JP2654301B2 - Centerless grinding method for stepped workpieces - Google Patents

Centerless grinding method for stepped workpieces

Info

Publication number
JP2654301B2
JP2654301B2 JP4864992A JP4864992A JP2654301B2 JP 2654301 B2 JP2654301 B2 JP 2654301B2 JP 4864992 A JP4864992 A JP 4864992A JP 4864992 A JP4864992 A JP 4864992A JP 2654301 B2 JP2654301 B2 JP 2654301B2
Authority
JP
Japan
Prior art keywords
diameter portion
grinding
small
grinding wheel
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4864992A
Other languages
Japanese (ja)
Other versions
JPH05253819A (en
Inventor
徳文 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIKURON SEIMITSU KK
Original Assignee
MIKURON SEIMITSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIKURON SEIMITSU KK filed Critical MIKURON SEIMITSU KK
Priority to JP4864992A priority Critical patent/JP2654301B2/en
Priority to EP92121912A priority patent/EP0548957A1/en
Priority to TW81110378A priority patent/TW206176B/zh
Publication of JPH05253819A publication Critical patent/JPH05253819A/en
Application granted granted Critical
Publication of JP2654301B2 publication Critical patent/JP2654301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、大径の円柱面、およ
び、これと同心の小径の円柱面、並びに上記双方の円柱
面を接続する円錐面を有する段付加工物をセンターレス
研削する方法に関するものである。ただし、本発明にお
いて円錐面とは、その頂角が最大限180度の場合(す
なわち軸心に垂直な平面)を含む意である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention performs centerless grinding of a stepped workpiece having a large-diameter cylindrical surface, a small-diameter cylindrical surface concentric with the large-diameter cylindrical surface, and a conical surface connecting the two cylindrical surfaces. It is about the method. However, in the present invention, the conical surface is intended to include a case where the apex angle is 180 degrees at the maximum (that is, a plane perpendicular to the axis).

【0002】[0002]

【従来の技術】図3は、段付円柱状の加工物1をセンタ
ーレス研削する従来例を示し、(A)は模式的に描いた
平面図、(B)は同じく正面図である。加工物1に比較
的大径の円柱面(大径部と略称する)1a比較的小径の
円柱面(小径部と略称する)1bとが有するので、これ
に合わせて研削砥石2にも調整砥石3にもそれぞれ小径
部と大径部とが設けられている。加工物1はブレード4
によって支持され、調整砥石3の大径部と研削砥石2の
大径部とが加工部1の小径部1bに摺触して該小径部1
bのセンターレス研削が行われ、これと同時に調整砥石
3の小径部と研削砥石2の小径部とが加工物1の大径部
1aに摺触して該大径部1aのセンターレス研削が行わ
れる。図示の5は研削砥石2用の駆動機構、6は調整砥
石3用の駆動機構であって、それぞれ回転速度を任意に
調節し得る構造である。
2. Description of the Related Art FIGS. 3A and 3B show a conventional example of centerless grinding of a stepped columnar workpiece 1. FIG. 3A is a schematic plan view, and FIG. Since the workpiece 1 has a relatively large-diameter cylindrical surface (abbreviated as a large-diameter portion) 1a and a relatively small-diameter cylindrical surface (abbreviated as a small-diameter portion) 1b, the grinding wheel 2 is also adjusted in accordance with this. 3 also has a small diameter portion and a large diameter portion. Workpiece 1 is blade 4
The large-diameter portion of the adjusting grindstone 3 and the large-diameter portion of the grinding grindstone 2 slide against the small-diameter portion 1b of the processing portion 1 and are supported by the small-diameter portion 1b.
b, the small-diameter portion of the adjusting grindstone 3 and the small-diameter portion of the grinding wheel 2 slide on the large-diameter portion 1a of the workpiece 1 to perform centerless grinding of the large-diameter portion 1a. Done. 5 is a drive mechanism for the grinding wheel 2, and 6 is a drive mechanism for the adjustment wheel 3, each of which has a structure capable of arbitrarily adjusting the rotation speed.

【0003】[0003]

