JP2648818B2 - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2648818B2
JP2648818B2 JP63226212A JP22621288A JP2648818B2 JP 2648818 B2 JP2648818 B2 JP 2648818B2 JP 63226212 A JP63226212 A JP 63226212A JP 22621288 A JP22621288 A JP 22621288A JP 2648818 B2 JP2648818 B2 JP 2648818B2
Authority
JP
Japan
Prior art keywords
tube
corrosion
weight
protective material
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63226212A
Other languages
Japanese (ja)
Other versions
JPH02187595A (en
Inventor
直義 林
剛 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63226212A priority Critical patent/JP2648818B2/en
Publication of JPH02187595A publication Critical patent/JPH02187595A/en
Application granted granted Critical
Publication of JP2648818B2 publication Critical patent/JP2648818B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

【発明の詳細な説明】 A.発明の目的 (1)産業上の利用分野 本発明は熱交換器、特に水路形成用チューブおよびそ
のチューブ外周面にろう接されたフィンを備え、フィン
は心材と、その心材の、チューブとのろう接側の面を被
覆してろう材としても機能する保護材とよりなり、チュ
ーブ、心材および保護材はアルミニウムおよびアルミニ
ウム合金から選択される材料より構成された熱交換器に
関する。
DETAILED DESCRIPTION OF THE INVENTION A. Objects of the Invention (1) Field of Industrial Application The present invention comprises a heat exchanger, particularly a tube for forming a water channel, and fins brazed to the outer peripheral surface of the tube. A protective material that also functions as a brazing material by covering the surface of the core material on the brazing side with the tube, wherein the tube, the core material and the protective material are made of a material selected from aluminum and an aluminum alloy. About the exchanger.

この場合、チューブの腐食電位をV1とし、また心材の
腐食電位をV2とし、さらに保護材の腐食電位をV3とした
とき、これら三つの腐食電位V1〜V3間には、V1>V3≧V2
の関係が成立する。
In this case, the corrosion potential of the tube and V 1, also the corrosion potential of the core and V 2, further when the corrosion potential of the protective material was changed to V 3, is between these three corrosion potential V 1 ~V 3, V 1 > V 3 ≧ V 2
Is established.

前記のようにV1>V3およびV1>V2の関係をそれぞれ成
立させる理由は、チューブと保護材との接触部において
は保護材に、またチューブと心材との接触部においては
心材にそれぞれ犠牲腐食能を発揮させてチューブの防食
を図るためである。またV3≧V2の関係を成立させる理由
は、心材および保護材間におけるその保護材の優先腐食
を抑制し、これによりチューブからのフィンの分離を防
止して、フィンの犠牲腐食能を維持するためである。
As described above, the reason for establishing the relations of V 1 > V 3 and V 1 > V 2 is that the contact portion between the tube and the protective material is in the protective material, and the contact portion between the tube and the core material is in the core material. This is for the purpose of exerting the sacrificial corrosion ability to prevent corrosion of the tube. The reason for satisfying the relationship of V 3 ≧ V 2 is that preferential corrosion of the protective material between the core material and the protective material is suppressed, thereby preventing separation of the fin from the tube and maintaining the sacrificial corrosion capability of the fin. To do that.

(2)従来の技術 従来、この種熱交換器においては、前記のように各部
の腐食電位の大小関係については配慮がなされている
が、チューブおよび保護材間の腐食電位差と、保護材お
よび心材間の腐食電位差との大小関係については何等配
慮がなされていない。
(2) Conventional technology Conventionally, in this type of heat exchanger, consideration has been given to the magnitude relationship between the corrosion potential of each part as described above, but the corrosion potential difference between the tube and the protective material, the protective material and the core material No consideration is given to the magnitude relationship with the corrosion potential difference between them.

(3)発明が解決しようとする課題 前記両腐食電位差の大小関係がV3−V2>V1−V3である
場合には、保護材に対する心材の犠牲腐食能が大となる
反面、チューブに対する保護材の犠牲腐食能が小となる
ため、チューブの腐食が進行し易い、といった問題を生
じる。
(3) Problems to be Solved by the Invention When the magnitude relationship between the two corrosion potential differences is V 3 −V 2 > V 1 −V 3 , the sacrificial corrosion ability of the core material to the protective material is large, but the tube is Since the sacrificial corrosion ability of the protective material for the tube becomes small, there arises a problem that the corrosion of the tube easily proceeds.

