅率を調
べる。次に受信回路2よりの信号で超音波振動子1から
超音波パルスを発射し(S3)、被検出物体からの反射波
を前記超音波振動子1にて受波し、ここで電気信号に変
換し、この信号を増幅用オペレーショナルアンプ10を介
して受信回路3に入力し、増幅,整形したのちマイコン
4に送り反射時間を測定して距離換算を行ない(S4)。
その計測デートを出力回路6に送り出力した(S5)のち
(S1)に戻る。 前述した動作説明の中でRAMに格納される較正表と
は、温度が下降すると下表1のような経過で感度を下げ
る処理をするための換算データが入っているメモリであ
る。
FIG. 1 is a circuit block diagram showing a method for compensating the temperature of the detection sensitivity of an ultrasonic sensor according to a first embodiment of the present invention. The ultrasonic sensor is a microcomputer including an ultrasonic transducer 1, a transmission circuit 2, a reception circuit 3, a ROM, a RAM, an A / D converter 4a, a gate signal output port 4b, etc. 4), a temperature sensing element 5 connected to the A / D converter, an output circuit 6, a step-up transformer 7 connected to the ultrasonic transducer 1, a drive transistor 8, and a gate signal output port 4b. It comprises a plurality of bidirectional switches 9 provided between the step-up transformers 7 and the like. The transmission circuit 2 oscillates an ultrasonic frequency according to a command from the microcomputer 4, turns on and off the drive transistor 8, generates a drive voltage with the boosting transformer 7, and transmits the drive voltage to the ultrasonic vibrator 1. The ultrasonic transducer 1 converts the electric signal into an ultrasonic pulse and emits it into the air. The emitted ultrasonic pulse hits the object to be detected and is reflected to become a reflected wave. The reflected wave again enters the ultrasonic vibrator 1, is converted into an electric signal, is amplified and shaped by the receiving circuit 3, and is input to the microcomputer 4. Connected. Hereinafter, this operation will be described with reference to the flowchart shown in FIG. The S number shown in the figure indicates each step of the flowchart. The voltage of the temperature sensing element 5 that has detected the ambient temperature in step S1 is converted into a digital value by the A / D converter 4a. The gator output port 4b is selected by comparing and comparing this digital value with a calibration table stored in RAM (memory) (any of a, b, c, and d shown in FIG. 1).
Select any of the primary side intermediate taps of the step-up transformer 7 and select the voltage VP
Is applied (S2). An ultrasonic pulse is emitted from the ultrasonic vibrator 1 by a signal from the transmission circuit 2 (S3), and a reflected wave from the detected object is received by the ultrasonic vibrator 1 and converted into an electronic signal here. The signal is amplified and shaped by the receiving circuit 3 and sent to the microcomputer 4 to measure the reflection time and convert the distance (S
4), and sends the measurement data to the output circuit 6 for output (S
5), and return to step S1. FIG. 3 is a circuit block diagram showing a temperature compensation method of the detection sensitivity of an ultrasonic sensor according to a second embodiment of the present invention. The difference between this embodiment and the first embodiment is that the ultrasonic transducer is used. In the point that the pulse width of the drive voltage applied to is controlled in accordance with the ambient temperature of the ultrasonic sensor to compensate for the temperature of the detection sensitivity, the primary side intermediate tap of the step-up transformer 7 in FIG. A plurality of bidirectional switches 9 and a gate signal output port 4b are not required. The operation of the ultrasonic sensor 1 thus configured will be described with reference to the flowchart shown in FIG. That is, the voltage of the temperature sensing element 5 is A / D
The conversion unit 4a converts the digital value into a digital value (S11), compares the digital value with a calibration table stored in a RAM (memory), compares the digital value with a calibration table, and applies a voltage to the ultrasonic transducer 1 (pulse width). Time) (S12). Next, an ultrasonic pulse is emitted from the ultrasonic transducer 1 by a signal from the transmission circuit 2 (S1).
3) The reflected wave from the detected object is received by the ultrasonic vibrator 1 and converted into an electric signal, then amplified and shaped by the receiving circuit 3 and sent to the microcomputer 4 to measure the reflection time. Distance conversion is performed (S14). The measurement data is output to an output circuit 6
(S15), and returns to (S11). FIG. 5 is a circuit block diagram showing a method for compensating the temperature of the detection sensitivity of the ultrasonic sensor according to the third embodiment of the present invention. In this embodiment, the amplification factor of the receiving circuit is controlled in accordance with the ambient temperature, and the detection is performed. A signal from the gate signal output port 4b is applied to the bidirectional switch 9 to compensate the temperature of the sensitivity, the ultrasonic oscillator and the operational amplifier 10 for amplification are conducted, and the signal is input to the receiving circuit 3. doing. The operation of this ultrasonic sensor will be described with reference to the flowchart shown in FIG. That is, the voltage of the temperature sensing element 5 is
The data is converted into a digital value by the A / D converter 4a (S1).
In step 2), the digital value is compared with a calibration table stored in a RAM (memory) to select the gate output port 4b, and the input resistance (R1, R2, R3, R) of the operational amplifier 10 for amplification is selected.
4) is selected and the amplification factor is set, and the reflected wave received by the ultrasonic transducer 1 is amplified in the preceding stage. The amplification factor of this operational amplifier 10 for amplification is The amplification factor is determined by selecting the bidirectional switch 9. Next, an ultrasonic pulse is emitted from the ultrasonic vibrator 1 with a signal from the receiving circuit 2 (S3), and a reflected wave from the detected object is received by the ultrasonic vibrator 1 and converted into an electric signal. The signal is converted, input to the receiving circuit 3 via the operational amplifier 10 for amplification, amplified, shaped, sent to the microcomputer 4, and the reflection time is measured to convert the distance (S4).
After sending the measurement date to the output circuit 6 (S5), the process returns to (S1). In the above description of the operation, the calibration table stored in the RAM is a memory that stores conversion data for performing a process of lowering the sensitivity as the temperature decreases as shown in Table 1 below.