【発明が解決しようとする課題】図3について説明した
従来例のセンターレス研削においては、段付き加工物の
形状,寸法に合わせて段付きの一体形研削砥石と段付き
の一体形調整砥石とを構成して使用されるが、加工物の
大径部研削のための砥石周速調節と小径部研削のための
砥石周速調節とをそれぞれ独立に行うことができない。
このため、段付き加工物の大径部と小径部との直径差に
対応する砥石径の差が周速差を生じ、研削時に不安定要
因を与えることになる。特に、調整砥石は加工物の回転
速度を制御する部材であるため、加工物と調整砥石との
間に滑りを生じることは加工精度に悪影響を及ぼすので
好ましくない。このような、大径部と小径部との周速差
による加工精度の低下を防止するため、加工物の大径部
を研削するための大径部用研削砥石と小径部を研削する
ための小径部用研削砥石とを別体に構成し、それぞれの
研削砥石を個別に回転駆動・制御し、かつ、加工物の大
径部は大径部専用の調整砥石とブレードとで支持すると
ともに、加工物の小径部は静止部材であるシューとブレ
ードとによって支持することが考えられる。このような
段付加工物のセンターレス研削方法および同研削装置は
本発明者が発明し、本出願人によって別途出願中の発明
である(特願平3−344232号・以下、先願の発明
と言う)。この先願の発明に係るセンターレス研削にお
いては、加工物の大径部を研削する大径部用研削砥石
と、小径部を研削する小径部用研削砥石とが互いに独立
に回転駆動・制御されるので、加工物の大径部,小径部
のそれぞれを適正な周速で研削することができ、周速差
による加工精度の低下という従来技術の不具合が解消さ
れる。図4は上記先願の発明に係るセンターレス研削装
置の1実施例を示し、(A)は従来例における図3
(A)に対応する模式的な平面図であり、(B)は同じ
く図3(B)に対応する模式的な正面図である。大径部
研削用の第1研削砥石(G1)7と、小径部研削用の第
2研削砥石(G2)8とが別体に構成され、それぞれ独
立の駆動機構12a,12bによって回転速度の調節可
能に回転駆動される(回転速度の調節が可能であるから
砥石の周速を任意に設定し得る)。図5は上記先願の発
明に係る段付部品のセンターレス研削装置(図4)を用
いて先願の発明に係るセンターレス研削方法を実施した
1例を示す模式図であって、(A)は研削操作の準備完
了状態を描いてある。本図5においては図面を簡素にす
るためブレードの図示を省略してある。研削加工を施す
べき素材1′は矢印gのごとく送りこまれる。このと
き、大径部研削用の第1の研削砥石(G1)7と調整砥
石(RW)9とは加工物の大径部を通常の方式でセンタ
ーレス研削する場合と同様に対抗せしめてある。そし
て、往復矢印bのごとく径方向に移動せしめ得る小径部
研削用の第2研削砥石(G2)8は、加工物に対向する
側の面sを前記第1の研削砥石(G1)7の面s′と揃
え、若しくは若干後退させておく。シュー10は、加工
物の小径部の半径rに適合する位置にセットしておく。
以上のように準備を整えた後に、本図5の(B)に示す
ように調整砥石(RW)9を矢印a方向に切り込み送り
して、大径部研削用の第1の研削砥石(G1)7によっ
て大径部1aを研削する。この段階で該大径部1aは上
記調整砥石(RW)9と図外のブレードとによって支持
され、第1の研削砥石(G1)7で研削されつつ、セン
ターレス研削特有の造円作用により断面が真円となるよ
うに研削が進行する。大径部1aのセンターレス研削状
態が安定すると、小径部研削用の第2の研削砥石(G
2)8を矢印b′方向に切り込み送りし、前述のシュー
10と図外のブレードとで支持しつつ、加工物1の小径
部1bのセンターレス研削を行う。上述の研削作業にお
いて大径部研削用の第1の研削砥石(G1)7は駆動機
構12aにより、大径部1aを研削するための適正な周
速となるように回転速度を制御される。また小径部研削
用の第2の研削砥石(G2)8は駆動機構12bによ
り、小径部1bを研削するための適正な周速となるよう
に回転速度を制御される。このように、加工物の大径
部,小径部がそれぞれ最適条件でセンターレス研削さ
れ、図3の従来例について説明したような周速差による
滑りの問題を生じない。従って、大径部も小径部も安定
した状態でセンターレス研削され、高精度が得られる。
上記研削作業において、加工物の大径部1aの仕上げ寸
法は調整砥石(RW)9の矢印a方向の切り込み送りに
よって調節される。また、小径部1bの仕上げ寸法に応
じてシュー10のセット位置を調節しておき、所望寸法
が得られる位置で小径部用の第2の研削砥石(G2)の
矢印b′方向の切り込み送りを停止させる。上述のよう
にして大径部1a,小径部1bそれぞれの寸法調節を行
い得るので、加工物の仕様(大径部,小径部の直径寸
法)が変わっても、砥石を交換することなく対応するこ
とができる。また、前記第1の研削砥石(G1)7,第
2の研削砥石(G2)8が損耗して交換しなければなら
なくなったときは、第1の研削砥石(G1)7を矢印c
方向に移動させて、第2の研削砥石(G2)8から離間
せしめて交換操作を行う。このように研削砥石を軸方向
(例えば矢印c方向)に移動せしめ得るようにしておく
と、加工物の大径部と小径部とが長手方向に離間してい
る場合にも容易に対応できるので便利である。以上に図
4,図5を参照して説明した先願の発明に係る段付き加
工物のセンターレス加工装置は、加工物の大径部を第1
の研削砥石(G1)7と調整砥石(RW)9とでセンタ
ーレス研削するとともに、該加工物の小径部を第2の研
削砥石(G2)8とシュー10とでセンターレス研削す
るようになっているが、これと同様の技術的思想に基づ
いて、シューを用いることなく、小径部も第2の研削砥
石(G2)と小径部専用の調整砥石とで研削することも
考えられる。この構成は本発明者が考案し、本出願人に
よって別途出願中の考案である(実願平4−1685号
・以下、先願の考案と言う)。この先願の考案に係るセ
ンターレス研削装置においても、加工物の大径部を研削
する大径部用研削砥石と、小径部を研削する小径部用研
削砥石とが互いに独立に回転駆動・制御されるととも
に、大径部用の調整砥石と小径部用の調整砥石とが互い
に独立に回転駆動・制御されるので、加工物の大径部,
小径部のそれぞれを適正な周速で研削することができ、
先願の発明におけると同様の効果(周速差による加工精
度の低下防止)が得られる。図6は上記先願の考案に係
るセンターレス研削装置の1実施例を示し、(A)は模
式的な平面図であって前記先願の発明における図4
(A)に対応する図である。また、本図6の(B)は模
式的な正面図であって前記先願の発明における図4
(B)に対応する図である。段付きの加工物1は本図6
(B)に示すようにブレード4によって下方から支持さ
れている。上記加工物1の大径部用の第1の研削砥石
(G1)7と小径部用の第2の研削砥石(G2)8とは
それぞれ駆動機構12a,12bによって相互に独立し
て回転駆動・制御される。また、大径部用の調整砥石
(RW)9と小径部用の調整砥石(RW′)10′とは
それぞれ駆動機構13,14によって相互に独立して回
転駆動・制御される。このようにして、それぞれの砥石
は任意所望の周速で回転せしめ得るようになっている。
前記の大径部用調整砥石(RW)9および小径部用の調
整砥石(RW′)10′は、それぞれ往復矢印a,bの
ように切り込み送りできるようになっている。上記のよ
うに調整砥石を切り込み送り可能な構造とする代りに、
大径部用の研削砥石(G1)7および小径部用の研削砥
石(G2)8をそれぞれ往復矢印a′,b′のように切
り込み送り可能な構造としても良い。上記のように構成
された先願の考案に係るセンターレス研削装置(図6)
によれば、段付加工物の大径部,小径部ともに最適の周
速で高精度のセンターレス加工を行うことができる。図
6の実施例においては大径部用の研削砥石(G1)7お
よび大径部用の調整砥石(RW)9をそれぞれ往復矢印
c,dのごとく軸心方向に移動せしめ得るように構成し
てある。このように構成すると砥石交換作業を行う際に
便利である。上述のように大径部用の砥石を軸心方向に
移動せしめ得るように構成する代りに、小径部用の研削
砥石(G2)8および小径部用の調整砥石(RW′)1
0′をそれぞれ往復矢印c′,d′のように移動せしめ
得るように構成しても良い。
In the prior art centerless grinding described with reference to FIG. 3, a stepped integral grinding wheel and a stepped integral adjusting grinding wheel are used in accordance with the shape and dimensions of a stepped workpiece. However, the peripheral speed adjustment of the grinding wheel for grinding the large diameter portion of the workpiece and the peripheral speed adjustment of the grinding wheel for the grinding of the small diameter portion cannot be performed independently.
For this reason, a difference in the diameter of the grindstone corresponding to the diameter difference between the large-diameter portion and the small-diameter portion of the stepped workpiece causes a peripheral speed difference, which gives an unstable factor during grinding. In particular, since the adjusting grindstone is a member that controls the rotational speed of the workpiece, slipping between the workpiece and the adjusting grindstone is not preferable because it adversely affects machining accuracy. In order to prevent a decrease in processing accuracy due to a difference in peripheral speed between the large diameter portion and the small diameter portion, a grinding wheel for a large diameter portion for grinding a large diameter portion of a workpiece and a grinding wheel for a small diameter portion are used. The grinding wheel for the small diameter part is configured as a separate body, each grinding wheel is individually driven and controlled for rotation, and the large diameter part of the workpiece is supported by the adjustment grinding wheel and blade dedicated to the large diameter part, It is conceivable that the small diameter portion of the workpiece is supported by a shoe and a blade, which are stationary members. Such a centerless grinding method and a grinding apparatus for stepped workpieces were invented by the present inventor, and have been separately filed by the present applicant (Japanese Patent Application No. 3-344232, hereinafter referred to as the prior invention). Say). In the centerless grinding according to the invention of the prior application, a large-diameter portion grinding wheel for grinding a large-diameter portion of a workpiece and a small-diameter portion grinding wheel for grinding a small-diameter portion are rotationally driven and controlled independently of each other. Therefore, each of the large-diameter portion and the small-diameter portion of the workpiece can be ground at an appropriate peripheral speed, and the disadvantage of the prior art that the processing accuracy is reduced due to the peripheral speed difference is eliminated. FIG. 4 shows an embodiment of the centerless grinding apparatus according to the invention of the prior application, and FIG.
FIG. 3A is a schematic plan view corresponding to FIG. 3A, and FIG. 3B is a schematic front view corresponding to FIG. 3B. The first grinding wheel (G1) 7 for large-diameter portion grinding and the second grinding wheel (G2) 8 for small-diameter portion grinding are formed separately, and the rotation speed is adjusted by independent drive mechanisms 12a and 12b. It is driven to rotate as much as possible (the rotational speed can be adjusted, so the peripheral speed of the grindstone can be set arbitrarily). FIG. 5 is a schematic diagram showing an example of implementing the centerless grinding method according to the invention of the prior application using the centerless grinding apparatus for stepped parts (FIG. 4) according to the invention of the prior application, and FIG. ) Depicts the ready state for the grinding operation. In FIG. 5, illustration of the blades is omitted to simplify the drawing. The material 1 'to be subjected to the grinding process is sent as shown by an arrow g. At this time, the first grinding wheel (G1) 7 and the adjusting wheel (RW) 9 for grinding the large-diameter portion are opposed to each other in the same manner as in the case where the large-diameter portion of the workpiece is centerlessly ground in a normal method. . The second grinding wheel (G2) 8 for grinding a small-diameter portion, which can be moved in the radial direction as indicated by a reciprocating arrow b, has a surface s on the side facing the workpiece with the surface of the first grinding wheel (G1) 7. Aligned with s' or slightly retracted. The shoe 10 is set at a position suitable for the radius r of the small diameter portion of the workpiece.
