JP2658477B2 - Transformer life prediction method - Google Patents

Transformer life prediction method

Info

Publication number
JP2658477B2
JP2658477B2 JP2055757A JP5575790A JP2658477B2 JP 2658477 B2 JP2658477 B2 JP 2658477B2 JP 2055757 A JP2055757 A JP 2055757A JP 5575790 A JP5575790 A JP 5575790A JP 2658477 B2 JP2658477 B2 JP 2658477B2
Authority
JP
Japan
Prior art keywords
transformer
concentration
gas
predicting
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2055757A
Other languages
Japanese (ja)
Other versions
JPH03257805A (en
Inventor
賢治 山田
正 望月
徹 小篠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2055757A priority Critical patent/JP2658477B2/en
Publication of JPH03257805A publication Critical patent/JPH03257805A/en
Application granted granted Critical
Publication of JP2658477B2 publication Critical patent/JP2658477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Housings And Mounting Of Transformers (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は変圧器の寿命予知方式に関する。The present invention relates to a system for predicting the life of a transformer.

B.発明の概要 本発明は、変圧器絶縁油中のガス濃度から変圧器の絶
縁紙の劣化を予知して変圧器の寿命を予知するものにお
いて、 演算処理手段により油中ガス濃度が危険濃度になる時
期を演算予測し、予知メッセージを出すことにより、 変圧器保全と信頼性を向上させる。
B. Summary of the Invention The present invention relates to a method for predicting the life of a transformer by predicting the deterioration of the insulating paper of the transformer from the gas concentration in the insulating oil of the transformer. By predicting when it will be and issuing a prediction message, transformer maintenance and reliability will be improved.

C.従来の技術 従来においては、変圧器の寿命予知にあたっては、人
間の手作業により変圧器本体から絶縁油を採取し、採取
した油をガスクロマトグラフィー等で分析を行い、その
分析結果を人間が判定していた。
C. Conventional technology Conventionally, in order to predict the life of a transformer, humans manually collect insulating oil from the transformer body, analyze the collected oil by gas chromatography, etc., and analyze the analysis results. Was determined.

D.発明が解決しようとする課題 従来は、人間の感に頼って変圧器の寿命を予知してい
たので、変圧器の異常(故障)が発生するまでその変圧
器を使用するか、事前に変圧器を交換するという効率の
悪い方法を採らざるを得ない結果となっていた。従っ
て、変圧器の保全,信頼性に乏しいものであった。
D. Problems to be Solved by the Invention Conventionally, the life of a transformer has been predicted based on human feelings. Therefore, the transformer must be used until an abnormality (failure) occurs in the transformer. As a result, the inefficient way of replacing the transformer had to be taken. Therefore, the maintenance and reliability of the transformer were poor.

本発明は上記従来の問題点に鑑みてなされたもので、
その目的は、コンピュータ等の演算処理部により変圧器
絶縁油中のガス濃度が危険濃度に至る時期を予測演算し
て予測メッセージを出すようにすることにより、変圧器
の保全,信頼性の向上を図ることである。
The present invention has been made in view of the above conventional problems,
The purpose is to predict and calculate when the gas concentration in the transformer insulating oil will reach the dangerous concentration by using an arithmetic processing unit such as a computer and issue a prediction message, thereby improving the maintenance and reliability of the transformer. It is to plan.

E.課題を解決するための手段 本発明は、上述の目的を達成するために、変圧器絶縁
油中のガス濃度から変圧器の寿命予知を行う寿命予知方
式において、前記ガス濃度を所定期間に所定回数だけ測
定し、これらの測定値のうち前回の測定値から現測定値
に対するガス濃度の増加分を算出すると共に、前記変圧
器の危険を予知すべく前記ガス濃度の予知開始濃度と前
記変圧器絶縁油中の累積濃度とを比較演算し、該累積濃
度が前記予知開始濃度以上になった時点から前記ガス濃
度が前記変圧器の危険を示す危険濃度に至る時期を予測
演算して、予測メッセージを出す。
E. Means for Solving the Problems The present invention provides a life prediction method for predicting the life of a transformer from the gas concentration in transformer insulating oil in order to achieve the above-mentioned object. Measurement is performed a predetermined number of times, and among these measured values, an increase in the gas concentration with respect to the current measured value is calculated from the previous measured value, and a prediction start concentration of the gas concentration and the transformer are calculated in order to predict a danger of the transformer. A comparison operation is performed with the accumulated concentration in the insulating oil of the transformer, and a prediction operation is performed by predicting the time when the gas concentration reaches the dangerous concentration indicating the danger of the transformer from the time when the accumulated concentration becomes equal to or higher than the predicted start concentration. Give a message.