【発明の効果】【The invention's effect】

この発明では周囲温度に対応して超音波センサの検出
感度を調整したので次のような効果が得られた。 1)超音波の減衰が少なくなる低温環境では被検出物体
が無い時に発生していた定格検出距離以外の物体を検出
するという誤動作(第8図参照)がなくなり検出動作が
安定する。 2)超音波センサの取付部の背面が大きな壁状であると
同時に被検出物体の面積も大きい使用条件のもとで超音
波の減衰が少なくなる時期に発生する多重反射による誤
動作(第9図参照)がなくなり検出動作が安定する。
According to the present invention, the following effects are obtained because the detection sensitivity of the ultrasonic sensor is adjusted according to the ambient temperature. 1) In a low-temperature environment in which the attenuation of ultrasonic waves is reduced, a malfunction of detecting an object other than the rated detection distance (see FIG. 8) which has occurred when there is no detected object is eliminated, and the detection operation is stabilized. 2) Malfunction due to multiple reflections occurring at a time when the attenuation of the ultrasonic wave is reduced under the conditions of use where the back surface of the mounting portion of the ultrasonic sensor is a large wall and the area of the object to be detected is large (FIG. 9) And the detection operation becomes stable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施例である超音波センサの
検出感度の温度補償方法を示す回路ブロック図。
FIG. 1 is a circuit block diagram showing a method for temperature compensation of detection sensitivity of an ultrasonic sensor according to a first embodiment of the present invention.

【図2】同上超音波センサの動作フローチャート。FIG. 2 is an operation flowchart of the ultrasonic sensor.

【図3】この発明の第2の実施例である超音波センサの
検出感度の温度補償方法を示す回路ブロック図。
FIG. 3 is a circuit block diagram showing a temperature compensation method for detecting sensitivity of an ultrasonic sensor according to a second embodiment of the present invention.

【図4】同上超音波センサの動作フローチャート。FIG. 4 is an operation flowchart of the ultrasonic sensor.

【図5】この発明の第3の実施例である超音波センサの
検出感度の温度補償方法を示す回路ブロック図。
FIG. 5 is a circuit block diagram showing a method for temperature compensation of detection sensitivity of an ultrasonic sensor according to a third embodiment of the present invention.

【図6】超音波の空気の吸収による減衰時の温度・湿度
による変化を示す曲線図。
FIG. 6 is a curve diagram showing changes due to temperature and humidity at the time of attenuation due to absorption of ultrasonic air.

【図7】超音波の検出距離と相対感度との関係を示す曲
線図。
FIG. 7 is a curve diagram showing a relationship between a detection distance of ultrasonic waves and a relative sensitivity.

【図8】超音波センサが過大感度のため第1反射波によ
る誤動作を示す図。
FIG. 8 is a diagram showing a malfunction caused by a first reflected wave because the ultrasonic sensor has excessive sensitivity.

【図9】超音波センサが過大感度のため第2反射波によ
る誤動作を示す図。
FIG. 9 is a diagram showing a malfunction caused by a second reflected wave because the ultrasonic sensor has excessive sensitivity.