After the preparation as described above, as shown in FIG. 5 (B), the adjusting grindstone (RW) 9 is cut and fed in the direction of arrow a, and the first grinding grindstone (G1 ) 7 to grind the large diameter portion 1a. At this stage, the large-diameter portion 1a is supported by the adjusting grindstone (RW) 9 and a blade (not shown), and is ground by the first grinding grindstone (G1) 7 while the cross-section is formed by a circular forming effect peculiar to centerless grinding. The grinding proceeds so that the circle becomes a perfect circle. When the centerless grinding state of the large diameter portion 1a is stabilized, the second grinding wheel (G
2) 8 is cut and fed in the direction of arrow b ', and the centerless grinding of the small diameter portion 1b of the workpiece 1 is performed while being supported by the shoe 10 and a blade (not shown). In the above-described grinding operation, the rotation speed of the first grinding wheel (G1) 7 for grinding the large diameter portion is controlled by the drive mechanism 12a so as to have an appropriate peripheral speed for grinding the large diameter portion 1a. The rotation speed of the second grinding wheel (G2) 8 for grinding the small diameter portion is controlled by the drive mechanism 12b so that the peripheral speed becomes appropriate for grinding the small diameter portion 1b. As described above, the large diameter portion and the small diameter portion of the workpiece are each subjected to centerless grinding under optimum conditions, and the problem of slippage due to the peripheral speed difference as described in the conventional example of FIG. 3 does not occur. Therefore, the large diameter portion and the small diameter portion are centerlessly ground in a stable state, and high accuracy is obtained.
In the above-mentioned grinding operation, the finishing dimension of the large-diameter portion 1a of the workpiece is adjusted by the infeed of the adjusting grindstone (RW) 9 in the direction of the arrow a. In addition, the setting position of the shoe 10 is adjusted in accordance with the finishing size of the small diameter portion 1b, and the cutting feed of the second grinding wheel (G2) for the small diameter portion in the direction of the arrow b 'is performed at a position where the desired size is obtained. Stop. As described above, the dimensions of the large-diameter portion 1a and the small-diameter portion 1b can be adjusted, so that even if the specifications of the workpiece (the diameters of the large-diameter portion and the small-diameter portion) change, it is possible to cope without changing the grinding wheel. be able to. When the first grinding wheel (G1) 7 and the second grinding wheel (G2) 8 are worn out and need to be replaced, the first grinding wheel (G1) 7 is moved to an arrow c.
In the direction, and separated from the second grinding wheel (G2) 8 to perform an exchange operation. If the grinding wheel can be moved in the axial direction (for example, the direction of arrow c) as described above, it is possible to easily cope with the case where the large diameter portion and the small diameter portion of the workpiece are separated in the longitudinal direction. It is convenient. The centerless machining apparatus for a stepped workpiece according to the invention of the prior application described above with reference to FIGS.
The centerless grinding is performed by the grinding wheel (G1) 7 and the adjustment grinding wheel (RW) 9 and the small diameter portion of the workpiece is centerless ground by the second grinding wheel (G2) 8 and the shoe 10. However, based on the same technical idea, it is conceivable to grind the small diameter portion with the second grinding wheel (G2) and the adjustment grindstone dedicated to the small diameter portion without using a shoe. This configuration has been devised by the inventor, and has been separately filed by the present applicant (Japanese Patent Application No. Hei 4-1685, hereinafter referred to as the prior invention). In the centerless grinding device according to the invention of the prior application, the large-diameter portion grinding wheel for grinding the large-diameter portion of the workpiece and the small-diameter portion grinding wheel for grinding the small-diameter portion are rotationally driven and controlled independently of each other. In addition, the adjusting grindstone for the large diameter portion and the adjusting grindstone for the small diameter portion are rotationally driven and controlled independently of each other, so that the large diameter portion
Each small diameter part can be ground at an appropriate peripheral speed,
The same effect as in the invention of the prior application (prevention of reduction in processing accuracy due to difference in peripheral speed) can be obtained. FIG. 6 shows an embodiment of the centerless grinding apparatus according to the invention of the prior application, and FIG. 6 (A) is a schematic plan view showing FIG.
It is a figure corresponding to (A). FIG. 6B is a schematic front view, and FIG.
It is a figure corresponding to (B). FIG. 6 shows the stepped workpiece 1.
As shown in (B), it is supported from below by the blade 4. The first grinding wheel (G1) 7 for the large-diameter portion and the second grinding wheel (G2) 8 for the small-diameter portion of the workpiece 1 are rotationally driven independently of each other by drive mechanisms 12a and 12b. Controlled. Further, the adjusting grindstone (RW) 9 for the large diameter portion and the adjusting grindstone (RW ') 10' for the small diameter portion are rotationally driven and controlled independently by the driving mechanisms 13 and 14, respectively. In this way, each grindstone can be rotated at any desired peripheral speed.
The large-diameter portion adjusting grindstone (RW) 9 and the small-diameter portion adjusting grindstone (RW ') 10' can be cut and fed as indicated by reciprocating arrows a and b, respectively. Instead of making the adjustment whetstone cut and fed as described above,
The grinding wheel (G1) 7 for the large-diameter portion and the grinding wheel (G2) 8 for the small-diameter portion may be configured to be cut and fed as indicated by reciprocating arrows a 'and b'. Centerless grinding device according to the invention of the earlier application configured as described above (FIG. 6)
According to this, centerless machining with high accuracy can be performed at the optimum peripheral speed for both the large diameter portion and the small diameter portion of the stepped workpiece. In the embodiment shown in FIG. 6, the grinding wheel (G1) 7 for the large diameter portion and the adjusting grinding wheel (RW) 9 for the large diameter portion are configured to be movable in the axial direction as indicated by the reciprocating arrows c and d, respectively. It is. With this configuration, it is convenient to perform a whetstone replacement operation. Instead of the configuration in which the grinding wheel for the large diameter portion can be moved in the axial direction as described above, the grinding wheel (G2) 8 for the small diameter portion and the adjusting grinding wheel (RW ') 1 for the small diameter portion 1
0 'may be configured to be moved as indicated by reciprocating arrows c' and d ', respectively.

