JP2651532B2 - Pyrolysis method of coal - Google Patents

Pyrolysis method of coal

Info

Publication number
JP2651532B2
JP2651532B2 JP63306273A JP30627388A JP2651532B2 JP 2651532 B2 JP2651532 B2 JP 2651532B2 JP 63306273 A JP63306273 A JP 63306273A JP 30627388 A JP30627388 A JP 30627388A JP 2651532 B2 JP2651532 B2 JP 2651532B2
Authority
JP
Japan
Prior art keywords
coal
hydrogen
heated
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63306273A
Other languages
Japanese (ja)
Other versions
JPH02151690A (en
Inventor
健治 橋本
孝一 三浦
一▲ひろ▼ 前
哲夫 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOSAKA GASU KK
Original Assignee
OOSAKA GASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOSAKA GASU KK filed Critical OOSAKA GASU KK
Priority to JP63306273A priority Critical patent/JP2651532B2/en
Publication of JPH02151690A publication Critical patent/JPH02151690A/en
Application granted granted Critical
Publication of JP2651532B2 publication Critical patent/JP2651532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Industrial Gases (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、石炭の熱分解方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for pyrolyzing coal.

従来技術とその問題点 石炭を原料として、高カロリーガスおよびベンゼン、
トルエン、キシレンなどの液状生成物を製造する方法と
して、微粉砕した石炭を高温および高圧の水素ガスと混
合し、急速に昇温し、数秒乃至数十秒の反応時間で石炭
を急速熱分解する方法が知られている。この様な石炭の
急速熱分解における液状生成物の収率は、熱分解フラグ
メント生成時の水素の含有量に大きく依存することが判
明しており、液状生成物を高収率で得るためには、石炭
の熱分解時にはタイミング良く水素を与えることが必要
である。
Conventional technology and its problems High-calorie gas, benzene,
As a method of producing liquid products such as toluene and xylene, finely pulverized coal is mixed with high-temperature and high-pressure hydrogen gas, the temperature is rapidly increased, and the coal is rapidly pyrolyzed in a reaction time of several seconds to several tens of seconds. Methods are known. It has been found that the yield of liquid products in such rapid pyrolysis of coal greatly depends on the hydrogen content at the time of the generation of pyrolysis fragments. At the time of thermal decomposition of coal, it is necessary to supply hydrogen with good timing.

しかしながら、上記の従来技術による石炭の急速熱分
解方法では、石炭の熱分解を単に水素ガスまたは水素ガ
スとメタンなどとの混合ガス雰囲気中で行なうものであ
り、このような方法は、実質的に水素分子の形で気相か
ら水素を供給する水素化熱分解方法であるといえる。水
素化熱分解方法では、水素分子の水素原子への解離エネ
ルギーが大きいため、水素原子の熱分解フラグメントへ
の付加は、石炭の水素アクセプター能力に依存する。従
って、水素が石炭に効率良く移行せず、液状生成物の収
率には、限界がある。
However, in the above-mentioned rapid thermal decomposition method of coal according to the prior art, the thermal decomposition of coal is simply performed in a hydrogen gas or a mixed gas atmosphere of hydrogen gas and methane, and such a method is substantially performed. It can be said that this is a hydropyrolysis method in which hydrogen is supplied from the gas phase in the form of hydrogen molecules. In the hydropyrolysis method, since the dissociation energy of hydrogen molecules into hydrogen atoms is large, the addition of hydrogen atoms to pyrolysis fragments depends on the hydrogen acceptor ability of coal. Therefore, hydrogen does not transfer efficiently to coal, and the yield of liquid product is limited.

問題点を解決するための手段 本発明者は、上記の如き技術の現状に鑑みて種々研究
を重ねた結果、石炭粉末を水素供与性溶媒により前処理
して膨潤させておく場合には、石炭の細孔径が拡大され
て、タールラジカルがチャーラジカルに捕捉されること
なく粒子外に散逸し易くなるという物理的効果、および
石炭との化学的なインターラクション経た溶剤からの効
率的な水素移行によるタールラジカルの安定化という化
学的効果によって、液状生成物の収率が著るしく向上す
ることを見出した。
Means for Solving the Problems The present inventor has conducted various studies in view of the current state of the art as described above, and as a result, when coal powder is pretreated with a hydrogen-donating solvent to swell, The physical effect that the tar radicals are easily trapped by the char radicals and are easily scattered out of the particles due to the expansion of the pore diameter of the coal, and efficient hydrogen transfer from the solvent through chemical interaction with coal It has been found that the chemical effect of stabilizing tar radicals significantly improves the yield of liquid products.