【符号の説明】[Explanation of symbols]

1:超音波振動子。 1: Ultrasonic transducer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超音波振動子より周期的に超音波パルスを
発射し、この超音波パルスが被検出物体に当たって反射
し、この反射波が前記超音波振動子に戻るまでの経過時
間を計測してその計測データによって被検出物体までの
距離を検知し、この距離に比例したアナログ電圧を出力
し、外部より設定した距離範囲でスイッチ出力を出す超
音波センサにおいて、超音波振動子に印加される駆動電
圧の電圧値を超音波センサの周囲温度に合わせて制御し
検出感度の温度補償を行なったことを特徴とする超音波
センサにおける検出感度の温度補償方法。
An ultrasonic pulse is periodically emitted from an ultrasonic transducer, and the ultrasonic pulse is reflected on an object to be detected, and the elapsed time until the reflected wave returns to the ultrasonic transducer is measured. The ultrasonic sensor detects the distance to the object to be detected according to the measurement data, outputs an analog voltage proportional to the distance, and outputs a switch output within a distance range set from the outside. A temperature compensation method for a detection sensitivity in an ultrasonic sensor, wherein a temperature value of a detection sensitivity is compensated by controlling a voltage value of a driving voltage according to an ambient temperature of the ultrasonic sensor.
【請求項2】請求項1記載の方法において、超音波振動
子に印加される駆動電圧のパルス幅を超音波センサの周
囲温度に合わせて制御し検出感度の温度補償を行なうこ
とを特徴とする超音波センサにおける検出感度の温度補
償方法。
2. The method according to claim 1, wherein a pulse width of a driving voltage applied to the ultrasonic transducer is controlled in accordance with an ambient temperature of the ultrasonic sensor to perform temperature compensation of detection sensitivity. Temperature compensation method of detection sensitivity in ultrasonic sensor.
JP2228719A 1990-08-30 1990-08-30 Temperature Compensation Method of Detection Sensitivity in Ultrasonic Sensor Expired - Lifetime JP2658534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2228719A JP2658534B2 (en) 1990-08-30 1990-08-30 Temperature Compensation Method of Detection Sensitivity in Ultrasonic Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2228719A JP2658534B2 (en) 1990-08-30 1990-08-30 Temperature Compensation Method of Detection Sensitivity in Ultrasonic Sensor

Publications (2)

Publication Number Publication Date
JPH04110687A JPH04110687A (en) 1992-04-13
JP2658534B2 true JP2658534B2 (en) 1997-09-30

Family

ID=16880744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2228719A Expired - Lifetime JP2658534B2 (en) 1990-08-30 1990-08-30 Temperature Compensation Method of Detection Sensitivity in Ultrasonic Sensor

Country Status (1)

Country Link
JP (1) JP2658534B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289788B1 (en) * 2017-06-06 2018-03-07 三菱電機株式会社 Object detection device
JP7024591B2 (en) * 2018-05-11 2022-02-24 株式会社Soken Object detection device
JP7188319B2 (en) * 2019-08-07 2022-12-13 株式会社Soken drive
CN110703233B (en) * 2019-10-17 2022-11-08 苏州优达斯汽车科技有限公司 Temperature and humidity compensation method for sensitivity of ultrasonic sensor
CN112285679A (en) * 2020-10-14 2021-01-29 纵目科技(上海)股份有限公司 Ultrasonic sensor adjustment method, distance measurement method, medium, and electronic device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186879A (en) * 1985-02-14 1986-08-20 Matsushita Electric Works Ltd Ultrasonic sensor

Also Published As

Publication number Publication date
JPH04110687A (en) 1992-04-13

Similar Documents

Publication Publication Date Title
US4581726A (en) Ultrasonic distance measuring apparatus
US6771560B2 (en) Method and apparatus for on-board calibration in pulse-echo acoustic ranging system
US5131271A (en) Ultrasonic level detector
US5360268A (en) Ultrasonic temperature measuring apparatus
US4164865A (en) Acoustical wave flowmeter
US20040226378A1 (en) Ultrasonic sensor
EP0326600A1 (en) Apparatus for measuring distances
JP2890148B2 (en) Ink level control system for offset printing press
US6289729B1 (en) Ultrasonic sensor for web-guiding apparatus
JP2658534B2 (en) Temperature Compensation Method of Detection Sensitivity in Ultrasonic Sensor
US20040102919A1 (en) Sensor system and method, in particular for determining distances
EP2356440B1 (en) Method for determining the starting instant of an acoustic signal response
US7139220B2 (en) Dynamic filter tuning for pulse-echo ranging systems
EP1785701A1 (en) Apparatus and method for determining a temperature of a volume of gas
JP4083038B2 (en) Ultrasonic level meter and liquid level detection method using the level meter
JP2539701Y2 (en) Ultrasonic alarm
JPH1114433A (en) Object detector and liquid level detector
CA1105605A (en) Acoustical wave flowmeter
KR19980074950A (en) Distance measuring device and control method using temperature parameter of ultrasonic sensor
KR100189300B1 (en) Ultrasonic distance measurement apparatus using phase compensation circuit and method thereof
JP4178637B2 (en) Ultrasonic sensor transmission / reception circuit
JPS6044626B2 (en) Ultrasonic measuring device
CA2467233C (en) Ultrasonic sensor
JP2000035357A (en) Ultrasonic level gage
JPH1198031A (en) Transmitter and its automatic power control method