F.実施例 以下に本発明の実施例を第1図〜第2図を参照しなが
ら説明する。
F. Embodiment An embodiment of the present invention will be described below with reference to FIGS.

第1図は本発明の実施例による変圧器の寿命予知方式
を示す。同図において1a,1b,…,1nは変圧器本体、2a,2
b,…,2nは油中ガス分析器、3a,3b,…,3nはシーケンスコ
ントローラ、4はコンピュータからなる演算処理部、5
は演算処理部4の演算結果に基づいて種々の印字を行う
プリンタである。
FIG. 1 shows a method for predicting the life of a transformer according to an embodiment of the present invention. In the figure, 1a, 1b,..., 1n are transformer main bodies, 2a, 2
b, ..., 2n are oil-in-gas analyzers, 3a, 3b, ..., 3n are sequence controllers, 4 is a computer processing unit, 5
Is a printer that performs various printing based on the calculation results of the calculation processing unit 4.

各油中ガス分析器2a〜2nは、それぞれシーケンスコン
トローラ3a〜3nからの起動信号を受けて各変圧器本体1a
〜1n中の絶縁油のガス(CO2)を分析し、アナログの分
析データをシーケンスコントローラ3a〜3nに送信する。
シーケンスコントローラ3a〜3nは油中ガス分析器2a〜2n
のアナログ分析データをディジタル信号に変換して演算
処理部4に送る。演算処理部4は、シーケンスコントロ
ーラ3a〜3nからのディジタル分析データを演算処理し
て、その演算処理結果をプリンタ5に印字させる。プリ
ンタ5は、予測した日付,予測した時刻,該当する番号
の変圧器の油中ガス要注意および経年変化到達予知を印
字する。
Each of the gas-in-oil analyzers 2a to 2n receives a start signal from the sequence controller 3a to 3n, and receives a start signal from each of the transformer main bodies 1a.
Analyze the insulating oil gas (CO 2 ) in 11n and transmit analog analysis data to the sequence controllers 3aa3n.
Sequence controllers 3a-3n are gas-in-oil analyzers 2a-2n
Is converted into a digital signal and sent to the arithmetic processing unit 4. The arithmetic processing unit 4 performs arithmetic processing on the digital analysis data from the sequence controllers 3a to 3n, and causes the printer 5 to print the result of the arithmetic processing. The printer 5 prints the predicted date, the predicted time, the caution required of the gas in the oil of the transformer of the corresponding number, and the prediction of aging.

シーケンスコントローラ3a〜3nは、所定時間に所定回
数だけ油中のガス濃度測定を行うべくプログラムに従っ
て、油中ガス濃度の分析測定を行うように油中ガス分析
器2a〜2nに起動信号を送り分析測定を行わせる。演算処
理部4は、油中ガス分析器2a〜2nよりシーケンスコント
ローラ3a〜3nを通して送られた分析データを基に演算処
理する。
The sequence controllers 3a to 3n send start signals to the gas-in-oil analyzers 2a to 2n to perform the analysis and measurement of the gas-in-oil concentration in accordance with a program to perform the gas concentration measurement in the oil a predetermined number of times at a predetermined time. Let the measurement take place. The arithmetic processing unit 4 performs arithmetic processing based on the analysis data sent from the in-oil gas analyzers 2a to 2n through the sequence controllers 3a to 3n.

変圧器の寿命予知は、油中ガス濃度からの変圧器の絶
縁紙の劣化を予知することによって行われる。すなわ
ち、演算処理部4は、第2図に示すように、変圧器使用
開始時のガス(CO2)濃度,変圧器使用開始から所定期
間α年時のガス濃度よりCO2累積値を算出して記憶格納
している。
The life prediction of the transformer is performed by predicting the deterioration of the insulating paper of the transformer from the gas concentration in oil. That is, as shown in FIG. 2, the arithmetic processing unit 4 calculates the CO 2 cumulative value from the gas (CO 2 ) concentration at the start of the use of the transformer and the gas concentration at a time α years after the start of the use of the transformer. Is stored.