本発明は前記に鑑み、チューブの防食性を向上させた
耐久性の高い前記熱交換器を提供することを目的とす
る。
In view of the above, an object of the present invention is to provide the heat exchanger having high durability in which the corrosion resistance of the tube is improved.

B.発明の構成 (1)課題を解決するための手段 本発明は、水路形成用チューブおよびそのチューブ外
周面にろう接されたフィンを備え、前記フィンは心材
と、その心材の、前記チューブとのろう接側の面を被覆
してろう材としても機能する保護材とよりなり、前記チ
ューブ、心材および保護材はアルミニウムおよびアルミ
ニウム合金から選択される材料より構成され、前記チュ
ーブの腐食電位をV1とし、また前記心材の腐食電位をV2
とし、さらに前記保護材の腐食電位をV3としたとき、V1
>V3≧V2である熱交換器において、V1−V3>V3−V2の関
係が成立することを特徴とする。
B. Configuration of the Invention (1) Means for Solving the Problems The present invention includes a tube for forming a water channel and a fin brazed to the outer peripheral surface of the tube, wherein the fin is a core material, and the core material includes the tube and the fin. And a protective material that also functions as a brazing material by covering the surface on the brazing side of the tube, wherein the tube, the core material and the protective material are made of a material selected from aluminum and an aluminum alloy. 1, and the corrosion potential of the core material is V 2
And then, when further the corrosion potential of the protective material was changed to V 3, V 1
In a heat exchanger in which> V 3 ≧ V 2 , a relationship of V 1 −V 3 > V 3 −V 2 is satisfied.

(2)作用 腐食電位差の大小関係において、前記のように、V1
V3>V3−V2の関係を成立させると、V3≧V2であることも
あって、チューブに対する保護材の犠牲腐食能を大にす
ると共に保護材に対する心材の犠牲腐食能を小にして、
チューブの防食性を向上させることができる。
(2) Action In relation to the magnitude of the corrosion potential difference, as described above, V 1
When the relationship of V 3 > V 3 −V 2 is satisfied, V 3 ≧ V 2 , so that the sacrificial corrosion capacity of the protective material for the tube is increased and the sacrificial corrosion capacity of the core material for the protective material is reduced. And then
The corrosion prevention of the tube can be improved.

(3)実施例 第1〜第3図は熱交換器としての自動車用ラジエータ
1を示し、そのラジエータ1においては、車体の前後方
向に並ぶ2本一組の偏平な水路形成用チューブ2が車幅
方向に複数組並列され、相隣る組のチューブ2間は波形
フィン3を介して連結される。そのフィン3はチューブ
2外周面にろう接されている。
(3) Embodiment FIGS. 1 to 3 show an automobile radiator 1 as a heat exchanger. In the radiator 1, a pair of flat water channel forming tubes 2 arranged in the front-rear direction of a vehicle body is provided. A plurality of sets are arranged in parallel in the width direction, and adjacent tubes 2 are connected via corrugated fins 3. The fin 3 is soldered to the outer peripheral surface of the tube 2.

各チューブ2は、新規な構成を有する耐食性アルミニ
ウム合金に押出し加工を施すことによって単層構造に構
成されている。
Each tube 2 is formed in a single-layer structure by extruding a corrosion-resistant aluminum alloy having a novel structure.

前記アルミニウム合金としては、例えば、Mg0.5重量
%以上、4.0重量%以下、Fe0.05重量%以上、0.15重量
%以下、Mn0.15重量%以上、1.82重量%以下、Cu0.03重
量%以下、Zn0.03重量%以下、V0.05重量%以下、Ga0.0
3重量%以下、Si0.15重量%以下および残部が0.02重量
%以下の不可避不純物を含むAlよりなる合金が該当す
る。
As the aluminum alloy, for example, Mg 0.5% by weight or more, 4.0% by weight or less, Fe 0.05% by weight or more, 0.15% by weight or less, Mn 0.15% by weight or more, 1.82% by weight or less, Cu 0.03% by weight or less , Zn 0.03 wt% or less, V0.05 wt% or less, Ga0.0
An alloy of Al containing unavoidable impurities of 3% by weight or less, Si 0.15% by weight or less, and the balance of 0.02% by weight or less corresponds to the alloy.