すなわち、本発明は、下記の方法を提供するものであ
る: 「石炭粉末と水素供与性溶剤との混合物を不活性ガス
雰囲気中150〜300℃で加熱し膨潤させた後、不活性ガス
または水素ガス雰囲気中で500℃/秒以上の昇温速度で5
00〜900℃まで加熱し、保持することを特徴とする石炭
の熱分解方法。」 本発明の対象となる石炭には、種類、産地などによる
制限はない。石炭は、反応性を高めるために、粒径100
メッシュ通過以下程度の粉体の形態で使用することが好
ましい。
That is, the present invention provides the following method: "After a mixture of coal powder and a hydrogen-donating solvent is heated and swelled at 150 to 300 ° C in an inert gas atmosphere, an inert gas or hydrogen is used. 5 at a heating rate of 500 ° C / sec or more in a gas atmosphere
A method for pyrolyzing coal, wherein the method is heated to and maintained at 00 to 900 ° C. There is no restriction on the type of coal, the place of production, and the like for the coal that is the subject of the present invention. Coal has a particle size of 100 to increase reactivity.
It is preferable to use the powder in the form of a powder having a mesh size or less.

水素供与性溶剤としては、テトラリン、テトラヒドロ
キノリン、ジヒドロアントセラン、テトラヒドロアント
ラセン、ジヒドロフェナントレン、テトラヒドロフェナ
ントレン、ジヒドロピレン、テトラヒドロピレン、ジヒ
ドロクリセン、テトラヒドロクリセンなどが挙げられ
る。
Examples of the hydrogen-donating solvent include tetralin, tetrahydroquinoline, dihydroanthracene, tetrahydroanthracene, dihydrophenanthrene, tetrahydrophenanthrene, dihydropyrene, tetrahydropyrene, dihydrochrysene, tetrahydrochrysene, and the like.

石炭と水素供与性溶剤との混合割合は、前者100重量
部(以下単に部とする)に対し後者10〜60部程度、より
好ましくは30〜40部程度とする。水素供与性溶剤の量が
少なすぎる場合には、石炭の前処理が十分に行われない
のに対し、過剰量を使用する場合には、熱分解反応自体
には、支障はないが、過剰な溶剤自体が熱分解するだけ
で、液生成物の収率向上に寄与しないばかりか、所定の
反応温度まで昇温するために過大な熱エネルギーが浪費
されること、プラントが大型化すること等の理由で、好
ましくない。
The mixing ratio of the coal and the hydrogen-donating solvent is about 10 to 60 parts, more preferably about 30 to 40 parts, per 100 parts by weight of the former (hereinafter simply referred to as "parts"). If the amount of the hydrogen-donating solvent is too small, the pretreatment of the coal is not sufficiently performed, whereas if an excessive amount is used, there is no problem in the thermal decomposition reaction itself. The solvent itself is only thermally decomposed and does not contribute to the improvement of the yield of the liquid product.Moreover, excessive heat energy is wasted to raise the temperature to a predetermined reaction temperature, and the plant is enlarged. For reasons, not preferred.

本発明においては、前処理として、石炭粉末と水素供
与性溶剤との混合物を窒素ガス、ヘリウムガスなどの不
活性ガス雰囲気中150〜300℃程度、より好ましくは200
〜250℃程度で15分乃至1時間程度加熱して、膨潤させ
る。不活性ガスの圧力は、特に限定されないが、通常0.
5〜2.0MPa程度である。前処理は、石炭自体が熱分解し
ない条件下に行なう必要があるので、炭種によって処理
温度および時間を適宜選択すべきである。
In the present invention, as a pretreatment, a mixture of coal powder and a hydrogen-donating solvent is nitrogen gas, about 150 to 300 ° C. in an inert gas atmosphere such as helium gas, more preferably 200 to 300 ° C.
Heat at 250250 ° C. for about 15 minutes to 1 hour to swell. The pressure of the inert gas is not particularly limited, but is usually 0.
It is about 5 to 2.0 MPa. Since the pretreatment needs to be performed under conditions where the coal itself does not thermally decompose, the treatment temperature and time should be appropriately selected depending on the type of coal.