【0004】本発明者は前記先願の発明に係る段付加工
物のセンターレス研削方法および同装置、並びに前記先
願の考案に係る段付加工物のセンターレス研削装置を創
作した後、その実用化試験,研究を続行し、これらの発
明,考案がそれぞれ所期の目的を達成したことを確認す
るとともに、なお、次に述べるような改善が望まれるこ
とを確認した。例えば段付加工物が図7(A)に示すよ
うに大径部1aと小径部1bとを有し両者の間が円錐面
1cで接続されている形状であって、前記先願の発明若
しくは先願の考案を適用して大径部,小径部の同時研削
を行う場合、大径部用の研削砥石(G1)7で大径部1
aの研削を行うとともに、小径部用の研削砥石(G2)
8によって小径部1bと円錐面1cとの研削を行う。こ
の場合、上記双方の研削砥石7,8はそれぞれ互いに独
立して回転速度を制御されているので、両者の回転速度
は一致しない。特に、大径部用の研削砥石(G1)7は
大径部1aのセンターレス研削に最適の周速が得られる
ように回転駆動・制御されており、一方、小径部用の研
削砥石(G2)8は小径部1bのセンターレス研削に最
適の周速が得られるように回転駆動・制御されているの
で、双方の砥石の回転速度は必然的に異なる。従って、
双方の砥石7,8を密着させることが出来ず、若干の隙
間を与えなければならない。図7(B)は、図7(A)
のB部拡大詳細図である。図示したように、大径部用研
削砥石(G1)7と小径部用研削砥石(G2)8との間
に間隙gを設けざるを得ないので削り残し部1dが出来
てしまう。図7は、大径部1aと小径部1bとの間に円
錐面1cが設けられている場合について述べた。このよ
うな場合は、例えばドリル用の素材をセンターレス研削
する場合に生じる。すなわち、大径部に相当するドリル
のシャンクは、ストレートシャンクの場合、例えば直径
6mm,8mm,10mmというように2mm飛びに構成され、
それぞれの規定寸法のシャンクに対して小径部に相当す
るドリル切刃は0.5mm刻みに21種類の呼び径が定め
られており、シャンクとドリル切刃との直径差は円錐面
で結ばれている。この円錐面を研削せずに黒皮のままで
残しておいてもドリルとしての切削穿孔機能に悪影響は
無いが、商品価値を低下させるので該円錐面を研削する
ことが望ましい。しかしながら、前記先願の発明,若し
くは先願の考案に係るセンターレス研削装置を用いて大
径部(シャンク)と小径部(ドリル切刃)との同時研削
を行う際に円錐面を研削しようとすると、図7(B)に
ついて説明した削り残し部1dが発生する。図7は大径
部と小径部とが通常の円錐面1cで結ばれている場合に
ついて述べたが、この円錐面の頂角が最大の極限値とし
て180°になった場合、すなわち大径部1aと小径部
1bとの境界が、軸心に垂直をなす段差面となっている
場合にも、同様の削り残しの問題を生じる。大径部用研
削砥石(G1)7と小径部用研削砥石(G2)8との回
転速度が互いに異なっていて密着させることが出来ない
以上、大径部と小径部との境界近傍に削り残し部が発生
することは避け難い問題である。
The inventor has created a centerless grinding method and apparatus for stepped workpieces according to the invention of the prior application, and a centerless grinding apparatus for stepped workpieces according to the invention of the prior application. Practical application tests and research were continued, and it was confirmed that these inventions and inventions achieved the intended purposes, respectively, and that the following improvements were desired. For example, as shown in FIG. 7 (A), the stepped workpiece has a large diameter portion 1a and a small diameter portion 1b, and the two are connected by a conical surface 1c. When simultaneous grinding of the large diameter portion and the small diameter portion is performed by applying the invention of the prior application, the large diameter portion 1 is ground by the grinding wheel (G1) 7 for the large diameter portion.
a. Grinding wheel for small diameter part (G2)
8, the small diameter portion 1b and the conical surface 1c are ground. In this case, since the rotational speeds of the two grinding wheels 7 and 8 are controlled independently of each other, the rotational speeds of the two do not match. In particular, the grinding wheel (G1) 7 for the large diameter portion is rotationally driven and controlled so as to obtain an optimum peripheral speed for centerless grinding of the large diameter portion 1a, while the grinding wheel (G2) for the small diameter portion 8) is rotationally driven and controlled so as to obtain an optimum peripheral speed for the centerless grinding of the small diameter portion 1b, so that the rotational speeds of both grinding wheels are necessarily different. Therefore,
Both whetstones 7 and 8 cannot be brought into close contact with each other, and a slight gap must be provided. FIG. 7 (B) shows the state shown in FIG.
3 is an enlarged detailed view of a portion B of FIG. As shown in the drawing, a gap g must be provided between the large-diameter portion grinding wheel (G1) 7 and the small-diameter portion grinding wheel (G2) 8, so that an uncut portion 1d is formed. FIG. 7 has described the case where the conical surface 1c is provided between the large diameter portion 1a and the small diameter portion 1b. Such a case occurs, for example, when a drill material is centerlessly ground. That is, in the case of a straight shank, the shank of the drill corresponding to the large-diameter portion is configured to be, for example, 6 mm, 8 mm, and 10 mm in steps of 2 mm.
For the shank of each specified size, the drill cutting edge corresponding to the small diameter portion has 21 kinds of nominal diameters set in 0.5 mm increments, and the diameter difference between the shank and the drill cutting edge is connected by a conical surface. I have. Leaving the conical surface as black scale without grinding does not adversely affect the drilling function as a drill, but it is desirable to grind the conical surface because it reduces the commercial value. However, when the large diameter portion (shank) and the small diameter portion (drill cutting edge) are simultaneously ground using the centerless grinding device according to the invention of the earlier application or the invention of the earlier application, an attempt is made to grind the conical surface. Then, the uncut portion 1d described with reference to FIG. 7B is generated. FIG. 7 shows the case where the large diameter portion and the small diameter portion are connected by the normal conical surface 1c. However, when the apex angle of this conical surface becomes 180 ° as the maximum limit value, that is, the large diameter portion When the boundary between the small diameter portion 1a and the small diameter portion 1b is a step surface perpendicular to the axis, the same problem of uncut portion occurs. Since the rotation speeds of the large-diameter portion grinding wheel (G1) 7 and the small-diameter portion grinding wheel (G2) 8 are different from each other and cannot be brought into close contact with each other, the remaining grinding remains near the boundary between the large-diameter portion and the small-diameter portion. The occurrence of a part is an unavoidable problem.

【0005】本発明は上述の事情に鑑みて為されたもの
であって、それぞれ独立して周速を制御される大径部用
研削砥石と小径部用研削砥石とによって段付加工物をセ
ンターレス研削する場合、加工物の段付部近傍に削り残
し部を生じないセンターレス研削方法を提供することを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a stepped workpiece is centered on a large-diameter portion grinding wheel and a small-diameter portion grinding wheel whose peripheral speeds are independently controlled. It is an object of the present invention to provide a centerless grinding method that does not generate an uncut portion in the vicinity of a stepped portion of a workpiece when performing less grinding.

【0006】[0006]

【課題を解決するための手段】上記目的(削り残し部の
発生防止)を達成するため、本発明の段付加工物のセン
ターレス研削方法は、大径の円柱面および小径の円柱
面、並びに、上記大径の円柱面と小径の円柱面とを接続
する円錐面を有する段付加工物をセンターレス研削する
方法において、a.単独に周速を制御される大径部用研
削砥石を用いて前記大径の円柱面を研削するとともに、
上記大径部用研削砥石と別個に周速を制御される小径部
用研削砥石によって前記小径の円柱面および円錐面を研
削した後、b.前記段付加工物を大径部用研削砥石に対
して相対的に、大径の円柱面側に向けて移動させなが
ら、該段付加工物の大径の円柱面と円錐面との境界部近
傍を研削することを特徴とする。
In order to achieve the above object (prevention of uncut portions), the centerless grinding method for stepped workpieces according to the present invention comprises a large-diameter cylindrical surface, a small-diameter cylindrical surface, A method of centerless grinding a stepped workpiece having a conical surface connecting a large-diameter cylindrical surface and a small-diameter cylindrical surface, comprising: a. While grinding the large-diameter cylindrical surface using a large-diameter portion grinding wheel whose peripheral speed is controlled independently,
After grinding the small-diameter cylindrical surface and conical surface with a small-diameter portion grinding wheel whose peripheral speed is controlled separately from the large-diameter portion grinding wheel, b. The boundary between the large-diameter cylindrical surface and the conical surface of the stepped workpiece while moving the stepped workpiece relative to the large-diameter portion grinding wheel toward the large-diameter cylindrical surface. It is characterized in that the vicinity is ground.

【0007】[0007]

【作用】上記の方法によれば、a項に示した工程におい
て大径部,小径部のそれぞれを適正な周速で高精度にセ
ンターレス研削することができ、この工程において発生
する削り残し部を前記b項の工程で効率良く除去して、
削り残しの無い段付加工物が得られる。
According to the above method, the large diameter portion and the small diameter portion can be centerlessly ground at an appropriate peripheral speed with high accuracy in the step shown in item a. Is efficiently removed in the step b.
A stepped workpiece with no uncut portion is obtained.