前記化学成分において、Mgはマトリックスの強度を向
上させると共に酸化皮膜の強化に寄与する。たゞし、0.
5重量%を下回ると、マトリックス強化能が無く、一
方、4.0重量%を上回ると、フィン3とのろう接性が低
下する。
In the above-mentioned chemical components, Mg improves the strength of the matrix and contributes to strengthening of the oxide film. Yes, 0.
If it is less than 5% by weight, there is no matrix strengthening ability, while if it exceeds 4.0% by weight, the solderability with the fins 3 is reduced.

Feは押出し加工性およびろう材に対する濡れ性を向上
させる効果を有する。この効果はMnとの共存によって一
層顕著となる。たゞし、0.05重量%を下回ると、前記効
果が低下する傾向にあり、一方、0.15重量%を上回る
と、粗大金属間化合物の析出により耐食性、押出し加工
性およびろう接性が低下する。
Fe has an effect of improving the extrusion processability and the wettability to the brazing material. This effect becomes more remarkable by coexistence with Mn. On the other hand, if the content is less than 0.05% by weight, the above effect tends to decrease. On the other hand, if the content exceeds 0.15% by weight, the corrosion resistance, the extrusion processability and the brazing property decrease due to the precipitation of coarse intermetallic compounds.

Mnは高温強度を向上させると共にFeが固溶限を越えて
添加、したがって0.05重量%を上回って添加されている
ときに電位の高いFeAl6等の金属間化合物の析出を抑制
して耐食性を向上させる効果を有する。たゞし、0.15重
量%を下回ると、前記効果が得られず、一方、1.82重量
%を上回ると、粗大金属間化合物の析出により押出し加
工性および耐食性が低下する。
Mn improves the high-temperature strength and suppresses the precipitation of intermetallic compounds such as FeAl 6 with high potential when Fe is added beyond the solid solubility limit, so that it is added in excess of 0.05% by weight, thereby improving corrosion resistance. Has the effect of causing. However, if the amount is less than 0.15% by weight, the above effect cannot be obtained. On the other hand, if it exceeds 1.82% by weight, the extrudability and corrosion resistance are reduced due to precipitation of coarse intermetallic compounds.

Cuは微量添加にて機械的性質および押出し加工性を改
善する効果を有する。たゞし、0.03重量%を上回ると耐
食性が低下する。
Cu has an effect of improving mechanical properties and extrudability by adding a small amount of Cu. However, if it exceeds 0.03% by weight, the corrosion resistance is reduced.

Znは強度向上に寄与する。たゞし、0.03重量%を上回
ると、マトリックスの電位を卑にすると共に酸化皮膜を
弱化する。
Zn contributes to strength improvement. However, if it exceeds 0.03% by weight, the potential of the matrix becomes low and the oxide film becomes weak.

VおよびGaは耐熱性を向上させる効果を有する。たゞ
し、Vが0.05重量%を、またGaが0.03重量%をそれぞれ
上回ると、押出し加工性が低下する。
V and Ga have an effect of improving heat resistance. However, if V exceeds 0.05% by weight and Ga exceeds 0.03% by weight, the extrudability decreases.

Siは、Mgの存在下において強度向上要素である金属間
化合物Mg2Siを優先的に析出し、またFeの存在下におい
て貴な金属間化合物FeAl3を優先的に析出させる。たゞ
し、0.15重量%を上回ると、前記析出に伴い固溶体中の
Mgの添加効果か減殺され、また金属間化合物FeAl3が過
剰となって脆化する。
Si preferentially precipitates an intermetallic compound Mg 2 Si which is a strength improving element in the presence of Mg, and preferentially precipitates a noble intermetallic compound FeAl 3 in the presence of Fe. However, if the content exceeds 0.15% by weight, the solid solution
The effect of adding Mg is reduced, and the intermetallic compound FeAl 3 becomes excessive and becomes brittle.