予測を開始する条件として使用開始からα年経過して
から予知開始濃度n(ppm)にCO2が達していれば危険濃
度m(ppm)となる年月を月に1回予測を行い、その結
果をβ年間プリンタ5に出力する。従って、予知の処理
はβの間月に1度m(ppm)となる年月を予測し続け
る。予測は、nからn′間の過去1年間の増加率よりガ
ス濃度がm(ppm)に到達する年月を予測するもので、
現在のCO2濃度及び1年間の増加率よりm(ppm)に到達
する年月を予知する。1年間の増加率は1日1日計測値
や1時間1回計測値として1年間のデータが保存されて
おり、このデータを基に1年間の増加率が算出される。
As a condition for starting the prediction, if CO 2 has reached the prediction start concentration n (ppm) after α years have elapsed from the start of use, the year and month at which the dangerous concentration m (ppm) is reached is predicted once a month. The result is output to the printer 5 for β years. Therefore, the prediction process keeps predicting the year and month that will be m (ppm) once a month during β. The prediction predicts the date and time when the gas concentration reaches m (ppm) from the increase rate in the past year from n to n ',
Forecast the date to reach m (ppm) from the current CO 2 concentration and the annual increase rate. As the increase rate for one year, data for one year is stored as a measured value for one day or a measured value for one hour, and the increase rate for one year is calculated based on this data.

ガスの危険濃度到達年月日は次の演算式によって算出
される。
The date when the dangerous concentration of gas is reached is calculated by the following equation.

{m−(B2+A2)} ÷〔{(B2+A2)−(B1+A1)}÷12〕=C ここで、A1は油交換時から1年間までのCO2濃度の差
分累積値。
{M- (B2 + A2)} ÷ [{(B2 + A2) - ( B1 + A1)} ÷ 12 ] = C Here, A1 is the difference cumulative value of CO 2 concentration from the time of oil change up to one year.

A2は油交換時から本日までのCO2濃度の差分累積値。A2 is the difference cumulative value of CO 2 concentration from the time of oil change to today.

B1は1年前のCO2濃度。B1 is the CO 2 concentration one year ago.

B2は本日のCO2濃度。B2 is today's CO 2 concentration.

mは寿命到達ガス濃度判定値。 m is the gas concentration determination value at the end of life.

Cは本日より到達するまでの月数である。 C is the number of months until today.

上述の演算式によって求めた到達までの月Cを現在の
年月に加えて到達年月を算出する。
The arrival date is calculated by adding the month C up to the arrival obtained by the above equation to the current year and month.

このようにして、演算処理部4は前回よりの増加分を
計算し、累積濃度と予知開始濃度とを比較し、累積濃度
が予知開始濃度より低ければメッセージを出さない。累
積濃度が予知開始濃度を越えた場合に、危険濃度に到達
する年月を予測(計算)して、予測開始濃度n(ppm)
を越えた時点から毎月、予測メッセージを出す。絶縁油
交換を行った場合は、交換後の増加分を、交換直前の累
積濃度に加算してゆく。
In this way, the arithmetic processing unit 4 calculates the increment from the previous time, compares the cumulative density with the predicted start density, and does not issue a message if the cumulative density is lower than the predicted start density. When the cumulative concentration exceeds the predicted start concentration, the date and time when the dangerous concentration is reached is predicted (calculated), and the predicted start concentration n (ppm)
The forecast message is issued every month from the point where the number of times exceeds. When the insulating oil is replaced, the increment after the replacement is added to the accumulated concentration immediately before the replacement.

G.発明の効果 本発明は、上述の如くであって、変圧器の状況記録等
を人間が取って保存しながら寿命の判断をする必要がな
くなり、人間の感に頼ることなく変圧器の寿命を予知で
き、変圧器の保全と信頼性の向上を図ることができる。
G. Effects of the Invention As described above, the present invention eliminates the need to judge the life of a transformer while taking and storing the status record of the transformer, etc. Can be predicted, and the maintenance and reliability of the transformer can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例による変圧器の寿命予知方式の
ブロック図、第2図は第1図の方式の予知動作説明図で
ある。 1a〜1n……変圧器本体、2a〜2n……ガス分析器、3a〜3n
……シーケンスコントローラ、4……演算処理部、5…
…プリンタ。
FIG. 1 is a block diagram of a system for predicting the life of a transformer according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of a prediction operation of the system of FIG. 1a ~ 1n ... Transformer body, 2a ~ 2n ... Gas analyzer, 3a ~ 3n
…… Sequence controller, 4 …… Calculation processing unit, 5…
... a printer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】変圧器絶縁油中のガス濃度から変圧器の寿
命予知を行う寿命予知方式において、前記ガス濃度を所
定期間に所定回数だけ測定し、これらの測定値のうち前
回の測定値から現測定値に対するガス濃度の増加分を算
出すると共に、前記変圧器の危険を予知すべく前記ガス
濃度の予知開始濃度と前記変圧器絶縁油中の累積濃度と
を比較演算し、該累積濃度が前記予知開始濃度以上にな
った時点から前記ガス濃度が前記変圧器の危険を示す危
険濃度に至る時期を予測演算して、予測メッセージを出
すことを特徴とする変圧器の寿命予知方式。
In a life prediction system for predicting the life of a transformer based on the gas concentration in a transformer insulating oil, the gas concentration is measured a predetermined number of times during a predetermined period. While calculating the increase of the gas concentration with respect to the current measured value, the prediction start concentration of the gas concentration is compared with the cumulative concentration in the transformer insulating oil in order to predict the danger of the transformer, and the cumulative concentration is calculated. A method for predicting the life of a transformer, wherein a prediction message is issued by predicting and calculating a timing when the gas concentration reaches a dangerous concentration indicating a danger of the transformer from a time point when the predicted starting concentration is exceeded.
JP2055757A 1990-03-07 1990-03-07 Transformer life prediction method Expired - Lifetime JP2658477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2055757A JP2658477B2 (en) 1990-03-07 1990-03-07 Transformer life prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2055757A JP2658477B2 (en) 1990-03-07 1990-03-07 Transformer life prediction method

Publications (2)

Publication Number Publication Date
JPH03257805A JPH03257805A (en) 1991-11-18
JP2658477B2 true JP2658477B2 (en) 1997-09-30

Family

ID=13007716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2055757A Expired - Lifetime JP2658477B2 (en) 1990-03-07 1990-03-07 Transformer life prediction method

Country Status (1)

Country Link
JP (1) JP2658477B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673336B2 (en) * 1992-07-15 1994-09-14 大阪瓦斯株式会社 Abnormality prediction system for oil-filled transformer
JP2011082275A (en) * 2009-10-05 2011-04-21 Tohoku Electric Power Co Inc Electric equipment management system
CN103698627B (en) * 2013-12-04 2016-08-17 西安工程大学 The Diagnosis Method of Transformer Faults that glowworm swarm algorithm optimizes is obscured based on ash
CN103884818A (en) * 2014-03-31 2014-06-25 苏州热工研究院有限公司 Method for measuring activation energy of transformer insulating paper and method for predicting service life of transformer insulating paper
CN105954603A (en) * 2016-04-11 2016-09-21 重庆大学 Residual life assessment method of transformer
CN111310355B (en) * 2020-03-03 2021-07-20 西南交通大学 Test and analysis method for NOMEX paper life attenuation of vehicle-mounted traction transformer

Also Published As

Publication number Publication date
JPH03257805A (en) 1991-11-18

Similar Documents

Publication Publication Date Title
EP0002232B1 (en) System and method for monitoring the operation of an apparatus
JP3643521B2 (en) Corrosion environment monitoring device
USRE31750E (en) Data acquisition system
JP4799168B2 (en) Water distribution and pipeline information analysis system
EP1123536A1 (en) Fatigue monitoring systems and methods
JP2658477B2 (en) Transformer life prediction method
US20070078585A1 (en) System and method for estimating turbine engine deterioration rate with noisy data
JP2020003277A (en) Method and system for diagnosing shorted residual life of power receiving/distributing apparatus
CN109541022A (en) A kind of bridge structure crack health monitoring analysis method
JP7128001B2 (en) Deterioration diagnosis system, resistance value estimation method, and computer program
CN116279700A (en) Method for realizing fault early warning and management of electronic related equipment of railway signal system
US20060069521A1 (en) Methods and systems for analyzing structural test data
US11435212B2 (en) Method of operating and of predictive monitoring of a field device
US20230131583A1 (en) Method and system for breather health assessment for a transformer breather
JPH0498162A (en) Abnormality monitoring device for transformer
JPH05100890A (en) Diagnostic system for reliability of controller
Gregory et al. A quantile-based approach to modelling recovery time in structural health monitoring
EP3955707A1 (en) Method and system for predicting a failure probability of a component of an x-ray system
JPH1019824A (en) System for assisting corrosion control of metallic material
Goyal et al. Predictive fidelity of bridge deterioration models: probabilistic vs deterministic
Cleary Robot monitor system for the Ohio Valley
JPH0728363A (en) Diagnostic device for copying machine
Tani et al. Assessment of the reliability indices of CFRP laminated plate
JPH03261322A (en) Tap contact change predicting system for transformer
Gootjes et al. Some Economic Aspects of a Calibration Unit as a Part of a Reference System