【0008】[0008]

【実施例】図1(A)〜(E)は本発明に係るセンター
レス研削方法の1実施例を示す。本実施例は、図4につ
いて説明した先願の発明に係るセンターレス研削装置を
用いてドリル用の素材を研削する際、本発明のセンター
レス研削方法を適用して削り残し部の発生を防止したも
のである。なお、本図1においては前記の図4(A)と
同様にブレードを省略して描いてある。図1(A)は研
削作業の準備工程であって、加工物1は挿入アーム15
により矢印j方向に押されて定位置に挿入される。図示
の7は大径部用の研削砥石(G1)であって、大径部用
の調整砥石(RW)9と対向している。8は小径部用の
研削砥石(G2)であってシュー10に対向している。
このシュー10は、前記の調整砥石(RW)9と同じス
ライドベース(図示せず)上に設置されている。図1
(B)は、大径部用の研削砥石(G1)7と調整砥石
(RW)9とによってインフィード研削を開始した状態
である。インフィード研削における調整砥石の送り角は
一般に10′〜20′程度であるが、本実施例において
は送り角を約1°とした。これは後述する工程(E)に
おいて比較的大きい送り力を得るためである。本(B)
図の段階で加工物1は図の左方に向かう送り力を挿入ア
ーム15で支承されて左右方向に静止している。大径部
1aは大径部用研削砥石(G1)7と調整砥石(RW)
9によって研削され、研削の進行に伴って調整砥石(R
W)9は矢印k方向に切り込まれてゆく。該調整砥石
(RW)9と同じスライドベース上に設置されているシ
ュー10は上記矢印kと平行に矢印k′方向に送られ
る。大径部1aの研削状態が安定すると、図1(C)の
ように小径部用研削砥石(G2)8を矢印m方向に切り
込んで、シュー10で支承されている小径部1bのセン
ターレス研削が開始される。この小径部1bの研削の
際、前記小径部用研削砥石(G2)8によって円錐面1
cの研削も行なわれる。この(C)図のようにして大径
部1a,小径部1b,円錐面1cのセンターレス研削が
進行しつつ、削り残し部1dが形成される。そこで
(D)図のごとく小径部用研削砥石(G2)8を矢印n
方向に後退させるとともに挿入アーム15を矢印q方向
に後退させる。加工物1の大径部1aは調整砥石(R
W)9の送り角により矢印q′方向の送り力を受けてい
るので同方向に通し送りされ、前記の削り残し部1dが
スルフィード研削によって除去される。(E)図は上記
削り残し部の除去を終了した状態である。
1A to 1E show an embodiment of a centerless grinding method according to the present invention. In this embodiment, the centerless grinding method of the present invention is applied to prevent the generation of uncut portions when grinding a drill material using the centerless grinding device according to the invention of the earlier application described with reference to FIG. It was done. In FIG. 1, the blades are omitted as in FIG. 4A. FIG. 1A shows a preparation process for a grinding operation, in which a workpiece 1 is inserted into an insertion arm 15.
Is pushed in the direction of arrow j and is inserted into a fixed position. The reference numeral 7 denotes a grinding wheel (G1) for a large-diameter portion, which faces an adjustment grinding wheel (RW) 9 for a large-diameter portion. Reference numeral 8 denotes a grinding wheel (G2) for the small diameter portion, which faces the shoe 10.
The shoe 10 is mounted on the same slide base (not shown) as the adjusting grindstone (RW) 9. FIG.
(B) is a state in which infeed grinding has been started by the grinding wheel (G1) 7 and the adjusting wheel (RW) 9 for the large diameter portion. The feed angle of the adjusting grindstone in the in-feed grinding is generally about 10 ′ to 20 ′, but in the present embodiment, the feed angle was set to about 1 °. This is to obtain a relatively large feed force in a step (E) described later. Book (B)
At the stage shown in the drawing, the workpiece 1 is supported by the insertion arm 15 with the feed force directed to the left in the drawing, and is stationary in the left-right direction. The large diameter part 1a is a large diameter part grinding wheel (G1) 7 and an adjusting wheel (RW).
9 and the grinding wheel (R
W) 9 is cut in the direction of arrow k. The shoe 10 installed on the same slide base as the adjusting grindstone (RW) 9 is fed in the direction of arrow k 'in parallel with the arrow k. When the grinding state of the large-diameter portion 1a is stabilized, the small-diameter portion grinding wheel (G2) 8 is cut in the direction of the arrow m as shown in FIG. 1C, and the centerless grinding of the small-diameter portion 1b supported by the shoe 10 is performed. Is started. At the time of grinding the small diameter portion 1b, the conical surface 1 is formed by the small diameter portion grinding wheel (G2) 8.
The grinding of c is also performed. As shown in FIG. 7C, the uncut portion 1d is formed while the centerless grinding of the large-diameter portion 1a, the small-diameter portion 1b, and the conical surface 1c proceeds. Then, as shown in FIG. (D), the grinding wheel (G2) 8 for the small diameter portion is moved to the arrow n.
And the insertion arm 15 is retracted in the direction of arrow q. The large-diameter portion 1a of the workpiece 1 has an adjustment grindstone
W) Since a feed force in the direction of arrow q 'is received at the feed angle of 9, the feed is passed in the same direction, and the uncut portion 1d is removed by through feed grinding. (E) shows a state in which the removal of the uncut portion has been completed.

【0009】以上に説明したように本実施例において
は、先願の発明に係るセンターレス研削装置(図4)を
用い、その長所であるところの適正周速による高精度の
センターレス研削を妨げることなく、また別段の機械装
置を付加する必要無く、段付部付近の削り残しを除去す
ることができる。図示を省略するが本発明に係る段付き
部品のセンターレス研削方法は、先願の考案に係るセン
ターレス研削装置(図6)に対しても同様に適用するこ
とができ、同様の効果(高精度研削を妨げることなく削
り残しを防止)が得られる。図1の実施例は大径部1a
と小径部1bとが円錐面1cで接続されている場合であ
るが、本発明の方法は上記円錐面の頂角の大小に拘らず
適用することができる。円錐面の頂角が最大となった極
限の状態は頂角180°であり、軸心と垂直な段付面と
なる。図2は、上記のごとく軸心と垂直な段付面を有す
る加工物を、前記先願の発明に係るセンターレス研削装
置(図4)によって研削する際に本発明方法を適用した
1例における模式的な工程説明図である。図2(A)は
大径部用研削砥石(G1)7と調整砥石(RW)9とに
よって加工物1の大径部1aのインフィード研削を開始
した状態を示し、前記実施例における図1(B)に対応
する模式図である。前記実施例の加工物はドリル用の素
材であったから小径部1bの先端が尖り、該小径部1b
にバックテーパが付されていたが、本実施例(図2)の
加工物は単純な段付軸であって小径部1bはバックテー
パを有しておらず、先端が尖っていない。研削装置の主
要構成部材である大径部用研削砥石(G1)7,調整砥
石(RW)9,小径部用研削砥石(G2)8,シュー1
0、および挿入アーム15は前記実施例(図1)と同様
である。(A)図のように大径部1aの研削を開始して
状態が安定すると(B)図のように加工物の小径部1b
をシュー10て支承するとともに該シュー10を矢印
k′方向に送りつつ、小径部用研削砥石(G2)8を矢
印mのごとく切り込んで小径部1bのセンターレス研削
を行い、この際、段付き加工物1の段付面1eを研削仕
上げする。小径部1bが所定の直径寸法に研削され、段
付面1eが研削仕上げされると、(C)のごとく小径部
用研削砥石(G2)8を矢印n方向に後退させる。この
時の状態では削り残し部1dが形成されている。そこで
挿入アーム15を矢印q方向に後退させ、加工物1は矢
印q′方向の送り力を与えて同方向に送りつつ、前記の
削り残し部1dをスルフィード研削によって除去する。
図2(D)は削り残し部を除去し終えた状態である。図
2について以上に説明したごとく、本発明に係る段付加
工物のセンターレス研削方法は、段付加工物の大径部と
小径部とを接続している円錐面の頂角が最大の極限値1
80°の場合にも適用することができる。
As described above, in the present embodiment, the centerless grinding apparatus (FIG. 4) according to the invention of the prior application is used to prevent high precision centerless grinding by an appropriate peripheral speed, which is an advantage of the apparatus. It is possible to remove the uncut portion in the vicinity of the stepped portion without the need for additional mechanical devices. Although not shown, the centerless grinding method for stepped parts according to the present invention can be similarly applied to the centerless grinding apparatus (FIG. 6) according to the invention of the prior application, and the same effect (high Prevents uncut portions without hindering precision grinding). The embodiment shown in FIG.
And the small-diameter portion 1b are connected by a conical surface 1c, but the method of the present invention can be applied regardless of the apex angle of the conical surface. The extreme state in which the apex angle of the conical surface is the maximum is the apex angle of 180 °, which is a stepped surface perpendicular to the axis. FIG. 2 shows an example in which the method of the present invention is applied when a workpiece having a stepped surface perpendicular to the axis as described above is ground by the centerless grinding apparatus (FIG. 4) according to the prior application. It is typical process explanatory drawing. FIG. 2A shows a state in which infeed grinding of the large-diameter portion 1a of the workpiece 1 has been started by the large-diameter portion grinding wheel (G1) 7 and the adjusting wheel (RW) 9, and FIG. It is a schematic diagram corresponding to (B). Since the workpiece of the above embodiment was a material for drilling, the tip of the small diameter portion 1b was sharpened,
However, the workpiece of this embodiment (FIG. 2) is a simple stepped shaft, and the small diameter portion 1b does not have a back taper and the tip is not sharp. Grinding wheel for large diameter part (G1) 7, adjusting wheel (RW) 9, grinding wheel for small diameter part (G2) 8, shoe 1
0 and the insertion arm 15 are the same as those in the embodiment (FIG. 1). (A) When the grinding of the large-diameter portion 1a is started as shown in the figure and the state is stabilized, the small-diameter portion 1b of the workpiece as shown in the diagram (B)
While the shoe 10 is supported by the shoe 10 and the shoe 10 is fed in the direction of the arrow k ', the grinding wheel (G2) 8 for the small diameter portion is cut as shown by the arrow m to perform the centerless grinding of the small diameter portion 1b. The stepped surface 1e of the workpiece 1 is finished by grinding. When the small diameter portion 1b is ground to a predetermined diameter and the stepped surface 1e is ground and finished, the small diameter portion grinding wheel (G2) 8 is retracted in the direction of arrow n as shown in FIG. In this state, an uncut portion 1d is formed. Then, the insertion arm 15 is retracted in the direction of the arrow q, and the workpiece 1 is fed in the same direction by applying a feed force in the direction of the arrow q ', and the uncut portion 1d is removed by through feed grinding.
FIG. 2D shows a state where the uncut portion has been removed. As described above with reference to FIG. 2, the centerless grinding method for a stepped workpiece according to the present invention provides a method in which the apex angle of the conical surface connecting the large diameter portion and the small diameter portion of the stepped workpiece is the maximum. Value 1
The same applies to the case of 80 °.

【0010】[0010]

【発明の効果】互いに独立に周速を制御される大径部用
研削砥石と小径部用研削砥石とを用いて段付加工物をセ
ンターレス研削する場合に本発明に係る方法を適用する
と、大径部,小径部のそれぞれを最適周速でセンターレ
ス研削し、しかも段付部近傍に削り残し部を生じない。
When the method according to the present invention is applied to centerless grinding of a stepped workpiece using a large-diameter portion grinding wheel and a small-diameter portion grinding wheel whose peripheral speeds are controlled independently of each other, Centerless grinding of the large diameter portion and the small diameter portion at the optimum peripheral speed, and no uncut portion near the stepped portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る段付加工物のセンターレス研削方
法の1実施例を示す工程説明図である。
FIG. 1 is a process explanatory view showing one embodiment of a centerless grinding method for a stepped workpiece according to the present invention.

【図2】本発明に係るセンターレス研削方法における上
記と異なる実施例を示す工程説明図である。
FIG. 2 is a process explanatory view showing an embodiment different from the above in the centerless grinding method according to the present invention.

【図3】段付き加工物のセンターレス研削装置の実施例
を示し、模式的に描いた2面図である。
FIG. 3 is a schematic drawing of two views showing an embodiment of a centerless grinding apparatus for stepped workpieces.

【図4】先願の発明に係る段付加工物のセンターレス研
削装置の1実施例を示す2面図である。
FIG. 4 is a two-sided view showing one embodiment of a centerless grinding apparatus for stepped workpieces according to the invention of the prior application.

【図5】先願の発明に係る段付加工物のセンターレス研
削方法の1実施例を示す工程図である。
FIG. 5 is a process chart showing one embodiment of a centerless grinding method for a stepped workpiece according to the invention of the prior application.

【図6】先願の考案に係る段付加工物のセンターレス研
削装置の1実施例を示す2面図である。
FIG. 6 is a two-sided view showing one embodiment of a centerless grinding apparatus for a stepped workpiece according to the invention of the prior application.

【図7】前記先願の発明および先願の考案に係るセンタ
ーレス研削装置における課題の説明図である。
FIG. 7 is an explanatory diagram of a problem in the centerless grinding apparatus according to the invention of the prior application and the invention of the prior application.