前記アルミニウム合金には、必要に応じてTiおよびCr
の少なくとも一方が添加される。この場合、Tiは0.01重
量%以上、1.0重量%以下、またCrは0.01重量%以上、
0.8重量%以下にそれぞれ設定される。TiおよびCrは結
晶粒を微細化して強度を向上し、また耐粒界腐食性を良
好にする効果を有する。たゞし、TiおよびCrが共に0.01
重量%を下回ると、前記効果を得ることができず、一
方、Tiが1.0重量%を、またCrが0.8重量%をそれぞれ上
回ると、粗大金属間化合物が析出した耐食性および押出
し加工性が低下する。
The aluminum alloy contains Ti and Cr as necessary.
Is added. In this case, Ti is 0.01% by weight or more and 1.0% by weight or less, Cr is 0.01% by weight or more,
Each is set to 0.8% by weight or less. Ti and Cr have the effect of improving the strength by refining crystal grains and improving the intergranular corrosion resistance. However, both Ti and Cr are 0.01
If the content is less than 1.0% by weight, the above effects cannot be obtained. On the other hand, if the content of Ti exceeds 1.0% by weight and the content of Cr exceeds 0.8% by weight, respectively, the corrosion resistance and the extrudability of the coarse intermetallic compound are reduced. .

アルミニウム合金においては、マトリックスと析出相
間の電位差が20mVを上回ると腐食が加速される傾向にあ
るが、前記のように各化学成分の添加量を設定すると、
その添加量が略固溶限内に収められると共にマトリック
スと析出相間の電位差が20mV以下に抑えられるので、チ
ューブ2を単層構造に構成しても、その耐食性を向上さ
せることができる。
In aluminum alloys, corrosion tends to be accelerated when the potential difference between the matrix and the precipitated phase exceeds 20 mV, but when the addition amount of each chemical component is set as described above,
Since the amount of addition is kept substantially within the solid solubility limit and the potential difference between the matrix and the precipitated phase is suppressed to 20 mV or less, even if the tube 2 has a single-layer structure, its corrosion resistance can be improved.

フィン3は、公知のアルミニウム合金よりクラッド材
構造に構成され、第3図に明示するように心材3aと、そ
の心材3aの表裏両面を被覆してろう材としても機能する
保護材3bとよりなる。
The fins 3 are formed in a clad material structure from a known aluminum alloy, and include a core material 3a and a protective material 3b that covers the front and back surfaces of the core material 3a and also functions as a brazing material, as clearly shown in FIG. .

心材3aの構成材料は融点略800℃のAl−Mg系合金であ
り、また保護材3bの構成材料は融点略650℃のAl−Si系
(またはAl−Si−Mg系)合金である。
The constituent material of the core material 3a is an Al-Mg alloy having a melting point of about 800 ° C, and the constituent material of the protective material 3b is an Al-Si (or Al-Si-Mg) alloy having a melting point of about 650 ° C.

こゝで、チューブ2の腐食電位をV1とし、また心材3a
の腐食電位をV2とし、さらに保護材3bの腐食電位をV3
すると、それら腐食電位V1〜V3の間には、V1>V3≧V
2で、且つV1−V3>V3−V2の関係が成立する。
Thisゝa, and the corrosion potential of the tube 2 and V 1, also core 3a
The corrosion potential and V 2, the more the corrosion potential of the protective member 3b and V 3, between which corrosion potential V 1 ~V 3, V 1> V 3 ≧ V
2 , and the relationship of V 1 −V 3 > V 3 −V 2 is established.

腐食電位の大小関係において、V1>V3およびV1>V2
関係をそれぞれ成立させると、チューブ2と保護材3bと
の接触部aにおいては保護材3bが、またチューブ2と心
材3aとの接触部bにおいては心材3aがそれぞれ犠牲腐食
能を発揮し、これによりチューブ2の防食が図られる。
When the relations of V 1 > V 3 and V 1 > V 2 are established in the magnitude relation of the corrosion potential, the protection member 3b is provided at the contact portion a between the tube 2 and the protection member 3b, and the tube 2 and the core member 3a are provided. At the contact portion b, the core material 3a exhibits sacrificial corrosion ability, thereby preventing the tube 2 from being corroded.