上記の様にして前処理を終えた石炭粉末は、そのまま
の状態で或いは冷却した後、500〜900℃程度の温度域ま
で(より好ましくは、700〜800℃程度の温度域まで)50
0℃/秒以上の昇温速度で(より好ましくは、1000℃/
秒以上の昇温速度で)昇温させ、同温度に1〜60秒程度
(より好ましくは、5〜15秒程度)保持し、熱分解を行
なった後、急冷する。昇温速度が低すぎる場合には、熱
分解フラグメントの安定化時期と水素供与性溶剤の水素
供与時期が一致しないために、効果が期待できない。熱
分解温度および時間は、膨潤前処理に使用した水素供与
性溶剤自体の分解反応が促進されて、水素が消費される
ことを避けるために、該溶剤自身の分解が生じない様に
選択する必要がある。熱分解は、常圧乃至10MPa程度間
での加圧下に処理すれば良い。熱分解反応後に急冷する
のは、液生成物の二次反応を抑制するためである。
The coal powder, which has been pretreated as described above, may be used as it is or after cooling, to a temperature range of about 500 to 900 ° C (more preferably, to a temperature range of about 700 to 800 ° C).
At a heating rate of 0 ° C / sec or more (more preferably, 1000 ° C /
The temperature is raised at a rate of not less than seconds, the temperature is maintained for about 1 to 60 seconds (more preferably, for about 5 to 15 seconds), and after thermal decomposition, rapid cooling is performed. If the heating rate is too low, the effect cannot be expected because the stabilization time of the pyrolysis fragment and the hydrogen donation time of the hydrogen-donating solvent do not match. The pyrolysis temperature and time must be selected so that the decomposition reaction of the hydrogen-donating solvent used in the swelling pretreatment itself is accelerated and hydrogen is not consumed, so that the solvent itself does not decompose. There is. The thermal decomposition may be performed under normal pressure to a pressure of about 10 MPa. The rapid cooling after the thermal decomposition reaction is for suppressing the secondary reaction of the liquid product.

発明の効果 本発明によれば、石炭の熱分解に際して、液状生成物
の収率が著るしく向上する。
Effects of the Invention According to the present invention, the yield of a liquid product is remarkably improved during pyrolysis of coal.

実 施 例 以下に実施例及び比較例を示し、本発明の特徴とする
ところをより一層明らかにする。
Examples Examples and comparative examples are shown below to further clarify the features of the present invention.

実施例1 200メッシュ通過以下に粉砕した太平洋炭粉末100部に
テトラリン50部を加えて、オートクレーブに充填し、1M
PaのN2ガス雰囲気中で250℃で1時間加熱し、膨潤させ
た。
Example 1 To 100 parts of Pacific charcoal powder pulverized to a mesh size of 200 mesh or less, 50 parts of tetralin was added, and the mixture was filled in an autoclave.
It was heated at 250 ° C. for 1 hour in a N 2 gas atmosphere of Pa to swell.

次いで、膨潤前処理を終えた石炭粉末を強磁性鉄箔に
包んで反応管内に収容し、常圧のHe雰囲気下に高周波加
熱し、500℃/秒の昇温速度で764℃まで急速加熱し、同
温度に10秒間保持した。
Next, the coal powder that has been subjected to the swelling pretreatment is wrapped in a ferromagnetic iron foil, housed in a reaction tube, heated at a high frequency under a normal pressure He atmosphere, and rapidly heated to 764 ° C. at a heating rate of 500 ° C./sec. , And maintained at the same temperature for 10 seconds.

次いで、生成した揮発分を反応間内に導入した室温の
Heガスにより急冷し、タール分を反応管壁および反応管
に充填した石英ウール上で捕集した。
Then, the generated volatiles were introduced during the reaction at room temperature.
The mixture was quenched by He gas and the tar was collected on the wall of the reaction tube and on quartz wool filled in the reaction tube.

比較例1 膨潤処理を行なうことなく、石炭粉末を実施例1と同
じ条件で急速加熱した。
Comparative Example 1 The coal powder was rapidly heated under the same conditions as in Example 1 without performing the swelling treatment.

実施例2 実施例1と同じ条件で石炭粉末を膨潤させた後、強磁
性鉄箔に包んで反応管内に収容し、5MPaのH2ガス雰囲気
下に高周波加熱し、600℃/秒の昇温速度で746℃まで急
速加熱し、同温度に10秒間保持した。
Example 2 Coal powder was swollen under the same conditions as in Example 1, then wrapped in a ferromagnetic iron foil, housed in a reaction tube, and heated at a high frequency of 600 ° C./sec under a 5 MPa H 2 gas atmosphere. The mixture was rapidly heated to 746 ° C. at the speed and kept at the same temperature for 10 seconds.

次いで、生成した揮発分を反応管内に導入した室温の
Heガスにより急冷し、タール分を反応管壁および反応管
に充填した石英ウール上で捕集した。
Then, the generated volatiles were introduced into the reaction tube at room temperature.
The mixture was quenched by He gas and the tar was collected on the wall of the reaction tube and on quartz wool filled in the reaction tube.

比較例2 膨潤処理を行なうことなく、石炭粉末を実施例2と同
じ条件で急速加熱した。
Comparative Example 2 The coal powder was rapidly heated under the same conditions as in Example 2 without performing the swelling treatment.

第1表に各実施例及び比較例におけるタール、チャー
および生成ガスの収率(%)を示す。
Table 1 shows the yield (%) of tar, char, and product gas in each of the examples and comparative examples.

第1表に示す結果から明らかな様に、石炭を水素供与
性溶剤で膨潤前処理しておく場合には、膨潤前処理しな
い場合に比して、タール収率が約23%から32%にまぜ増
加している。
As is evident from the results shown in Table 1, when coal is pre-swelled with a hydrogen-donating solvent, the tar yield is reduced from about 23% to 32% as compared with the case without pre-swelling. It is increasing.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−212494(JP,A) 特開 昭57−190090(JP,A) 特開 昭50−39294(JP,A) 特開 昭49−188(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-212494 (JP, A) JP-A-57-190090 (JP, A) JP-A-50-39294 (JP, A) JP-A-49-49 188 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】石炭粉末と水素供与性溶剤との混合物を不
活性ガス雰囲気中150〜300℃で加熱し膨潤させた後、不
活性ガスまたは水素ガス雰囲気中で500℃/秒以上の昇
温速度で500〜900℃まで加熱し、保持することを特徴と
する石炭の熱分解方法。
1. A mixture of coal powder and a hydrogen-donating solvent is heated and swelled at 150 to 300 ° C. in an inert gas atmosphere, and then heated to 500 ° C./sec or more in an inert gas or hydrogen gas atmosphere. A method for pyrolyzing coal, wherein the method is heated to a temperature of 500 to 900 ° C. at a speed and held.
【請求項2】不活性ガスまたは水素ガス雰囲気中で高周
波加熱し500℃/秒以上の昇温速度で500〜900℃まで加
熱することを特徴とする請求項1に記載の石炭の熱分解
方法。
2. A method for pyrolyzing coal according to claim 1, wherein high-frequency heating is performed in an inert gas or hydrogen gas atmosphere to 500 to 900 ° C. at a heating rate of 500 ° C./sec or more. .
JP63306273A 1988-12-02 1988-12-02 Pyrolysis method of coal Expired - Lifetime JP2651532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63306273A JP2651532B2 (en) 1988-12-02 1988-12-02 Pyrolysis method of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306273A JP2651532B2 (en) 1988-12-02 1988-12-02 Pyrolysis method of coal

Publications (2)

Publication Number Publication Date
JPH02151690A JPH02151690A (en) 1990-06-11
JP2651532B2 true JP2651532B2 (en) 1997-09-10

Family

ID=17955099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306273A Expired - Lifetime JP2651532B2 (en) 1988-12-02 1988-12-02 Pyrolysis method of coal

Country Status (1)

Country Link
JP (1) JP2651532B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526873B2 (en) * 1972-04-21 1977-02-25
JPS5412915B2 (en) * 1973-08-11 1979-05-26
JPS57190090A (en) * 1981-05-16 1982-11-22 Exxon Research Engineering Co Fluidized bed type catalytic coal gasification
JPS62212494A (en) * 1986-03-12 1987-09-18 Agency Of Ind Science & Technol Method of converting energy of peat

Also Published As

Publication number Publication date
JPH02151690A (en) 1990-06-11

Similar Documents

Publication Publication Date Title
EP0650465A4 (en) Conversion of fullerenes to diamond.
WO1993011068A1 (en) Conversion of fullerenes to diamond
US4012311A (en) Short residence time low pressure hydropyrolysis of carbonaceous materials
JPH08225395A (en) Production of diamond doped with boron
JP2651532B2 (en) Pyrolysis method of coal
JPH03106989A (en) Method for rapid pyrolysis of coal
JP2000086218A (en) Method for synthesizing carbon nanotube and catalyst used for same
CN112723340B (en) Method for preparing carbon nano tube by modulating low-rank coal
CN115340084A (en) Method for preparing carbon nano tube by hydrogen-free chemical vapor deposition
JPH059477A (en) Method of rapid thermal decomposition of coal
JPH05502656A (en) Method for preparing graphite flakes and films by low temperature pyrolysis
CN111170305A (en) Preparation method of carbon nano mixture
JPH0448757B2 (en)
JPH06184565A (en) Method for utilizing char produced by rapid thermal cracking of coal
JPH06108063A (en) Rapid pyrolysis of coal
JPH05117662A (en) Method for thermal decomposition of coal
JPS5839463B2 (en) Coal liquefaction method
Wang et al. Kinetic Model of Steam Reforming for Heavy Tar Decomposition in Biomass Gasification.
JP2003221215A (en) Method for manufacturing carbon nanotube
Nyakuma et al. Thermal decomposition kinetics of torrefied oil palm empty fruit bunch briquettes
JP2697585B2 (en) Coal tar reforming method
US3057924A (en) High pressure reaction of diborane and ethylene
Ollison et al. Carbonization of 2, 4, 6 octatriyne
JPH03146590A (en) Quick hydrocracking method of coal
JPH09194846A (en) Method for thermal decomposition of coal