【符号の説明】[Explanation of symbols]

1…段付き加工物、1′…加工物の素材、1a…大径
部、1b…小径部、1c…円錐面、1d…削り残し部、
1e…段差面、2…従来例の研削砥石、3…従来例の調
整砥石、4…ブレード、5,6…駆動機構、7…大径部
用の第1の研削砥石、8…小径部用の第2の研削砥石、
9…大径部用の調整砥石、10…シュー、10′…小径
部用の調整砥石、12a,12b,13,14…駆動機
構、15…挿入アーム。
DESCRIPTION OF SYMBOLS 1 ... Stepped workpiece, 1 '... Material of workpiece, 1a ... Large diameter part, 1b ... Small diameter part, 1c ... Conical surface, 1d ... Uncut part,
1e: stepped surface, 2 ... conventional grinding wheel, 3 ... conventional grinding wheel, 4 ... blade, 5, 6 ... drive mechanism, 7 ... first grinding wheel for large diameter portion, 8 ... small diameter portion A second grinding wheel,
9 ... adjustment grindstone for large diameter portion, 10 ... shoes, 10 '... adjustment grindstone for small diameter portion, 12a, 12b, 13, 14 ... drive mechanism, 15 ... insertion arm.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 大径の円柱面および小径の円柱面、並び
に、上記大径の円柱面と小径の円柱面とを接続する円錐
面を有する段付加工物をセンターレス研削する方法にお
いて、 a.単独に周速を制御される大径部用研削砥石を用いて
前記大径の円柱面を研削するとともに、上記大径部用研
削砥石と別個に周速を制御される小径部用研削砥石によ
って前記小径の円柱面および円錐面を研削した後、 b.前記段付加工物を大径部用研削砥石に対して相対的
に、大径の円柱面側に向けて移動させながら、該段付加
工物の大径の円柱面と円錐面との境界部近傍を研削する
ことを特徴とする、段付加工物のセンターレス研削方
法。
A method for centerless grinding a stepped workpiece having a large-diameter cylindrical surface and a small-diameter cylindrical surface, and a conical surface connecting the large-diameter cylindrical surface and the small-diameter cylindrical surface, comprising: a. . Along with grinding the large-diameter cylindrical surface using a large-diameter portion grinding wheel whose peripheral speed is independently controlled, a small-diameter portion grinding wheel whose peripheral speed is controlled separately from the large-diameter portion grinding wheel After grinding the small diameter cylindrical and conical surfaces, b. The boundary between the large-diameter cylindrical surface and the conical surface of the stepped workpiece while moving the stepped workpiece relative to the large-diameter portion grinding wheel toward the large-diameter cylindrical surface. A centerless grinding method for stepped workpieces, characterized by grinding the vicinity.
【請求項2】 前記の円錐面は、その頂角が最大の極限
値として180度であり、かつ、前記b項の工程におけ
る小径部用研削砥石による研削は、小径の円柱面を研削
する際に頂角180度の円錐面を同時に研削することを
特徴とする、請求項1に記載した段付加工物のセンター
レス研削方法。
2. The conical surface has a maximum apex angle of 180 degrees as the maximum limit, and the grinding with the grinding wheel for small diameter portion in the step b) is performed when grinding a small diameter cylindrical surface. 2. The method of claim 1, wherein the conical surface having a vertical angle of 180 degrees is simultaneously ground.
JP4864992A 1991-12-26 1992-03-05 Centerless grinding method for stepped workpieces Expired - Fee Related JP2654301B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4864992A JP2654301B2 (en) 1992-03-05 1992-03-05 Centerless grinding method for stepped workpieces
EP92121912A EP0548957A1 (en) 1991-12-26 1992-12-23 Method of centerless grinding, and centerless grinding machine for stepped work
TW81110378A TW206176B (en) 1991-12-26 1992-12-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4864992A JP2654301B2 (en) 1992-03-05 1992-03-05 Centerless grinding method for stepped workpieces

Publications (2)

Publication Number Publication Date
JPH05253819A JPH05253819A (en) 1993-10-05
JP2654301B2 true JP2654301B2 (en) 1997-09-17

Family

ID=12809212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4864992A Expired - Fee Related JP2654301B2 (en) 1991-12-26 1992-03-05 Centerless grinding method for stepped workpieces

Country Status (1)

Country Link
JP (1) JP2654301B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002096123A (en) * 2000-09-19 2002-04-02 Futaba Corp Guide post for mold and its production method and equipment
JP6005529B2 (en) * 2013-01-11 2016-10-12 光洋機械工業株式会社 Centerless grinding method and centerless grinding apparatus for edge portion of tapered surface

Also Published As

Publication number Publication date
JPH05253819A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
CN107530857B (en) Method and system for externally grinding shaft components between peaks
JPH11254231A (en) Chamfering device for end surface circumferential corner part of workpiece
US5056266A (en) Rotary brake rotor resurfacer
WO2007077964A1 (en) Truing device and truing method for grinding wheel
JP5021883B2 (en) Method and apparatus for manufacturing a cutting tool having a plurality of margins
JP5021882B2 (en) Method and apparatus for manufacturing a cutting tool having a groove
JP2654301B2 (en) Centerless grinding method for stepped workpieces
JP2003025194A (en) Centerless grinding method and centerless grinding device for rod work
JPH08155747A (en) Working method for umbrella type workpiece
JP2002233934A (en) Through-in grinding method and device
JPH11254277A (en) Internal grinding machine
JP2002283203A (en) Rough cutting combined grinding wheel co-used for chamfering processing and processing method of optical element
JPH10128647A (en) Deburring method and deburring structure of grinding wheel used in the deburring method
JP4570923B2 (en) Method for polishing blades of a rotary cutting device and rotary cutting device for carrying out this method
JP5173592B2 (en) Method of bending cylindrical workpiece, centerless grinding method and apparatus
JP2002144199A (en) Surface grinding method and surface grinding machine for sheet disc-like workpiece
JP2002137153A (en) Centerless grinding method and centerless grinding device for rod-form work
JPH07299711A (en) Grinding method for circular-section, thin-walled member
JP2919698B2 (en) Centerless grinding method for stepped shafts
JP2003170339A (en) Method and device for chamfering
JPH08252767A (en) Method and device for machining by tool of anisotropical workability
JP2000176832A (en) Grinding method
JPH05285810A (en) Regulating wheel of centerless grinder
JP2000094247A (en) Deflection removing device and deflection removing method of cutting tool
JP2001009691A (en) Lens chamfering processing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090523

LAPS Cancellation because of no payment of annual fees