また、両腐食電位差の大小関係において、V1−V3>V3
−V2の関係を成立させると、V3≧V2であることもあっ
て、チューブ2に対する保護材3bの犠牲腐食能を大にす
ると共に保護材3bに対する心材3aの犠牲腐食能を小にし
て、チューブ2の防食性を向上させることができる。こ
の場合、心材3aおよび保護材3b間の腐食電位差は可及的
に小さい方が有効である。
In addition, in the magnitude relationship between the two corrosion potential differences, V 1 −V 3 > V 3
When the relationship of −V 2 is established, since V 3 ≧ V 2 , the sacrificial corrosion capacity of the protective material 3b for the tube 2 is increased, and the sacrificial corrosion capacity of the core material 3a for the protective material 3b is reduced. Thus, the anticorrosion of the tube 2 can be improved. In this case, it is effective that the corrosion potential difference between the core material 3a and the protection material 3b is as small as possible.

チューブ2の腐食能を向上させるためチューブ2をア
ルミニウム合金のクラッド材より構成することもある
が、このように構成すると、チューブの製造が面倒であ
る上、材料費が嵩み、製造コストが高いという問題を生
じる。
In some cases, the tube 2 is made of an aluminum alloy clad material in order to improve the corrosion performance of the tube 2. However, such a structure makes the tube production troublesome, increases the material cost, and increases the production cost. The problem arises.

前記合金によれば、チューブを単層構造に構成して前
記問題を解決することができる。
According to the alloy, the above problem can be solved by forming the tube into a single-layer structure.

なお、チューブ2、心材3aおよび保護材3bの何れかの
構成材料としてアルミニウムを用い、他をアルミニウム
合金より構成する等、チューブ2等の構成材料は、アル
ミニウムおよびアルミニウム合金から、前記腐食電位の
関係を保つように種々選択される。
The tube 2 and the like are made of aluminum and an aluminum alloy. For example, aluminum is used as a constituent material of any of the tube 2, the core material 3a, and the protective material 3b, and the other is made of an aluminum alloy. Are variously selected to keep

またフィン3において、心材3aの、チューブ2とのろ
う接側の面のみを保護材3bにより被覆することもある。
Further, in the fin 3, only the surface of the core material 3a on the brazing side with the tube 2 may be covered with the protective material 3b.

C.発明の効果 本発明によれば、チューブおよびフィンにおける腐食
電位の関係を前記のように特定することによって、チュ
ーブの耐食性を向上させた耐久性の高い熱交換器を提供
することができる。
C. Effects of the Invention According to the present invention, by specifying the relationship between the corrosion potential of the tube and the fin as described above, a highly durable heat exchanger with improved corrosion resistance of the tube can be provided.

【図面の簡単な説明】[Brief description of the drawings]

図面は自動車用ラジエータを示し、第1図は要部を破断
した斜視図、第2図は要部拡大斜視図、第3図は第2図
III−III線拡大断面図である。 1……ラジエータ(熱交換器)、2……チューブ、3…
…フィン、3a……心材、3b……保護材
The drawings show a radiator for an automobile, FIG. 1 is a perspective view in which main parts are broken, FIG. 2 is an enlarged perspective view of main parts, and FIG. 3 is FIG.
It is an III-III line expanded sectional view. 1 ... radiator (heat exchanger), 2 ... tube, 3 ...
… Fins, 3a …… heartwood, 3b …… protective material

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水路形成用チューブ(2)およびそのチュ
ーブ(2)外周面にろう接されたフィン(3)を備え、
前記フィン(3)は心材(3a)と、その心材(3a)の、
前記チューブ(2)とのろう接側の面を被覆してろう材
としても機能する保護材(3b)とよりなり、前記チュー
ブ(2)、心材(3a)および保護材(3b)はアルミニウ
ムおよびアルミニウム合金から選択される材料より構成
され、前記チューブ(2)の腐食電位をV1とし、また前
記心材(3a)の腐食電位をV2とし、さらに前記保護材
(3b)の腐食電位をV3としたとき、V1>V3≧V2である熱
交換器において、V1−V3>V3−V2の関係が成立すること
を特徴とする熱交換器。
A tube (2) for forming a water channel and a fin (3) brazed to an outer peripheral surface of the tube (2),
The fin (3) is composed of a core material (3a) and the core material (3a).
A protective material (3b) that covers the surface on the brazing side with the tube (2) and also functions as a brazing material, wherein the tube (2), the core material (3a) and the protective material (3b) are made of aluminum and is constructed from material selected from aluminum alloy, the corrosion potential of the corrosion potential of the tube (2) and V 1, also the corrosion potential of the core (3a) and V 2, further wherein the protective material (3b) V 3 and the time, V 1> V 3 in the heat exchanger is ≧ V 2, the heat exchanger, characterized in that the relation of V 1 -V 3> V 3 -V 2 is established.
【請求項2】前記チューブ(2)は押出し加工により単
層構造に構成されている、第(1)項記載の熱交換器。
2. The heat exchanger according to claim 1, wherein said tube (2) is formed in a single-layer structure by extrusion.
JP63226212A 1988-09-09 1988-09-09 Heat exchanger Expired - Fee Related JP2648818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63226212A JP2648818B2 (en) 1988-09-09 1988-09-09 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63226212A JP2648818B2 (en) 1988-09-09 1988-09-09 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH02187595A JPH02187595A (en) 1990-07-23
JP2648818B2 true JP2648818B2 (en) 1997-09-03

Family

ID=16841654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63226212A Expired - Fee Related JP2648818B2 (en) 1988-09-09 1988-09-09 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2648818B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003274761A1 (en) * 2002-10-30 2004-05-25 Showa Denko K.K. Heat exchanger, heat exchanger tube member, heat exchanger fin member and process for fabricating the heat exchanger

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148553A (en) * 1984-08-13 1986-03-10 Showa Alum Corp Aluminum alloy material for fin for heat exchanger having significant cathodic protection effect
JPS63223499A (en) * 1987-03-12 1988-09-16 Showa Alum Corp Heat exchanger having superior anti-corrosion characteristic

Also Published As

Publication number Publication date
JPH02187595A (en) 1990-07-23

Similar Documents

Publication Publication Date Title
EP1090745B1 (en) Aluminum alloy clad material for heat exchangers exhibiting high strength and excellent corrosion resistance
EP0623461A1 (en) Tubular element for a heat exchanger
WO2003031667A1 (en) Aluminium alloy for making fin stock material
JP4328927B2 (en) Aluminum alloy material with excellent electrical and thermal conductivity
CA2510759A1 (en) Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
JP4002352B2 (en) Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistance aluminum alloy composite material for heat exchanger using the same
JP2648818B2 (en) Heat exchanger
JPS6055586B2 (en) High strength corrosion resistant aluminum alloy for brazing
JPS59100249A (en) Aluminum alloy brazing sheet having high strength characteristics at high temperature and sacrificial anticorrosive effect
JP3407965B2 (en) Aluminum alloy fin material
JPH06182581A (en) Aluminum alloy brazing filler metal for brazing heat exchanger and aluminum alloy brazing sheet for heat exchanger
EP0582235B1 (en) Aluminum alloy fin material for heat-exchanger
JPS5721793A (en) Brazed aluminum heat exchanger
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JPH0273942A (en) Corrosion-resisting aluminum alloy for heat exchanger
JP3205410B2 (en) High strength and high corrosion resistance aluminum alloy brazing sheet for heat exchanger
JP3749089B2 (en) Sacrificial anticorrosion aluminum alloy plate and composite material thereof
JP2815709B2 (en) Aluminum alloy clad material with excellent corrosion resistance
JP3599126B2 (en) Tubes used for brazing sheets and heat exchangers
JPH0788677A (en) Manufacture of aluminum alloy brazing sheet and heat exchanger made of aluminum alloy
JPH0273938A (en) Corrosion-resistant aluminum alloy for heat exchanger
JPH0273939A (en) Corrosion-resistant aluminum alloy for heat exchanger
JPH0273934A (en) Corrosion-resistant aluminum alloy for heat exchanger
JPH06170582A (en) Aluminum alloy brazing filler metal for low-temperature brazing
JP3085964B2 (en) Method of manufacturing high strength sacrificial anode fin material made of aluminum alloy for heat exchanger manufactured by brazing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees